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Abstract. In this article, we generalize some works of Bertolini-Darmon and Vatsal on anticyclotomic L-
functions attached to modular forms of weight two to higher weight case. We construct a class of anticyclotomic
p-adic L-functions for ordinary modular forms and derive the functional equation and the interpolation formula
at all critical specializations. Moreover, we prove results on the vanishing of µ-invariant of these p-adic L-
functions and the non-vanishing of central L-values with anticyclotomic twists.
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Introduction

The purpose of this article is to generalize works of Bertolini, Darmon and Vatsal on anticyclotomic p-adic L-
functions attached to modular forms of weight two to higher weight. We construct anticyclotomic p-adic L-
functions for ordinary modular forms and prove the interpolation property at all critical specializations and
the functional equation. In addition, following the ideas of Vatsal, we prove results on the vanishing of the
µ-invariant of this anticyclotomic p-adic L-functions and the non-vanishing modulo ` of central L-values with
anticyclotomic twists. To state our results precisely, we introduce some notation. Let f ∈ Sk(Γ0(N)) be an
elliptic new form of weight k (even) and conductor N . Let p be a rational prime. Let K be an imaginary
quadratic field of discriminant −DK < 0. Then K determines a factorization

N = pnpN+N− (p,N+N−) = 1,

where N+ (resp. N−) is only divisible by primes that are split (resp. inert or ramified) in K. We assume that

N− is the square-free product of an odd number of primes.

Fix a decomposition N+OK = N+N+. For each finite prime, let εq(f) ∈ {±1} denote the local root number
of f , so εq(f) = 1 if q - N , and εq(f) is the eigenvalue of Atkin-Lehner involution at q if q|N . The global root
number ε(f) := (−1)

k
2

∏
q εq(f). Let

f(q) =

∞∑
n=1

cn(f)qn

be the q-expansion of f at the infinity cusp. It is known that εq(f) = −q 2−k
2 cq(f) if q ‖ N . Let Ap be

a complex root of X2 − cp(f)X + pk−1 if p - N (or X2 − cp(f)X if p|N). Let K−∞ be the anticyclotomic
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Zp-extension over K and let Γ− = Gal(K−∞/K) be the Galois group. Denote by recK : A×K → GabK the
geometrically normalized reciprocity law map. Fix two embeddings ι∞ : Q̄ ↪→ C and ιp : Q̄ ↪→ Cp. To each
locally algebraic p-adic character χ̂ : Γ− → C×p of (p-adic) weight (m,−m) ∈ Z2, we can associate a Hecke
character χ : A×K/K

× → C× of (archimedean) weight (m,−m) defined by

χ(a) := ι∞ι
−1
p (χ̂(recK(a))(ap/ap)

m)(a∞/a∞)m,

where ap ∈ (K ⊗Q Qp)
× and a∞ ∈ (K ⊗Q R)× are the p-component and ∞-component of a. We call χ̂ the

p-adic avatar of χ. Let Xcrit
p be the set of critical specializations consisting of locally algebraic p-adic characters

χ̂ : Γ− → C×p of weight (m,−m) with
−k/2 < m < k/2.

Let Of be the ring of integers of the Hecke field of f . Fix a prime λ of Q̄ and let Of,λ be the completion
of Of with respect to λ. Suppose that λ is induced by ιp (so λ has residue characteristic p). Denote by
L(f/K, χ, s) the Rankin L-series associated with f and the theta series attached to χ. Our first theorem is
the construction of the anticyclotomic p-adic L-function attached to f over K with the explicit evaluation
formula at critical specializations.

Theorem A. Suppose that
(a) p > k − 2,
(b) Ap is a λ-adic unit.

Then there exist an element Θ∞ ∈ Of,λJΓ−K and a complex number Ωf,N− ∈ C× such that for every χ̂ ∈ Xcrit
p

of weight (m,−m) and conductor pn, we have the following interpolation formula:

χ̂(Θ2
∞) =Γ(

k

2
+m)Γ(

k

2
−m) ·

L(f/K, χ, k2 )

Ωf,N−
· ep(f, χ)2−ordp(N) · pnA−2n

p (pnDK)k−2

× u2
K

√
DK · εp(f)(−1)m

∏
q|(DK ,N−)

(1− εq(f)) · χ(N+),

where uK = ](O×K)/2 and ep(f, χ) is the p-adic multiplier given by

ep(f, χ) =


1 if n > 0,
(1− χ(p)p

k−2
2 A−1

p )(1− χ(p)p
k−2

2 A−1
p ) if n = 0 and p = pp is split,

1− pk−2A−2
p if n = 0 and p = p is inert,

1− χ(p)p
k−2

2 A−1
p if n = 0 and p = p2 is ramified.

Remark. (1) The existence of Ap satisfying the assumption (b) is usually referred to the p-ordinary hy-
pothesis for f , i.e. the p-th Fourier coefficient cp(f) is a λ-adic unit.

(2) The complex number Ωf,N− is given by

Ωf,N− =
(4π)k‖f‖Γ0(N)

ξf (N+, N−)
,

where ‖f‖Γ0(N) is the Petersson norm of f and ξf (N+, N−) ∈ Of,λ is an integer connected with certain
congruence number of f . The precise definition is given in (4.3). It is interesting and important to
make a comparison between Ωf,N− and Hida’s canonical period Ωf attached to f . In general, we have
Ωf,N−/Ωf ∈ Of,λ. If k = 2, then under a mild hypothesis, Pollack and Weston [PW11] have shown
that this ratio is a product of local Tamagawa numbers at primes dividing N− modulo a unit in Of,λ.
We will investigate this subtle problem in §6 for general weight k.

(3) Theorem A indeed gives the construction of the anticyclotomic p-adic L-function that interpolates
square root of central L-values. In the case k = 2, Θ∞ is precisely the theta element θ∞ (with trivial
tame branch character) given by Bertolini and Darmon [BD96, p.436]. Therefore, combined with
the anticyclotomic Iwasawa main conjecture for elliptic curves [BD05], the usual control theorem and
the comparison between periods [PW11, Proposition 3.7, Theorem6.8], the evaluation formula of Θ∞
at the trivial character yields the optimal upper bound of the size of p-primary Selmer groups of
certain elliptic curves over K in terms of central L-values as predicted by Birch and Swinnerton-Dyer
conjecture.
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Let ∗ : Of,λJΓ−K → Of,λJΓ−K be the involution defined by σ 7→ σ−1. Then Θ∞ satisfies the following
functional equation.

Theorem B. Let σN+ be the image of N+ in Γ− under the reciprocity law map recK . Then we have the
functional equation:

Θ∗∞ = εp(f)ε(f) ·Θ∞ · σ−1
N+ .

In the case k = 2 and (DK , N
−) = 1, this theorem is proved in [BD96, Proposition 2.13] up to an element in

Γ−. The above functional equation suggests that the product |Θ∞|2 := Θ∞ ·Θ∗∞ be intrinsic. Namely, |Θ∞|2

does not depend on the choice of an auxiliary decomposition N+ = N+N+. Combined with Theorem A,
this verifies the formula of χ(|Θ∞|2) in [BD96, Conjecture 2.12]. If χ is ramified character of finite order and
p - DKN , then the formula of χ(|Θ∞|2) actually is a consequence of Gross special value formulae first obtained
by B. Gross in a special case k = 2 and N is a prime and generalized by Shou-Wu Zhang [Zha04, Theorem7.1]
for k = 2 and Haiping Yuan [Yua05] for k > 2.

In [Vat03, Theorem1.1], Vatsal determines the µ-invariant of anticyclotomic p-adic L-functions for modular
forms of weight two. Our second theorem provides a partial generalization of his result to modular forms of
higher weight.

Theorem C. Let ρf,λ : Gal(Q̄/Q) → GL2(Of,λ) be the Galois representation associated to f . With the
assumptions in Theorem A, suppose further that

(1) (DK , N
−) = 1,

(2) the residual representation ρf,λ is absolutely irreducible.
Then the Iwasawa µ-invariant of Θ∞ vanishes.

Remark 1. Theorem C has important applications to Iwasawa theory for elliptic modular forms. In the proof
of Iwasawa main conjecture for elliptic curves by Skinner-Urban [SU14], Vatsal’s theorem on the vanishing of
µ-invariant plays a key role. To be precise, Skinner-Urban prove the cyclotomic main conjecture for modular
forms on Γ0(N) of weight k ≡ 2 (mod p− 1) [SU14, Theorem3.6.4], and Theorem C enables us to lift their
assumption k ≡ 2 (mod p− 1). For consequences in anticyclotomic Iwasawa theory for modular forms, see
[CH15].

Now we suppose that λ has residue characteristic ` 6= p and consider the problem of non-vanishing modulo
λ of central L-values with anticyclotomic twists. We obtain the following result, which is a generalization and
an improvement of [Vat03, Theorem1.2] in the weight two case.

Theorem D. Suppose that p2 - N and (DK , N
−) = 1. Let ` be a rational prime such that

(1) ` - pNDK and ` > k − 2,
(2) ρf,λ is absolutely irreducible.

Then for all but finitely many characters χ : Γ− → µp∞ , we have

L(f/K, χ, k2 )

Ωf,N−
6≡ 0 (mod λ).

Remark 2. Theorem D has several consequences in number theory and representation theory. In number
theory, this theorem removes the assumptions on p - DK and the p-indivisibility of the class number of K
in [Vat02, Theorem1.4], and shows the finiteness of the `-primary Selmer groups of elliptic curves over K−∞
in virtue of [LV10]. From representation theoretic point of view, this theorem provides a simultaneous non-
vanishing result of central L-values with anticyclotomic twist, and hence has application to the non-vanishing
of Bessel models of certain theta lifting on GSp(4) by [PTB11, Theorem3].

The construction of the theta element Θ∞ is based on an adelic formulation of the method of Bertolini and
Darmon, with which one can borrow tools from representation theory (Such kind of adelic formulation was
also used by Van Order [VO12] in the case of Hilbert modular forms of parallel weight two). The interpolation
formula is the elaboration of an explicit Waldspurger formula combined with a p-adic congruence argument.
We briefly describe these ideas in what follows. Let B be the definite quaternion algebra over Q of the
absolute discriminant N− and let R be an Eichler order of level N/N−. Let ϕf : B×\B×A/R̂× → Symk−2(C2)
be a vector-valued automorphic new form on B attached to f via Jacquet-Langlands correspondence. For each
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positive integer n, let On = Z+pnOK be the order ofK of conductor pn and let Gn = Gal(Hn/K) be the Galois
group of the ring-class field of K of conductor pn. Then the Picard group PicOn will be called Gross points
of level pn, which is a homogeneous space of Gn. Our hypothesis on N assures that there exists an optimal
embedding ιn : K → B with respect to (On, R), which in turn induces a map ιn : PicOn → B×\B×A/R̂×.
Fix a distinguished point Pn ∈ PicOn and let P †n be the regularized Gross point (See §4.2). The module
Symk−2(O2

f,λ) has a natural Of,λ-basis {vj} indexed by integers −k/2 < j < k/2 (See (2.10)), and we can
write

ϕf =
∑

−k/2<j<k/2

ϕ
[j]
f ⊗ vj .

Here ϕ[j]
f : B×\B×A → C are automorphic forms on B×A. One can take p-adically optimal normalization of

ϕ
[0]
f using the integral structure Symk−2(O2

f,λ) (see §4.1). Moreover, under the ordinary assumption, it can be

shown that the restriction of the normalized ϕ[0]
f to regularized Gross points does take value in Of,λ. We can

thus define
Θ̃n =

∑
σ∈Gn

σ ⊗ ϕ[0]
f (ιn(σ(P †n))) ∈ Of,λ[Gn].

Then
{

Θ̃n

}
n
is compatible with respect to the natural quotient Gn+1 → Gn. Then we obtain Θ̃∞ by taking

the limit
{

Θ̃n

}
n
∈ Of,λJG∞K, where G∞ = lim←−n Gn. The Galois group Γ− = Gal(K−∞/K) is the maximal

Zp-free quotient of G∞. The theta element Θ∞in Theorem A is defined to be the projection of Θ̃∞ obtained
by the quotient map G∞ → Γ−. If χ is a finite order character of conductor pn, the evaluation of χ̂(Θ∞)2

indeed can be translated into an explicit Waldspurger’s formula. Let ϕ†f be the p-stabilization of ϕ[0]
f with

respect to Ap. Then χ̂(Θ∞) is essentially the global toric period given by

P (ϕ†f , χ) =

∫
K×A×Q\A

×
K

ϕ†f (ιn(t))χ(t)dt.

The value P (ϕ†f , χ)2 is a product of local toric period integrals by the fundamental formula of Waldspurger
[Wal85, Proposition 7]. We make an explicit calculation of these local integrals. The new input is the calcula-
tion of the local toric integral of the p-stabilized local new vector at p. It is no surprise that the p-adic multiplier
ep(f, χ) is contributed by this local integral. Note that Waldspurger’s formula only computes χ̂(Θ∞) for finite
order characters χ. We obtain the formula of χ̂(Θ∞) for characters χ̂ ∈ Xcrit

p of infinite order by a congruence
trick (Corollary 4.5).

The proof of Theorem C is based on the uniform distribution of CM points in the zero dimensional Shimura
variety attached to the definite quaternion algebra B, which is the idea of Vatsal in his study on the non-
vanishing of anticyclotomic central L-values of weight two modular forms. In the higher weight situation,
the new idea is to use the congruences among modular forms. Roughly speaking, we construct a weight two
F̄p-valued modular form fp such that the evaluations of fp and ϕ

[0]
f at Gross points are congruent to each

other. We thus reduce the problem to fp, for which the approach of Vatsal can be applied. Since the form fp is
not a new form in general, we have to use a stronger uniform distribution result [CV05, Proposition 2.10] and
slightly generalized Ihara’s lemma (Lemma 5.5). The proof of Theorem D is based on the same idea combined
with a Galois average trick.

This paper is organized as follows. After fixing basic notation and definitions in §1, we give a brief review
of modular forms on definite quaternion algebras and an adelic description of Gross points in §2. In §3, we
give the explicit calculation of the toric periods of p-stabilized modular forms based on Waldspurger’s formula
(Proposition 3.5). The calculation of the local toric integral at p is carried out in Proposition 3.10, and the final
formula is summarized in Theorem 3.11. In §4, we give the construction of theta elements (Defefinition 4.1).
The functional equation is proved in Theorem 4.8, and the evaluation formula Theorem 4.6 (Theorem A) is
obtained by combining Proposition 4.3 and the congruence property Corollary 4.5 among theta elements. In
§5, after preparing a key result of Vatsal-Cornut on the uniform distribution of CM points and Ihara’s Lemma,
we prove Theorem C (Theorem 5.7) and Theorem D (Theorem 5.9). Finally, in §6 we give a sufficient condition
(Proposition 6.1) under which the complex number Ωf,N− equals Hida’s canonical periods Ωf up to a unit in
Of,λ, applying techniques of Wiles, Taylor-Wiles and Diamond in their proofs of modularity lifting theorems.
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1. Notation and definitions

1.1. If L is a number field, then OL is the ring of integers of L, AL is the adele of L and AL,f is the
finite part of AL. Let A = AQ. Let ψ =

∏
ψq be the standard additive character of A/Q such that

ψ(x∞) = exp(2πix∞), x∞ ∈ R.
We fix once and for all an embedding ι∞ : Q̄ ↪→ C and an isomorphism ι : C ' C` for each rational prime

`, where C` is the completion of an algebraic closure of Q`. Let ι` = ιι∞ : Q̄ ↪→ C` be their composition. Let
ord` : C` → Q∪{∞} be the `-adic valuation on C` normalized so that ord`(`) = 1. We regard L as a subfield
in C (resp. C`) via ι∞ (resp. ι`) and Hom(L, Q̄) = Hom(L,C`).

Let Z̄ be the ring of algebraic integers of Q̄ and let Z̄` be the `-adic completion of Z̄ in C`. Denote by Ẑ

the finite completion of Z. For an abelian group M , let M̂ := M ⊗Z Ẑ.

1.2. Measures on local fields. We fix some general notation and conventions on local fields used in §3. Let
q be a place of Q and let |·|Qq

be the standard absolute value on Qq. Let F be a finite extension of Qq. If
F is non-archimedean, we usually denote by $F a uniformizer of F . Denote by OF the ring of integers of F .
Let DF be the discriminant of F/Qq. Let |·|F be the absolute value of F normalized by |x|F =

∣∣NF/Qq
(x)
∣∣
Qq

.
We often simply write |x| = |x|F for x ∈ F if its meaning is clear from the context without possible confusion.
Let ψ : A/Q → C× be the additive character such that ψ(x∞) = exp(2πix). Let ψq be the local component
of ψ at q and let ψF := ψq ◦ TF/Qq

, where TF/Qq
is the trace from F to Qq.

Let dx be the Haar measure on F self-dual with respect to the pairing (x, x′) 7→ ψF (xx′). If F is non-
archimedean, then vol(OF , dx) = |DF |

1
2

Qq
. We recall the definition of the local zeta function ζF (s). If F is

non-archimedean, then

ζF (s) =
1

1− |$F |sF
.

If F is archimedean, then

ζR(s) = ΓR(s) := π−s/2Γ(s/2); ζC(s) = ΓC(s) := 2(2π)−sΓ(s).

The Haar measure d×x on F× is normalized by

d×x = ζF (1) |x|−1
F dx.

In particular, if F = R, then dx is the Lebesgue measure and d×x = |x|−1
R dx, and if F = C, then dx is twice

the Lebesgue measure on C and d×x = 2π−1r−1drdθ (x = reiθ).

1.3. L-functions. Let F be a non-archimedean local field. Let π be an irreducible admissible representation
of GL2(F ). Let L(s, π) and ε(s, π, ψF ) be the associated local L-function and local epsilon factor respectively
([JL70, Theorem2.18 (iv)]).

Let E be a quadratic extension of the local field F . We write πE for the base change of π. Let µ, ν :
F× → C× be two characters of F×. Suppose that either π = π(µ, ν) is a principal series if µν−1 6= |·|±1 or
π = σ(µ, ν) is a special representation if µν−1 = |·|. Let χ : E× → C× be a character. We recall the definition
of local L-functions L(s, πE⊗χ) (see [Jac72, §20]). If E = F ⊕F , then we write χ = (χ1, χ2) : F×⊕F× → C×

and put

L(s, πE ⊗ χ) =

{
L(s, π ⊗ χ1)L(s, π ⊗ χ2) if µν−1 6= |·|±1

,

L(s, µχ1)L(s, µχ2) if µν−1 = |·|.

If E is a field, then

L(s, πE ⊗ χ) =

{
L(s, µ′χ)L(s, ν′χ) if µν−1 6= |·|±1

,

L(s, µ′χ) if µν−1 = |·|.

Here µ′ = µ ◦NE/F , ν
′ = ν ◦NE/F are characters of E×.
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1.4. Whittaker functions on GL2(Qq). Let q be a place of Q and let π be an admissible irreducible
representation of GL2(Qq) with the trivial central character. Let W(π, ψ) be the Whittaker model of π
attached to the additive character ψ = ψq : Qq → C×. Recall that W(π, ψ) is a subspace of smooth functions
W : GL2(F )→ C such that

(1) W (

(
1 x
0 1

)
g) = ψ(x)W (g) for all x ∈ Qq.

(2) If q is the archimedean place, W (

(
a 0
0 1

)
) = O(|a|M ) for some positive number M .

If Qq is non-archimedean and N is a positive integer, we put

U0(N)q =

{
g =

(
a b
c d

)
∈ GL2(Zq) | c ∈ NZq

}
.

Let c be the conductor of π. Let Wπ be the normalized Whittaker new form characterized by Wπ(1) = 1 and
Wπ(gu) = Wπ(g) for all u ∈ U0(c)q. If Qq = R and π is a discrete series of weight k, then the normalized
Whittaker new form Wπ ∈ W(π, ψ) is defined by

Wπ(z

(
a x
0 1

)(
cos θ sin θ
− sin θ cos θ

)
) = a

k
2 e−2πaIR+

(a) · sgn(z)kψ(x)eikθ

(a, z ∈ R×, x, θ ∈ R).

Here IR+
(a) denotes the characteristic function of the set of positive real numbers. Recall that the zeta integral

Ψ(s,W, χ) for W ∈ W(π, ψ) and a character χ : Q×q → C× is defined by

Ψ(s,W, χ) =

∫
Q×q

W (

(
a 0
0 1

)
)χ(a) |a|s−

1
2 d×a (s ∈ C).

Then Ψ(s,W, χ) converges absolutely for Re s� 0 and has meromorphic continuation to the whole s ∈ C.
Let K(π, ψ) be the Kirillov model of π with respective to ψ. Then K(π, ψ) is a subspace of smooth functions

φ : Q×q → C, and there is an isomorphism W(π, ψ)
∼→ K(π, ψ) given by

W 7→ φW (a) := W (

(
a 0
0 1

)
).

We call φWπ
the normalized Kirillov new form. By the list of Kirillov new forms [Sch02, §2.4], we can verify

that

(1.1) Ψ(s,Wπ, χ) = L(s, π ⊗ χ) for unramified character χ.

2. Gross points and modular forms on definite quaternion algebras

2.1. Let K be an imaginary quadratic field with the discriminant −DK < 0 and let δ =
√
−DK . Write z 7→ z

for the complex conjugation on K. Define θ ∈ K by

θ =
D′ + δ

2
, D′ =

{
DK if 2 - DK ,

DK/2 if 2 | DK .

Then OK = Z+Z ·θ and θθ is a local uniformizer of primes that are ramified in K. Fix positive integers N+

that are only divisible by prime split in K and N− that are only divisible by primes inert or ramified in K.
We assume that

N− is the square-free product of an odd number of primes.
Let B be the definite quaternion over Q which is ramified precisely at the prime factors of N− and the
archimedean place. We can regard K as a subalgebra of B. Write T and N for the reduced trace and norm
of B respectively. Let G = B× be the algebraic group over Q and let Z = Q× be the center of G. Fix a
distinguished rational prime p such that

p - N+N−.

Let p be the prime of K above p induced by ιp : K ↪→ Cp. Let ` - N− be a rational prime (` can be p). We
choose a basis of B = K ⊕K · J over K such that

• J2 = β ∈ Q× with β < 0 and Jt = tJ for all t ∈ K.
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• β ∈ (Z×q )2 for all q | p`N+ and β ∈ Z×q for q|DK .

Fix a square root
√
β ∈ Q̄ of β. We fix an isomorphism i =

∏
iq : B̂(N−) ' M2(A

(N−)
f ) as follows. For each

finite place q|p`N+, the isomorphism iq : Bq 'M2(Qq) is defined by

(2.1) iq(θ) =

(
T(θ) −N(θ)

1 0

)
; iq(J) =

√
β ·
(
−1 T(θ)
0 1

)
(
√
β ∈ Z×q ).

For each finite place q - p`N , the isomorphism iq : Bq := B ⊗Q Qq 'M2(Qq) is chosen so that

(2.2) iq(OK ⊗ Zq) ⊂M2(Zq).

Hereafter, we shall identify Bq and G(Qq) with M2(Qq) and GL2(Qq) via iq for finite q - N−. Finally, we
define

(2.3)
iK : B ↪→M2(K)

a+ bJ 7→ iK(a+ bJ) :=

(
a bβ

b a

)
(a, b ∈ K)

and let iC : B →M2(C) be the composition iC = ι∞ ◦ iK

2.2. Optimal embeddings and Gross points. Fix a decomposition N+OK = N+N+ once and for all. For
each finite place q - p, we define ςq ∈ G(Qq) as follows:

(2.4)
ςq =1 if q - pN+,

ςq =δ−1

(
θ θ
1 1

)
∈ GL2(Kq) = GL2(Qq) if q = qq is split with q|N+.

For g ∈ B, we put

ιςq (g) := i−1
q (ς−1

q iq(g)ςq).

If q|N+ and t = (t1, t2) ∈ Kq := K ⊗Q Qq = Kq ⊕Kq, then

(2.5) ιςq (t) =

(
t1 0
0 t2

)
.

For each non-negative integer n, we choose ς(n)
p ∈ G(Qp) as follows. If p = pp splits in K, we put

ς(n)
p =

(
θ −1
1 0

)(
pn 0
0 1

)
∈ GL2(Kp) = GL2(Qp).(2.6)

If p is inert or ramified in K, then we put

ς(n)
p =

(
0 1
−1 0

)(
pn 0
0 1

)
.(2.7)

Define xn : A×K → G(A) by

(2.8) xn(a) := a · ς(n) (ς(n) := ς(n)
p

∏
q 6=p

ςq).

This collection {xn(a)}a∈A×K of points is called Gross points of conductor pn associated to K.
Let On = Z + pnOK be the order of K of conductor pn. For each positive integer M prime to N−, we

denote by RM the Eichler order of level M with respect to the isomorphisms {iq : Bq 'M2(Qq)}q-N− . It is
not difficult to verify immediately that the inclusion map K ↪→ B is an optimal embedding of On into the
Eichler order B ∩ ς(n)R̂M (ς(n))−1 if ordp(M) ≤ n. In other words,

(2.9) (B ∩ ς(n)R̂M (ς(n))−1) ∩K = On.
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2.3. Modular forms on definite quaternion algebras. Let k ≥ 2 be an even integer. For a ring A, we
denote by Lk(A) = Symk−2(A2) the set of the set of homogeneous polynomials of degree k−2 with coefficients
in A. We write

(2.10) Lk(A) =
⊕

− k2<m<
k
2

A · vm (vm := X
k−2

2 −mY
k−2

2 +m).

We let ρk : GL2(A)→ AutA Lk(A) be the unitary representation defined by

ρk(g)P (X,Y ) = det(g)−
k−2

2 · P ((X,Y )g) (P (X,Y ) ∈ Lk(A)).

If A is a Z(p)-algebra with p > k − 2, we define a perfect pairing 〈 , 〉k : Lk(A)×Lk(A)→ A by

〈
∑
i

aivi,
∑
j

bjvj〉k =
∑

−k/2<m<k/2

amb−m · (−1)
k−2

2 +mΓ(k/2 +m)Γ(k/2−m)

Γ(k − 1)
.

This pairing is GL2(A)-equivariant, i.e. For P, P ′ ∈ Lk(A), we have

〈ρk(g)P, ρk(g)P ′〉k = 〈P, P ′〉k.

Via the embedding iC in (2.3), we obtain a representation

ρk,∞ : G(R) = (B ⊗Q R)×
iC−→ GL2(C)→ AutC Lk(C).

Then C · vm is the eigenspace on which ρk,∞(t) acts by (t/t)m for t ∈ (K ⊗Q R)×. If A is a K-algebra and
U ⊂ G(Af ) is an open compact subgroup, we denote by Mk(U,A) be the space of modular forms of weight k
defined over A, consisting of functions f : G(Af )→ Lk(A) such that

f(αgu) = ρk,∞(α)f(g) for all α ∈ G(Q), u ∈ U.

The right translation makes Mk(A) := lim−→U
Mk(U,A) an admissible G(Af )-representation.

Let A(G) be the space of automorphic forms on G(A). For v ∈ Lk(C) and f ∈Mk(C), we define a function
Ψ(v ⊗ f) : G(Q)\G(A)→ C by

(2.11) Ψ(v ⊗ f)(g) := 〈ρk,∞(g∞)v, f(gf )〉k.

Then the map v ⊗ f 7→ Ψ(v ⊗ f) gives rise to a G(A)-equivariant morphism Lk(C) ⊗Mk(C) → A(G). Let
ω be a unitary Hecke character of Q. We let

Mk(U, ω,C) = {f ∈Mk(U,C) | f(zg) = ω(z)f(g) for all z ∈ Z(A)} .

Let Ak(U, ω,C) be the space of automorphic forms on G(A) of weight k and central character ω, consisting
of functions Ψ(f ⊗ v) : G(A)→ C for f ∈ Sk(U, ω,C) and v ∈ Lk(C). Denote by 1 the trivial character. For
each positive integer M , we put

Mk(M,C) =Mk(R̂×M ,1,C),

Ak(M,C) =Ak(R̂×M ,1,C).

3. Special value formula

3.1. Global setting. Let π be an unitary irreducible cuspidal automorphic representation on GL2(A) with
trivial central character. Henceforth, we make the following assumptions:

• The archimedean constituent π∞ is a discrete series of weight k;
• The conductor of π is N = pnpN+N−;
• ordp(N) = np ≤ 1 ⇐⇒ p2 - N .

Let π′ = ⊗π′q be the unitary irreducible cuspidal automorphic representation on G(A) with trivial central
character attached to π via Jacquet-Langlands correspondence. Then we have

(1) The archimedean constituent π′∞ ' (ρk,∞, Lk(C)) as G(R)-modules, and π′q is an unramified one
dimensional representation for q | N−.

(2) The local constituent π′p = πp is either an unramified principal series π(µp, νp) or an unramified special
representation σ(µp, νp) with µpν−1

p = |·|Qp
.
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3.2. p-stabilization of new forms. Let π′f denote the finite constituent of π′. Let

NB = pnpN+ = N/N−

and let R := RNB be the Eichler order of level NB . The multiplicity one theorem together with our as-
sumptions in particular imply that π′f can be realized as a unique G(Af )-submodule Mk(π′f ) of Mk(C) and
Mk(NB ,C)[π′f ] := Mk(π′f )∩Mk(NB ,C) is one dimensional. We fix a nonzero new form fπ′ ∈Mk(NB ,C)[π′f ].
Throughout this section, we fix an integer m such that

−k/2 < m < k/2.

Define the automorphic form ϕ
[m]
π′ ∈ Ak(NB ,C) by

(3.1) ϕ
[m]
π′ := Ψ(v∗m ⊗ fπ′) (v∗m =

√
β
−m

D
k−2

2

K · vm).

We shall simply write ϕπ′ for ϕ
[m]
π′ for brevity. Set

αp := µp(p) |p|−
1
2

p .

Define the p-stabilization f†π′ with respect to αp as follows: If p | N , let f†π′ = fπ′ , and if p - N , let

f†π′ = fπ′ −
1

αp
· π′(

(
1 0
0 p

)
)fπ′ .

For f ∈Mk(NB ,C), recall that the Up-operator on f is defined by

f | Up(g) =
∑

x∈Z/pZ

f(g

(
p x
0 1

)
).

Thus f†π′ is an Up-eigenform with the eigenvalue αp. Let ϕ
†
π′ be the p-stabilization of ϕπ′ given by

(3.2) ϕ†π′ := Ψ(v∗m ⊗ f
†
π′).

By definition, one can verify that

(3.3)
ϕ†π′(xn(γau)) =ϕ†π′(xn(af ))(a∞/a∞)m

(γ ∈ K×,a = (a∞, af ) ∈ C××K̂×, u ∈ Ô×n ).

3.3. The Petersson inner product of new forms on GL2(A). For each place of Q, recall that Wπq is
the Whittaker new form normalized so that Wπq (1) = 1. Let ϕπ be the normalized new form in π. In other
words,

ϕπ(g) :=
∑
α∈Q

Wπ(

(
α 0
0 1

)
g) (Wπ =

∏
q

Wπq ).

Let τN =
∏
q τ

N
q ∈ GL2(A) be the Atkin-Lehner element defined by τN∞ =

(
1 0
0 −1

)
and τNq =

(
0 1
−N 0

)
if q 6=∞. Let dtg be the Tamagawa measure on GL2. We put

〈ϕπ, ϕπ〉GL2
:=

∫
A× GL2(Q)\GL2(A)

ϕπ(g)ϕπ(gτN )dtg.

To give a formula of 〈ϕπ, ϕπ〉GL2
, we define the GL2(Qq)-equivariant pairing bq :W(πq, ψq)×W(πq, ψq)→ C

by

(3.4) bq(W1,W2) :=

∫
Q×q

W1(

(
a 0
0 1

)
)W2(

(
−a 0
0 1

)
)d×a.

The convergence of this integral follows from the fact that πq is the local constituent of a unitary cuspidal
automorphic representation. Let ‖ϕπ‖q be the local norm of ϕπ at q defined by

(3.5) ‖ϕπ‖q :=
ζQq (2)

ζQq
(1)L(1,Adπq)

· bq(Wπq , π(τNq )Wπq ).
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It is not difficult to deduce from [Wal85, Proposition 5] that

(3.6) 〈ϕπ, ϕπ〉GL2 =
2L(1,Adπ)

ζQ(2)
·
∏
q

‖ϕπ‖q.

Define the local root number ε(πq) by

ε(πq) := ε(
1

2
, πq, ψq) ∈ {±1} .

The following lemma is well-known.

Lemma 3.1. Let q be a finite place. We have π(τNq )Wπq = ε(πq) ·Wπq .

Proof. We suppress the subscript q and write π = πq and ψ = ψq for brevity. Since π(τNq )Wπ is also a
nonzero new vector of π, we find that π(τNq )Wπ = C ·Wπ for some constant C ∈ C×. Recall that we have
the local functional equation [JL70, Theorem2.18 (iv)]:

Ψ(1− s, Ŵ ,1)

L(1− s, π)
= ε(s, π, ψ) · Ψ(s,W,1)

L(s, π)
,

where Ŵ (g) := W (g

(
0 1
−1 0

)
) ∈ W(π, ψ). To evaluate C, we compute the zeta integral:

C ·Ψ(s,Wπ,1) = Ψ(s, π(τNq )Wπ,1)

=

∫
F×

π(τNq )Wπ(

(
a 0
0 1

)
) |a|s−

1
2 d×a

= |N |s−
1
2 ·
∫
F×

π(

(
0 1
−1 0

)
)Wπ(

(
a 0
0 1

)
) |a|s−

1
2 d×a

= |N |s−
1
2 ·Ψ(s, Ŵπ,1)

= |N |s−
1
2 · ε(1− s, π, ψ)

L(s, π)

L(1− s, π)
·Ψ(1− s,Wπ,1).

It follows from (1.1) that

C = |N |s−
1
2 · ε(1− s, π, ψ) = ε(

1

2
, π, ψ).

This completes the proof. �

Lemma 3.2. We have ‖ϕπ‖q = 1 for finite q - N and ‖ϕπ‖∞ = 2−k−1. If q|N−, then
‖ϕπ‖q = ε(πq) · (1 + |q|)−1.

Proof. The assertions for q - N and q = ∞ are straightforward. Suppose that q|N−. Then π = πq is a
unramified special representation, and L(1,Adπ) = ζQq

(2). By Lemma 3.1, we have

bq(Wπ, π(τNq )Wπ) =

∫
F×

Wπ(

(
a 0
0 1

)
) · π(τNq )Wπ(

(
−a 0
0 1

)
)d×a

= ε(
1

2
, π, ψ) ·

∫
F×

Wπ(

(
a 0
0 1

)
)Wπ(

(
a 0
0 1

)
)d×a

= ε(
1

2
, π, ψ)L(1,Adπ). �

The Petersson inner product ‖ϕπ‖Γ0(N) of ϕπ is defined by

‖ϕπ‖Γ0(N) := vol(U0(N), dtg)−1 ·
∫

A× GL2(Q)\GL2(A)

|ϕπ(g)|2 dtg,

where U0(N) = O(2,R)×
∏
q<∞ U0(N)q. Note that

vol(U0(N), dtg)−1 = ζQ(2)N
∏
q|N

(1 + q−1).
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We have the following proposition:

Proposition 3.3 (Theorem5.1 [Hid81]). We have

L(1,Adπ) = ‖ϕπ‖Γ0(N) · 2kN−1 ·
∏
q|NB

ε(πq)

(1 + q−1)‖ϕπ‖q
.

Proof. By (3.6) and Lemma 3.2, we have

〈ϕπ, ϕπ〉GL2
=

2L(1,Adπ)

ζQ(2)
· 2−k−1

∏
q|N−

ε(πq)

1 + q−1
·
∏
q|NB

‖ϕπ‖q.

On the other hand, it is well known that

ϕπ(gτN ) = ε(πf ) · ϕπ(g) (ε(πf ) :=
∏
q<∞

ε(πq)),

and hence

〈ϕπ, ϕπ〉GL2
=ε(πf ) · vol(U0(N), dtg) · ‖ϕπ‖Γ0(N)

=‖ϕπ‖Γ0(N) ·
1

NζQ(2)
·
∏
q|N

ε(πq)

1 + q−1
.

Combining these formulae, we find that

L(1,Adπ) = 2kN−1‖ϕπ‖Γ0(N) ·
∏
q|NB

ε(πq)

(1 + q−1)‖ϕπ‖q
. �

3.4. Local toric integrals. For each place q of Q, denote by π′q the local constituent of π′ at q.

Definition 3.4. Define the new vector ϕq ∈ π′q as follows:

(a) if q =∞, then ϕq is a multiple of vm ∈ Lk(C) ' π′∞,

(b) if q | N−, then ϕq is a basis of the one dimensional representation π′q of G(Qq),

(c) if q - N−, then ϕq is fixed by (R⊗Z Zq)
× ' U0(N)q.

Let ϕ†q = ϕq if either q 6= p or q = p | N and let

ϕ†q = ϕq −
1

αp
· π(

(
1 0
0 p

)
)ϕq if q = p - N.

Define the local Atkin-Lehner element τNBq ∈ G(Qq) as follows: τNBq = J for q|∞N−, τNBq = 1 for finite

place q - N and τNBq =

(
0 1
−NB 0

)
if q|NB . Let τNB :=

∏
τNBq ∈ G(A). Since π′ has trivial central

character, π′q is self-dual. Hence, there exists a non-degenerate G(Qq)-equivariant pairing 〈 , 〉q : π′q×π′q → C.
This pairing is unique up to a nonzero scalar.

For g ∈ G(Qq) and a character χ : K×q → C×, we define the local toric integral for the new vector ϕq by

(3.7) P(g, ϕq, χ) =
L(1,Adπq)L(1, τKq/Qq

)

ζQq (2)L( 1
2 , πKq ⊗ χ)

·
∫
K×q /Q

×
q

〈π′(tg)ϕ†q, π
′(Jg)ϕ†q〉q

〈ϕq, π′(τNBq )ϕq〉q
· χ(tq)dtq,

where τKq/Qq
denotes the quadratic character of Q×q associated to Kq/Qq and dtq is the quotient measure of

the Haar measures of K×q and Q×q fixed in §1. An important observation is that the number P(g, ϕq, χ) does
not depend on the choice of the pairing 〈 , 〉q, depending only on χ and the line spanned by ϕq.
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3.5. Waldspurger’s formula. Let χ : K×\A×K → C× be an anticyclotomic Hecke character of archimedean
weight (m,−m). Namely,

(crit) χ|A× = 1 and χ∞(z) =
(z
z

)m
(−k/2 < m < k/2).

Let πK be the automorphic representation on GL2(AK) via the quadratic base change of π and let L(s, πK⊗χ)
be the automorphic L-function of πK ⊗ χ, which satisfies the functional equation

L(s, πK ⊗ χ) = ε(s, πK ⊗ χ)L(1− s, π∨K ⊗ χ−1),

where ε(s, πK⊗χ) =
∏
q ε(s, πKq⊗χq, ψKq ) is the product of local epsilon factors. LetA(π′) be the automorphic

realization of π′ in A(G). For ϕ ∈ A(π′) and g ∈ G(A), define the global toric period integral by

P (g, ϕ, χ) :=

∫
K×A×\A×K

ϕ(tg)χ(t)dt,

where dt is the measure of K×/Q× with the volume vol(K×A×\A×K , dt) = 2L(1, τK/Q), where L(s, τK/Q) is
the complete L-function of the quadratic character attached to K/Q (cf. [Wal85, p. 180]). For ϕ1, ϕ2 ∈ A(π′),
we define the G(A)-equivariant pairing:

〈ϕ1, ϕ2〉G =

∫
G(Q)Z(A)\G(A)

ϕ1(g)ϕ2(g)dg,

where dg is the Tamagawa measure on G/Z. By the theory of new forms [Cas73], ϕπ′ is characterized
uniquely up to a scalar by the equations π′(R̂×)ϕπ′ = ϕπ′ and π′∞(t)ϕπ′ = (t/t)mϕπ′ for t ∈ K×, so we have
π′(τNB )ϕπ′(g) = C · ϕπ′(g) for some constant C ∈ C×. This in particular implies that

〈ϕπ′ , π′(τNB )ϕπ′〉G 6= 0.

Since 〈 , 〉G is a nonzero multiple of the product ⊗q〈 , 〉q, we have

(3.8) 〈ϕq, π′(τNBq )ϕq〉q 6= 0 for each place q.

We shall make use of the following version of Waldspurger’s formula, which expresses the global toric period
integral as a product of local toric integrals.

Proposition 3.5. We have

P (ς(n), ϕ†π′ , χ)2

〈ϕπ′ , π′(τNB )ϕπ′〉G
=

ζQ(2)

2L(1,Adπ)
· L(

1

2
, πK ⊗ χ) ·

∏
q

P(ς(n)
q , ϕq, χq),

where q runs over all places of Q.

Proof. Fix an isomorphism i : π′ ' ⊗qπ′q such that i(ϕπ′) = ⊗qϕq for ϕq chosen in Defefinition 3.4. Set
ϕ1 = π′(ς(n))ϕ†π′ , ϕ2 = π′(Jς(n))ϕ†π′ , ϕ3 = ϕπ′ and ϕ4 = π′(τNB )ϕπ′ . Let i(ϕi) = ⊗qϕi,q. Let χ be the
character defined by χ(t) = χ(t). Note that P (1, ϕ1, χ) = P (ς(n), ϕ†π′ , χ) and P (1, ϕ2, χ) = P (ς(n), ϕ†π′ , χ).
It follows from Waldspurger’s formulae [Wal85, Proposition 4, Proposition 5, Lemme 7] that if 〈ϕ3, ϕ4〉G 6= 0,
then

P (1, ϕ1, χ)P (1, ϕ2, χ)

〈ϕ3, ϕ4〉G
=
ζQ(2)L( 1

2 , πK ⊗ χ)

2L(1,Adπ)
·
∏
q

Pq(ϕ1, ϕ2, ϕ3, ϕ4, χ),

where

Pq(ϕ1, ϕ2, ϕ3, ϕ4, χ) =
L(1,Adπq)L(1, τKq/Qq

)

L( 1
2 , πKq ⊗ χq)ζQq

(2)
·
∫
K×q /Q

×
q

〈π′(tq)ϕ1,q, ϕ2,q〉q
〈ϕ3,q, ϕ4,q〉q

· χ(tq)dtq.

Moreover, we have Pq(ϕ1, ϕ2, ϕ3, ϕ4, χ) = 1 for all but finitely many q. The proposition follows immediately.
�



SPECIAL VALUES OF ANTICYCLOTOMIC L-FUNCTIONS 13

Let Cl(R) be a set of representatives of B×\B̂×/R̂×Q̂× in B̂× = G(Af ). Define the inner product of fπ′
by

(3.9) 〈fπ′ , fπ′〉R :=
∑

g∈Cl(R)

1

]Γg
· 〈fπ′(g), fπ′(gτ

NB )〉k (Γg := (B× ∩ gR̂×g−1Q̂×)/Q×).

Let εq(πK , χ) := ε( 1
2 , πKq ⊗ χq, ψKq ) ∈ {±1} be the local root number of πKq ⊗ χq.

Corollary 3.6. Suppose that χ is unramified outside p. Then we have

P (ς(n), ϕ†π′ , χ)2 ·
‖ϕπ‖Γ0(N)

〈fπ′ , fπ′〉R
=

22−k(−1)mDk−2
K√

DK

· L(
1

2
, πK ⊗ χ) ·

∏
q|(DK ,N−)

(1− εq(πK , χ))

×
∏
q|pN+

P(ςq, ϕq, χq) ·
‖ϕπ‖q

|DK |
1
2

Qq
ε(πq)

.

Proof. Let vR be the volume of G(R)R̂× in Z(A)G(Q)\G(A) and dg∞ be the Haar measure on the
compact group G(R)/Z(R) with the volume one. By Schur orthogonality relations, we have

〈ϕπ′ , π′(τNB )ϕπ′〉G =
∑

g∈Cl(R)

1

]Γg
·
∫
G(R)/Z(R)

〈ρk,∞(g∞)v∗m, fπ′(g)〉k · 〈ρk,∞(g∞J)v∗m, fπ′(gτ
NB
f )〉kdg∞ · vR

=
∑

g∈Cl(R)

1

]Γg
· 〈fπ′(g), f(gτNB )〉k ·

〈v∗m, ρk,∞(J)v∗m〉k
dimC Lk−2(C)

· vR

= 〈fπ′ , fπ′〉R ·
(−1)

2−k
2 Dk−2

K 〈vm,vk−m−2〉k
(k − 1)

· vR,

By the Eichler mass formula: ∑
g∈Cl(R)

1

]Γg
=
ζQ(2)

4π
·N

∏
q|N−

(1− q−1)
∏
q|NB

(1 + q−1),

and vol(Z(A)G(Q)\G(A), dg) = 2, we find that

vR =
8π

ζQ(2)N
·
∏
q|N−

ζQq (1)
∏
q|NB

(1 + q−1)−1,

and hence
(3.10)

〈ϕπ′ , π′(τNB )ϕπ′〉G = 〈fπ′ , fπ′〉R ·
(−1)mDk−2

K Γ(k/2 +m)Γ(k/2−m)

Γ(k)
· 8π

ζQ(2)N
·
∏
q|N−

ζQq
(1)

∏
q|NB

(1 + q−1)−1.

Combining with Proposition 3.3, Proposition 3.5 and (3.10) , we find that

(3.11)

P (ς(n), ϕ†π′ , χ)2 ·
‖ϕπ‖Γ0(N)

〈fπ′ , fπ′〉R
=

22−kDk−2
K π(−1)mΓ(k/2 +m)Γ(k/2−m)

Γ(k)
· L(

1

2
, πK ⊗ χ)

×
∏
q∈S
P(ς(n)

q , ϕq, χq) ·
∏
q|N−

ζQq
(1) ·

∏
q|pN+

‖ϕπ‖q
ε(πq)

.

We proceed to compute the local toric integrals P(ς
(n)
q , ϕq, χq) for q - pN+. At the archimedean place, we

have π′∞ = ρk,∞ and χ∞(t) = (t/t)m. In addition, τNB∞ = J and ϕ∞ = vm is characterized by ρk,∞(t)(vm) =
χ∞(t)−1vm for t ∈ C×, so we have

〈ρk,∞(t)vm, ρk,∞(J)vm〉k
〈vm, ρk,∞(τNB∞ )vm〉k

· χ∞(t) = 1 for all t ∈ C× = K×∞.

Recall that
L(1,Adπ∞) = 21−kπ−(k+1)Γ(k); L(

1

2
, πK ⊗ χ) = ΓC(k/2 +m)ΓC(k/2−m).
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We conclude that

(3.12) P(1,vm, χ∞) =
Γ(k)

2πΓ(k/2 +m)Γ(k/2−m)
· vol(C×/R×, dt∞) =

Γ(k)

πΓ(k/2 +m)Γ(k/2−m)
.

If q - pN , then ϕq is the spherical vector in πq, and by [Wal85, Lemme 14] (use the fact that iq(J) is an
element of iq(K×q ) GL2(Zq)) we have

(3.13) P(ςq, ϕq, χq) = |DK |
1
2
q .

Suppose that q | N−. Then π′q = ξ ◦ N is the one dimensional representation of a unramified quadratic

character ξ : Q×q → C×, and πq = σ(ξ|·|
1
2 , ξ|·|−

1
2 ), and a simple calculation of local root numbers shows that

(χq · ξ ◦N)($Kq ) + εq(πK , χ) = 0.

In particular, if Kq/Qq is unramified, then εq(πK , χ) = −1. Therefore, we find that

(3.14) P(1, ϕq, χq) =ζQq
(1)−1 |DK |

1
2
q ·

{
1 if Kq/Qq is unramified,
(1− εq(πK , χ)) if Kq/Qq is ramified .

Combining (3.12), (3.13), (3.14) and (3.11), we obtain the desired formula. �

3.6. Local toric integrals at q | pN+. In this subsection, we carry out the computation of the local
toric integral P(ς

(n)
q , ϕq, χq) using the Whittaker model for q | pN+. Let F = Qq and E = Kq and write

π = π′q ' πq, χ = χq and ψ = ψq for brevity. Define the toric integral for Whittaker functions W ∈ W(π, ψ)
by

P (W,χ) :=
|DK |−

1
2 L(1, τE/F )

ζF (1)
·
∫
E×/F×

bq(π(tq)W,π(J)W ) · χ(tq)dtq.

Lemma 3.7. Let J (n)
q := (ς

(n)
q )−1Jς

(n)
q . For q|N+, we have

π(J (n)
q )ϕq = ε(π)π(

(
N+ 0
0 1

)
)ϕq.

Proof. A straightforward computation shows that

J (n)
q =

√
β ·
(

0 1
1 0

)
if q|N+.

Thus, by Lemma 3.1 we have π(J
(n)
q )ϕq = π(

(
N+ 0
0 1

)
)π(τN )ϕq = ε(π)π(

(
N+ 0
0 1

)
)ϕq. �

Proposition 3.8. Let q | N+. Write q = qq in K with q | N+. If χ is unramified, then we have

P(ςq, ϕq, χ) · ‖ϕπ‖q
|DK |

1
2 ε(π)

= χq(N
+).

Proof. Since q - p is split in E, we have L(1, τE/F ) = ζF (1), |DK | = 1 and ς(n)
q = ςq. By definition (3.5),

P(ς(n)
q , ϕq, χ) =

1

‖ϕπ‖q
· 1

L( 1
2 , πE ⊗ χ)

· P (π(ςq)Wπ, χ).

Write χ = (χq, χq). A straightforward computation shows that

P (π(ςq)Wπ, χ) = ε(π)

∫
F×

∫
F×

Wπ(

(
at1 0
0 1

)
)Wπ(

(
−aN+ 0

0 1

)
)χq(t1)d×ad×t1 (by Lemma 3.7)

= ε(π)χq(N+)

∫
F×

∫
F×

Wπ(

(
t1 0
0 1

)
Wπ(

(
a 0
0 1

)
)χq(t1)χ−1

q (a)d×ad×t1

= χq(N+)ε(π)Ψ(
1

2
,Wπ, χq)Ψ(

1

2
,Wπ, χ

−1
q )

= χq(N+)ε(π) · L(
1

2
, πE ⊗ χ).

The last equality follows from (1.1). �
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We continue to compute the local toric integral at the place q = p. Recall that we assume π = πp is a
unramified principal series π(µp, νp) or a special representation σ(µp, νp) with unramified character µp and
µpν

−1
p = |·|. Let Ip be the Iwahori subgroup given by

Ip =

{
g =

(
a b
c d

)
∈ GL2(Zp) | c ∈ pZp

}
.

By the complete description of Kirillov models in [Jac72], the function µp|·|
1
2 (a)IZp(a) lies in the Kirillov

model K(π, ψ), and hence there exists a unique Whittaker function W †p ∈ W(π, ψ)

W †p (

(
a 0
0 1

)
) = µp|·|

1
2 (a)IZp(a).

One can verify that W †p is invariant by Ip and is an Up-eigenfunction with eigenvalue αp = µp(p) |p|−
1
2 . If π

is unramified, then

Wπ(

(
a 0
0 1

)
) = |a|

1
2 IZp(a)

µp(pa)− νp(pa)

µp(p)− νp(p)
;

W †p (g) =Wπ(g)− 1

αp
·Wπ(g

(
1 0
0 p

)
).

If π is special, then it is well known that

(3.15) Wπ = W †p and π(

(
0 1
−p 0

)
)Wπ = −αpWπ.

We have

(3.16) P(ς(n)
q , ϕq, χ) =

|DK |
1
2

‖ϕπ‖p
· 1

L( 1
2 , πE ⊗ χ)

· P (π(ς(n)
q )W †p , χ).

Definition 3.9. Define the p-adic multiplier ep(π, χ) by

ep(π, χ) =


1 if χp is ramified;

(1− α−1
p χ(p))(1− α−1

p χ(p)) if χp is unramified, p = pp is split;
1− α−2

p if χp is unramified, p = p is inert;
1− α−1

p χ(p) if χp is unramified, p = p2 is ramified

(cf. [BD96, §2.10]).

Proposition 3.10. Suppose that χ has conductor ps. Let n = max {1, s}. Then

1

L( 1
2 , πE ⊗ χ)

· P (π(ς(n)
p )W †p , χ) = ep(π, χ)2−ordp(N) · L(1, τE/F )2 ·

{
α2
pp
−2 if s = 0,

p−s if s > 0.

Therefore, by (3.16) we have

P(ς(n)
p , ϕp, χ) · ‖ϕπ‖p

|DK |
1
2

= ep(π, χ)2−ordp(N) · L(1, τE/F )2 ·

{
α2
pp
−2 if s = 0,

p−s if s > 0.

Proof. For t ∈ E, we put
ι(n)
ς (t) := (ς(n)

p )−1ι(t)ς(n)
p .

It is easy to see that ι(n)
ς (J) ∈ Ip if n ≥ 1.

Suppose that p = pp is split in E. Recall that δ = θ − θ ∈ O×Kp
= Z×p . A direct computation shows that

ι(n)
ς (t) =

(
1 δ−1p−n

0 1

)(
t
0 t

)(
1 −δ−1p−n

0 1

)
.
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We find that

P (π(ς(n)
p )W †p , χ)

=

∫
F×

∫
F×

W †p (

(
ax 0
0 1

)(
1 −δ−1p−n

0 1

)
)W †p (

(
−a 0
0 1

)(
1 −δ−1p−n

0 1

)
)χp(x)d×ad×x

=

∫
Zp−{0}

ψ(−δ−1p−nx)µpχp|·|
1
2 (x)d×x ·

∫
Zp−{0}

ψ(δ−1p−na)µpχ
−1
p |·|

1
2 (a)d×a.

If n = s ≥ 1, then L( 1
2 , πE ⊗ χ) = 1, and as∫

Z×p

ψ(p−rx)χ±p (x)d×x = 0 for all r < n,

we find that

P (π(ς(n)
p )W †p , χ) =

∫
Z×p

ψ(−δ−1p−nx)χp(x)d×x ·
∫
Z×p

ψ(δ−1p−na)χ−1
p (a)d×a

=ε(1, χp, ψ)ε(1, χ−1
p , ψ) · ζF (1)2

= |pn|L(1, τE/F )2.

If s = 0 and n = 1, then χ is unramified and

P (π(ς(n)
p )W †p , χ) = (

− |p|
1− |p|

+
µpχp|·|

1
2 (p)

1− µpχp|·|
1
2 (p)

) · ( − |p|
1− |p|

+
µpχ

−1
p |·|

1
2 (p)

1− µpχ−1
p |·|

1
2 (p)

)

=
1− µ−1

p χ−1
p |·|

1
2 (p)

1− µpχp|·|
1
2 (p)

·
1− µ−1

p χp|·|
1
2 (p)

1− µpχ−1
p |·|

1
2 (p)

· ζF (1)2 · µ2
p(p) |p|

= α2
p |p|

2 ·
L( 1

2 , µpχp)L( 1
2 , µpχp)

L( 1
2 , νpχp)L( 1

2 , νpχp)
· ζF (1)2 (νp = µ−1

p , χp = χ−1
p )

= α2
p |p|

2 · L(
1

2
, π ⊗ χ) · L(1, τE/F )2 ·

{
(1− α−1

p χ−1
p (p))2(1− α−1

p χ−1
p

(p))2 if p - N,
(1− α−1

p χ−1
p (p))(1− α−1

p χ−1
p

(p)) if p | N.
.

This proves the formula in the split case.
Now we assume that p is non-split. We introduce the matrix coefficient m† : G(Qp) = GL2(Qp) → C

defined by
m†(g) := b(π(g)W †p ,W

†
p ).

The function m†(g) only depends on the double coset IpgIp, and by definition

m†(1) =
1

1− µ2
p(p) |p|

.

Put
P ∗ :=

∫
E×/F×

m†(ι(n)
ς (t))χ(t)dt.

It is clear that

(3.17) P (π(ς(n)
p )W †p , χ) = P ∗ ·

|DK |−
1
2 L(1, τE/F )

ζF (1)
.

To compute P ∗, we make some observations. Let r ∈ Z≥0. For y ∈ prZ×p , we have

ι(n)
ς (1 + yθ) ∈ Ipw

(
pn−r 0

0 pr−n

)
Ip if 0 ≤ r < n (w =

(
0 1
−1 0

)
)

and ι(n)
ς (1 + yθ) ∈ Ip if r ≥ n. For y ∈ pZp, we have

ι(n)
ς (y + θ) ∈ Ipw

(
pn+e−1 0

0 p−n

)
Ip,
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where e = 1 if p is inert and e = 2 if p is ramified. Put

Xr :=

∫
prZp

χ(1 + yθ)d′y,

where d′y is the Haar measure on Zp such that vol(Zp, d
′y) = L(1, τE/F ) |DK |

1
2 . Using the decomposition

E× = F×(1 + Zpθ)
⊔
F×(pZp + θ),

we find that

(3.18)

P ∗ =

∫
Zp

χ(1 + yθ)m†(ι(n)
ς (1 + yθ))d′y +

∫
pZp

χ(y + θ)m†(ι(n)
ς (y + θ)) |y + θ|−1

E d′y

=Xn ·m†(1) +

n−1∑
r=0

(Xr −Xr+1)m0(w

(
pn−r 0

0 pr−n

)
) + Y0 ·m†(w

(
pn+e−1 0

0 p−n

)
),

where

Y0 :=

∫
pZp

χ(y + θ)d′y · |$|1−e .

Suppose that n = s ≥ 1. Then it is easy to verify
• Xr = 0 if 0 < r < n,
• X0 + Y0 = 0 if p is inert, and X0 = Y0 = 0 if p is ramified.

It follows from (3.18) that

P ∗ = Xn ·m†(1) + (−Xn) ·m†(w
(
p 0
0 p−1

)
) (Xn = |pn|L(1, τE/F ) |DK |

1
2 ).

If π is a unramified principal series, then

P ∗ = b(Wπ − π(

(
p−1 0
0 p

)
)Wπ,W

†
p ) ·Xn

= (
µp(p)

1− µpν−1
p |·|(p)

− νp(p)

1− |p|
) ·

1− µpν−1
p |·|(p)

µp(p)− νp(p)
·Xn

= ζF (1) · |pn|L(1, τE/F ) |DK |
1
2 .

If π is special, then by (3.15),

P ∗ =
1 + µpν

−1
p (p)

1− µpν−1
p |·|(p)

·Xn

=ζF (1) · |pn|L(1, τE/F ) |DK |
1
2 (µpν

−1
p (p) = |p|).

Suppose that s = 0 and n = 1. Then we have

P ∗ = X1 ·m†(1) + (X0 −X1) ·m†(w
(
p 0
0 p−1

)
) + Y0 ·m†(w

(
pe 0
0 p−1

)
).

Note that
• If p is inert, then X0 = 1−X1 = L(1, τE/F ) and Y0 = X1.
• If p is ramified, then X0 = |DK |

1
2 and Y0 = χ($E) |DK |

1
2 .

Case (1): p is inert and π is unramified. Then

P ∗ = m†(1) +X0 · (m†(w
(
p 0
0 p−1

)
)−m†(1))

=
1

1− µ2
p(p) |p|

− 1

1− |p|2

= α2
p |p|

2
(1− α−2

p )2 · ζF (1)L(1, τE/F ) · L(
1

2
, πE ⊗ χ)
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Case (2): p is inert and π is special. Then α2
p = 1, so ep(π, χ) = 0 and

P ∗ =
|p| − αpµp(p) |p|

1
2

1− |p|2
= 0.

Case (3): p is ramified and π is unramified. Note that

m†(w

(
p2 0
0 p−1

)
) = µ|·|

1
2 (p)m†(w

(
p 0
0 p−1

)
).

Let β := χ($E)µp|·|
1
2 (p). Then we have

|DK |−
1
2 P ∗ = |p| ·m†(1) + (1− |p|) ·m†(w

(
p 0
0 p−1

)
) + χ($E)m†(w

(
p2 0
0 p−1

)
)

= (1− |p|+ β)(m†(w

(
p 0
0 p−1

)
)−m†(1)) + (1 + β)m†(1)

= − (1− |p|+ β)

1− |p|
+

1 + β

1− β2
(µ2
p(p) |p| = β2 = α2

p |p|
2
)

= α2
p |p|

2 · (1− χ($E)α−1
p )2 · ζF (1)L(

1

2
, πE ⊗ χ).

Case (4): p is ramified and π is special. Then α2
p = χ($E)2 = 1 and

|DK |−
1
2 P ∗ = |p|m†(1) + (1− |p|)(−αp)m†(

(
p−1 0
0 1

)
) + χ($E)(−αp)m†(

(
p−2 0
0 1

)
)

=
|p|2 (1− χ($E)αp)

1− µ2(p) |p|
.

We find that if χ($E) = αp, then P ∗ = ep(π, χ) = 0 and if χ($E) = −αp, then

|DK |−
1
2 P ∗ =

2 |p|2

(1− χ($E)µp|·|
1
2 (p))(1 + χ($E)µp|·|

1
2 (p))

= |p|2 (1− α−1
p χ($E)) · ζF (1)L(

1

2
, πE ⊗ χ).

The above calculations together with formula (3.17) completes the proof in the inert or ramified case. �

3.7. Central value formula. We are ready to prove the central value formula connecting the toric period
integral of the p-stabilized form ϕ†π′ in (3.2) and the central L-value of πK twisted by anticyclotomic characters
χ satisfying (crit).

Theorem 3.11. Suppose that χ has conductor ps. Let n = max {1, s}. Then we have

P (ς(n), ϕ†π′ , χ)2 ·
‖ϕπ‖Γ0(N)

〈fπ′ , fπ′〉R
=

22−k(−1)mDk−2
K√

DK

· L(
1

2
, πK ⊗ χ) · ep(π, χ)2−ordp(N) · L(1, τKp/Qp

)2

× χ(N+)ε(πp)
∏

q|(DK ,N−)

(1− εq(πK , χ)) ·

{
α2
pp
−2 if s = 0

p−s if s > 0.

Proof. This follows from Corollary 3.6, Proposition 3.8 and Proposition 3.10. �

4. Theta elements and p-adic L-functions

4.1. `-adic modular forms. Let ` - N− be a rational prime in §2.1. We briefly review `-adic modular forms
on B×. Let A be a OKl

-algebra. For an open compact subgroup U ⊂ R̂×, we define the space of `-adic
modular forms of weight k and level U by

Mk(U,A) =
{
f̂ : B̂× → Lk(A) | f̂(αgu) = ρk(u−1

` )f̂(g), α ∈ B×, u ∈ UQ̂×
}
.
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We writeMk(NB , A) :=Mk(R̂×, A). Recall that we have fixed an embedding ι` : Q̄ ↪→ C`. Let λ and l be
the primes of Q̄ and K induced by ι` respectively. We let iKl

: B ↪→M2(Kl) be the composition iKl
:= ι` ◦ iK

defined in (2.3). Define ρk,` : B×` → AutLk(C`) by

(4.1) ρk,`(g) := ρk(iKl
(g)).

By definition, ρk,` is compatible with ρk,∞ in the sense that ρk,`(g) = ρk,∞(g) for every g ∈ B×, and one
checks that

ρk,`(g) = ρk(γli`(g)γ−1
l ), γl :=

(√
β −

√
βθ

−1 θ

)
∈ GL2(Kl).

Here i` : B` 'M2(Q`) is the isomorphism fixed in (2.1). If A = A[ 1
` ], there is an isomorphism:

Mk(NB , A)
∼→Mk(NB , A), f 7→ f̂(g) := ρk(γ−1

l )ρk,`(g
−1
` )f(g).

We call f̂ the `-adic avatar of f ∈Mk(NB , A).
Let Q(π) be the Hecke field of π. In other words, Q(π) is the finite extension of Q generated by Fourier

coefficients of the elliptic new form fπ. Let Oπ,` ⊂ C` be the completion of the ring of integers of Q(π) with
respect to λ. The Oπ,`-moduleMk(NB ,Oπ,`)[π′f ] :=Mk(NB ,Oπ,`) ∩Mk(NB ,C`)[π

′
f ] has rank one. We say

fπ′ ∈Mk(NB ,C)[π′f ] is λ-adically normalized if its `-adic avatar f̂π′ is a generator ofMk(NB ,Oπ,`)[π′f ] over
Oπ,`. This is equivalent to the following condition:

f̂π′(g0) 6≡ 0 (mod λ) for some g0 ∈ G(Af ).

4.2. Theta elements. Let n ≥ 1 be a positive integer. Let Gn = K×\K̂×/Ô×n be the Picard group of the
order On. We identify Gn with the Galois group of the ring class field of conductor pn over K via geometrically
normalized reciprocity law. Denote by [·]n : K̂× → Gn, a 7→ [a]n the natural projection map. We consider the
automorphic form ϕ

[m]
π′ = Ψ(v∗m ⊗ fπ′) in (3.1) and define the function

ϕ̂
[m]
π′ : K̂× → C, a 7→ ϕ̂

[m]
π′ (a) := ϕ

[m]
π′ (xn(a))ι−1

p (ap/ap)
m.

Replacing fπ′ by f
†
π′ , we can define the p-stabilizations (ϕ

[m]
π′ )† := Ψ(v∗m⊗f

†
π′) and (ϕ̂

[m]
π′ )† in a similar manner.

By (3.3), we can verify that ϕ̂[m]
π′ and (ϕ̂

[m]
π′ )† factor through K×\K̂×.

Definition 4.1. Fix a set Ξn of representatives of Gn in K×\K̂×, define the n-th theta element Θ
[m]
n (f†π′) ∈

C[Gn] of weight m is defined by

Θ[m]
n (f†π′) :=α−np ·

∑
a∈Ξn

(ϕ̂
[m]
π′ )†(a) · [a]n

=α−np ·
∑
a∈Ξn

(ϕ
[m]
π′ )†(xn(a))ι−1

p (ap/ap)
m · [a]n.

We consider theta elements of weight zero. The function ϕ̂
[0]
π′ factors through Gn, so we can extend ϕ̂

[0]
π′

linearly to be a function ϕ̂[0]
π′ : C[Gn] → C, and the definition of Θ

[0]
n (f†π′) does not depend on the choice of

Ξn. Let Pn := [1]n ∈ Gn be the distinguished Gross point of conductor pn. Then

ϕ̂
[0]
π′ (σ(Pn)) = ϕ

[0]
π′ (xn(a)) if σ = [a]n ∈ Gn.

Define the regularized Gross point P †n as follows. If p - N , we define P †n by the formal sum

P †n :=
1

αnp
· Pn −

1

αn+1
p

· Pn−1,

and if p | N , we define P †n = α−np · Pn. We have

Θ[0]
n (f†π′) =

∑
σ∈Gn

ϕ̂
[0]
π′ (σ(P †n)) · σ,

and
{

Θ
[0]
n (f†π′)

}
n
satisfy the following compatible relation.



20 M. CHIDA AND M.-L. HSIEH

Lemma 4.2. Let πn+1,n : Gn+1 → Gn be the natural quotient map. We have

πn+1,n(Θ
[0]
n+1(f†π′)) = Θ[0]

n (f†π′).

Proof. This is standard. For n′ > n, let Kn′,n := Ker(Gn′ → Gn). Using the description

Kn′,n = [(On ⊗ Zp)
×]n′ =

{
[1 + pnuθ]n′ | u ∈ Z/pn

′−nZ
}
,

we find that ∑
u∈Kn+1,n

(ϕ
[0]
π′ )
†(xn+1(au)) = (ϕ

[0]
π′ )
† | Up(xn(a)) = αp · (ϕ[0]

π′ )
†(xn(a)).

The lemma follows. �

Let fπ ∈ Sk(Γ0(N)) be the elliptic new form corresponding to ϕπ. The Fourier coefficients of the q-expansion
fπ(q) =

∑
n>0 cn(fπ)qn at the infinity cusp are given by

cn(fπ) = Wπ,f (

(
n 0
0 1

)
)n

k
2 (Wπ,f =

∏
q<∞

Wπq ).

Let Ap := p
k
2−1αp be a root of the Hecke polynomial of fπ at p i.e. X2 − cp(fπ)X + pk−1 if p - N , and

X − cp(fπ) if p | N . Let χ be an anticyclotomic Hecke character of conductor ps and weight (m,−m) for
an integer −k/2 < m < k/2. Recall that χ̂ : K×\K̂× → O×Cp denotes the p-adic avatar of χ defined by
χ̂(a) = χ(a)(ap/ap)

m. We are going to give the interpolation formula of the square of

χ̂(Θ[m]
n (f†π′)) :=α−np ·

∑
a∈Ξn

(ϕ
[m]
π′ )†(xn(a))ι−1

p ((ap/ap)
m · χ̂(a))

=α−np ·
∑

[a]n∈Gn

(ϕ
[m]
π′ )†(xn(a))χ(a)

for every integer n ≥ max {1, s} in terms of the central value of the Rankin-Selberg L-function L(fπ/K, χ, s)
attached to fπ and the theta series attached to χ. Recall that connection between the automorphic L-function
L(s, πK ⊗ χ) and the Rankin L-series L(fπ/K, χ, s) is given by

(4.2) L(s, πK ⊗ χ) = ΓC(s+
k − 1

2
+m)ΓC(s+

k − 1

2
−m) · L(fπ/K, χ, s+

k − 1

2
).

Define the period Ωπ,N− of π′ by

(4.3) Ωπ,N− :=
(4π)k‖ϕπ‖Γ0(N)

〈fπ′ , fπ′〉R
.

Proposition 4.3. Suppose that χ has the conductor of ps. For every n ≥ max {s, 1}, we have the interpolation
formula

χ̂(Θ[m]
n (f†π′)

2) =Γ(
k

2
+m)Γ(

k

2
−m) ·

L(fπ/K, χ,
k
2 )

Ωπ,N−
· ep(π, χtν)2−ordp(N) ·A−2s

p (psDK)k−1

× u2
K√
DK

· χ(N+)ε(πp)(−1)m
∏

q|(DK ,N−), q=q2

(1− ε(πq)χ(q)).

Proof. We may assume n = max {1, s}, using the argument in Lemma 4.2. By (3.3) and the definition of
theta elements, we have

P (π′(ς(n)), ϕ†π′ , χ) = vol(Ô×n )αnp · χ̂(Θ[m]
n (f†π′)) (ϕ†π′ = (ϕ

[m]
π′ )†),

where vol(Ô×n ) denotes the volume of the image of C×Ô×n in K×A×\A×K with respect to the measure dt.
Recall that dt is chosen so that vol(K×A×\A×K , dt) = 2L(1, τK/Q). Together with the class number formula,
we have

vol(Ô×n ) = vol(Ô×K) · L(1, τKp/Qp
) |p|n =

4√
DK · uK

L(1, τKp/Qp
)p−n.
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Combining these equations, we find that

χ̂(Θ[m]
n (f†π′)) =

√
DK · uK

4
·

α−np pn

L(1, τKp/Qp
)
· P (ς(n), ϕ†π′ , χ).

The proposition thus follows from Theorem 3.11, (4.2) and the formula:

εq(πK , χ) = ε(πq)χ(q) for q|(DK , N
−), q = q2. �

Remark. This proposition verifies [BDIS02, Conjecture 2.17], and hence removes the assumption in [BDIS02,
Theorem3.4],

4.3. p-adic L-functions. We shall use theta elements to construct anticyclotomic p-adic L-functions attached
to f and derive the evaluation formulae. We begin with a key observation.

Lemma 4.4. Let A ⊂ Cp be an OKp
-algebra. Let f ∈ Mk(NB ,Cp) such that the p-adic avatar f̂ ∈

Mk(NB , A) is a p-adic modular form over A. Let

fvm := Ψ(v∗m ⊗ f) ∈ A(G)

be defined as in (2.11). For a ∈ K̂×, we have

(1) pn( k−2
2 )fvm(xn(a))(ap/ap)

m ∈ 1
(k−2)!A;

(2) the congruence relation

pn( k−2
2 )fvm(xn(a))(ap/ap)

m ≡
√
β

2−k
2 〈Xk−2, f̂(xn(a))〉k (mod

pn

(k − 2)!
A).

Proof. We write a = (a(p), ap) ∈ (K̂(p))××K×p . By definition, we have

(4.4) fvm(xn(a))(ap/ap)
m = 〈ρk(γp)ρk,p((ς

(n)
p )−1)v∗m, f̂(xn(a))〉k.

Here we are making use of the fact that ρk,p(t) acts on vm by (t/t)m for t ∈ (K⊗Qp)
×. A direct computation

shows that ρk(γ−1
p )(ρk,p((ς

(n)
p )−1) = ρk(Zp), where

Zp =

(
1

√
β

0 pn
√
βδ

)
if p is split in K

and

Zp =

(
1

√
β

−pnθ −pn
√
βθ

)
if p is non-split in K.

Note that detZp =
√
βpnδ,

Zp ∈M2(OKp), Zp ≡
(

1
√
β

0 0

)
(mod pnM2(OKp)).

For P (X,Y ) ∈ Lk(A), we find that

p
n(k−2)

2 D
k−2

2

K · ρk(γ−1
p )ρk,p((ς

(n)
p )−1)P (X,Y ) =p

n(k−2)
2 D

k−2
2

K P ((X,Y )Zp)(detZp)
2−k

2

=
√
β

2−k
2 P ((X,Y )Zp) ∈ Lk(A).

In particular,

p
n(k−2)

2 ρk(γ−1
p )ρk,p((ς

(n)
p )−1)v∗m ≡

√
β

2−k
2 Xk−2 (mod pnLk(A)).

In view of (4.4), the assertions of the proposition follow immediately. �

We make the following ordinary hypothesis:

(ord) fπ′ is p-adically normalized, and the p-adic valuation of the Up-eigenvalue ordp(αp) =
2− k

2
.

Corollary 4.5. Suppose (ord) holds. Then Θ
[m]
n (f†π′) ∈ [(k − 2)!]−1Oπ,p[Gn]. Moreover,

Θ[m]
n (f†π′) ≡ Θ[0]

n (f†π′) (mod pn[(k − 2)!]−1Oπ,p[Gn]).
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Proof. By definition, for a ∈ K̂× we have

α−np (ϕ̂
[m]
π′ )†(a) = α−np ϕ

[m]
π′ (xn(a))(ap/ap)

m − α−2
p (α−(n−1)

p ϕ
[m]
π′ (xn−1(a))(ap/ap)

m).

Applying Lemma 4.4 to f = fπ′ , we find that
• α−np (ϕ̂

[m]
π′ )†(a) ∈ Oπ,p,

• α−np (ϕ̂
[m]
π′ )†(a) (mod pn[(k − 2)!]−1) is independent of m.

The corollary follows immediately. �

Let G∞ := lim←−n Gn. Let Γ− ' Zp be the maximal Zp-free quotient group of G∞ and let ∆ be the torsion
subgroup of G∞. We have an exact sequence

0−→∆−→G∞−→Γ−−→0.

Fix a non-canonical isomorphism G∞ ' ∆×Γ− once and for all. If n ≥ 1, the map ∆→ G∞ → Gn is injective,
and hence

Gn ' ∆×Γ−n , Γ− � Γ−n := Gn/∆.
Let χt be a branch character, i.e. a character χt : ∆ → Q̄× and let O = Oπ,p[χt]. Define the χt-branch of
Θ

[0]
n (f†π′) by

Θn(f†π′ , χt) := χt(Θ
[0]
n (f†π′)) ∈ [(k − 2)!]−1O[Γ−n ].

We define

Θ∞(π) :=
{

Θ[0]
n (f†π′)

}
n
∈ [(k−2)!]−1OJG∞K ; Θ∞(π, χt) :=

{
Θn(f†π′ , χt)

}
n

= χt(Θ∞(π)) ∈ [(k−2)!]−1OJΓ−K.

Let Xcrit
p be the set of critical specializations defined in the introduction. Note that Xcrit

p consists of the
p-adic avatars of Hecke characters χ of p-power conductor satisfying (crit) and trivial on ∆.

Theorem 4.6. Let ν̂ ∈ Xcrit
p be a p-adic character of weight (m,−m) and conductor ps. We have the inter-

polation formula

ν̂(Θ∞(π, χt)
2) =Γ(

k

2
+m)Γ(

k

2
−m) ·

L(fπ/K, χtν,
k
2 )

Ωπ,N−
· ep(π, χtν)2−ordp(N) · psA−2s

p (psDK)k−2

× u2
K

√
DK · ε(πp)(−1)m

∏
q|(DK ,N−), q=q2

(1− ε(πq)χt(q)) · χtν(N+).

Proof. Let n0 = max {s, 1}. For each integer r > n0, we choose n > r such that ν̂ (mod pr) is trivial on
Ô×n . Let χ = χtν. By Corollary 4.5, we have

ν̂(Θ∞(π, χt)) ≡ χ̂(Θ[0]
n (f†π′)) ≡ χ̂(Θ[m]

n (f†π′)) = χ̂(Θ[m]
n0

(f†π′)) (mod pr[(k − 2)!]−1).

This congruence relation holds for all r > n0. Therefore, ν̂(Θ∞(π, χt)) = χ̂(Θ
[m]
n0 (f†π′)), and the theorem

follows from Proposition 4.3. �

Remark 4.7. The theta element Θ∞(π, χt) is the square root of the anticyclotomic p-adic L-function associ-
ated to (π, χt). In view of the evaluation formula, we assume the following local root number condition in the
remainder of this article:

(ST) ε(πq)χt(q) = −1 for every q | (DK , N
−) with q = q2.

Note that (ST) is always satisfied if (DK , N
−) = 1.

Let ∗ : OJG∞K → OJG∞K be the involution defined by σ 7→ σ−1. We show that Θ∞(π) satisfies the
functional equation in the following sense.

Theorem 4.8. Let r0 be the number of prime divisors of (DK , N
−). Let

ε′ := (−1)r0+ k
2

∏
q-pDK

ε(πq) ∈ {±1}

and let σN+ = {[N+]n} be the image of N+ in G∞. We have the functional equation:

Θ∞(π)∗ = ε′ ·Θ∞(π) · σ−1
N+ .
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Proof. Let ϕπ′ = ϕ
[0]
π′ . Using the automorphy of ϕπ′ , we have

ϕπ′(xn(a−1)) = ϕ†π′(xn(a)) = ϕπ′(xn(a)Jς,n) (J (n)
ς = (ς(n))−1Jς(n))).

By the choice of J and Lemma 3.7, it is straightforward to show that

π(Jς,n)ϕπ′(Q) = ε′ · ϕπ′(σN+(Q)) for Q ∈ Gn.
Therefore,

Θn(π)∗ =
∑
σ∈Gn

ϕπ′(σ
−1(P †n))σ = ε′ ·Θn(π) · [N+]−1

n .

This proves the theorem. �

Remark. Note that ε(π∞) = (−1)
k
2 . If χt = 1 is the trivial character, then ε(πq) = −1 for all q|N− by (ST).

It follows that
ε′ = (−1)

k
2

∏
q 6=p

ε(πq) = ε(π)ε(πp).

5. The non-vanishing of theta elements modulo `

5.1. We retain the notation in the previous section. Throughout, we suppose that fπ′ is λ-adically normalized.
The purpose of this section is to study the non-vanishing properties of theta elements

{
Θn(f†π′ , χt)

}
n
modulo

λ. Let ∆alg be the subgroup of G∞ generated by the image of K×ram :=
∏
q|DK K

×
q . It is clear that ∆alg is a

(2, · · · , 2)-subgroup of ∆. Let D0 be a set of representatives of ∆alg in K×ram. Choose an arbitrary set D1 of
representatives of ∆/∆alg in K̂×. Then D := D1D0 be a set of representatives of ∆ in K̂×. By definition, we
can write

(5.1) Θn(f†π′ , χt) =
∑

[u]n∈Γ−n

∑
τ∈D1

χt(τ)

(
α−np

∑
d∈D0

ϕ†π′(xn(τu)d)χt(d)

)
· [u]n (ϕ†π′ = Ψ(v∗0 ⊗ f

†
π′)).

5.2. Uniform distribution of CM points. We recall a crucial result in [CV05]. Let K
×
the closure of K×

in K̂× and let B
×

be the closure of B× in B̂×. Let CM := K
×\B̂×, X := B

×\B̂× and Z := Q+\Q̂×. The
group B̂× acts on these spaces by the right translation and K̂× acts on CM and Z by the left multiplication.

Let Red : CM → X be the natural quotient map and let c : X → Z be the map induced by the reduced
norm N : B× → Q×. For g ∈ B̂×, let [g] denote the image of g in CM. Let U be an open compact subgroup
of B̂×. Put

X (D1,U) =
∏
τ∈D1

X/U and Z(D1,U) =
∏
τ∈D1

Z/N(U).

Define

RedD1
:CM −→ X (D1,U), x 7→ (Red(τ · x)U)τ∈D1

and

cD1 :X (D1,U) −→ Z(D1,U), (xτ )τ∈D1 7→ (N(xτ ))τ∈D1 .

The following proposition is a special case of [CV05, Corollary 2.10].

Proposition 5.1. Let H be a B×p -orbit in CM and let H be the image of H in CM/U . Then for all but finitely
many x ∈ H, we have

RedD1(Ô×K · x) = c−1
D1

(Ô×K · x),

where x = cD1
◦ RedD1

(x).

Proof. This is [CV05, Corollary 2.10] with S = {∅} and R = D1. �

The following corollary is a immediate consequence of the above proposition.

Corollary 5.2. Let {βτ}τ∈D1
be a sequence in A such that βτ1 ∈ A× for some τ1. Let f ∈M2(U , A). Suppose

that
(1) f is not Eisenstein;
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(2) N(U) ⊃
∏
q|DK Z×q .

Then there exists an integer n0 such that for every n > n0, we have∑
τ∈D1

βτ · f(xn(aτ)) 6= 0 for some a ∈ K̂×.

Proof. Let P0 := [ς(0)] ∈ CM. Let H = P0 · B×p be the B×p -orbit of P0. Then Pn := P0 ·
(
pn 0
0 1

)
∈ H,

and from (2.9) we find that the image of {Pn}n=1,2,··· are distinct in K̂×\B̂×/R̂×. By Proposition 5.1, there
exists n0 such that

(5.2) RedD1
(Ô×KPn) = c−1

D1
(Ô×KPn) for every n > n0.

Fix n > n0. Since f is not Eisenstein, f(y) 6= f(z) for some y, z ∈ X with c(y) = c(z). The assumption (2)
implies that the norm map N : K̂× → Z/N(U) is surjective as the class number of Q is one. Hence, replacing
D1 by a′D1 for some a′ ∈ K̂× if necessary, we may assume

c(y) = c(z) = c(Red(Pn)) (mod N(U)).

Take (wτ )τ∈D1
∈ c−1
D1

(Pn). By (5.2), there exist a1, a2 ∈ Ô×K such that

RedD1
(a1Pn) = (y, wτ2 , · · · ) ; RedD1

(a2Pn) = (z, wτ2 , · · · ).
It follows that ∑

τ∈D1

βτ · f(xn(a1τ))−
∑
τ∈D1

βτ · f(xn(a2τ)) = βτ1(f(y)− f(z)) 6= 0.

It is clear that either a1 or a2 does the job. �

5.3. Eisenstein functions. Let A be a Z-algebra. Let U be an open-compact subgroup of B̂×. Denote
by M2(U,A) the set of functions h : B×\B̂× → A such that h is right invariant by U . Let M2(A) :=

lim−→U⊂B̂×M2(U,A) be the space of smooth A-valued functions on B×\B̂×. We write % : B̂× → AutM2(A)

for the right translation of B̂×.

Definition 5.3. Let B1 = {g ∈ B× | N(g) = 1} be an algebraic group over Q. Put

M2(A)Eis :=
{
h ∈M2(A) | %(g1)h = h for all g1 ∈ B1(Af )

}
.

It is clear thatM2(A)Eis is a B̂×-invariant subspace ofM2(A). Let

S2(A) :=M2(A)/M2(A)Eis.

Let S2(U,A) denote the image ofM2(U,A) in S2(A).
A function h ∈ M2(A) is called Eisenstein if h ∈ M2(A)Eis. Equivalently, h is Eisenstein if and only

h(g) = h1(N(g)) for some smooth function h1 : Q×+\Q̂× → A.

We make the following observations in the flavor of Ihara’s lemma. The first one is taken from [Vat03,
Proposition 5.3].

Lemma 5.4. Let q - N− be a finite place. Let tq ∈ B×q such that N(tq) = q. Let R′ ∈ EndM2(A) be the
endomorphism defined by

R′ = 1 + β · %(tq) (β ∈ A).

Suppose that U ⊃ R×q := (R⊗Z Zq)
× = GL2(Zq). Then R′ : S2(U,A)→ S2(A) is injective.

Proof. Let h ∈M2(U,A). If R(h) ∈M2(A)Eis, then it is easy to see that h is right invariant by SL2(Zq)
and tq SL2(Zq)t

−1
q . By a theorem of Ihara, h is right invariant by SL2(Qq) and hence by B1(Af ) in virtue of

the strong approximation theorem for B1. �

Lemma 5.5. Let q - N− be a finite place. Let β1, · · · , βs ∈ A and let R ∈ End(M2(A)) be the endomorphism
defined by

R = 1 +

s∑
i=1

βi · %(

(
q−i 0
0 1

)
).

Then R : S2(U,A)→ S2(A) is injective.
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Proof. Let h ∈M2(U,A). We need to show that if

R(h) = h+

s∑
i=1

βi · %(

(
q−i 0
0 1

)
)h ∈M2(A)Eis,

then h ∈M2(A)Eis. Let Sh ⊃ U be the stabilizer of h in B̂×. Namely,

Sh :=
{
g ∈ B̂× | %(g)h = h

}
.

Let N(Qq) be the unipotent radical of the upper triangular subgroup in GL2(Qq) and let

N ′ := N(Qq) ∩ U ⊂ Sh.

Write u :=

(
q−1 0
0 1

)
and

P (u) = −
s∑
i=1

βi%(u)i−1 ∈ EndM2(A)N
′
.

By the assumption that h− %(u)P (u)h ∈M2(A)Eis, we find that for every positive integer n,

(5.3) h− %(un)P (u)n · h ∈M2(A)Eis.

Since h, P (u)nh ∈ M2(A)N
′
and N ′ is a proper subgroup, using the identity u−n

(
1 x
0 1

)
un =

(
1 qnx
0 1

)
,

we deduce from (5.3) that (
1 x
0 1

)
∈ Sh for all x ∈ Qq.

On the other hand,
(

1 0
y 1

)
∈ Sh for some y ∈ Q×q . By the relation(

1 0
y 1

)
=

(
1 y−1

0 1

)(
0 y−1

−y 0

)(
1 y−1

0 1

)
,

we find w0 =

(
0 y−1

−y 0

)
∈ Sh, and hence(

1 0
x 1

)
= w−1

0

(
1 −y2x
0 1

)
w0 ∈ Sh.

It follows that Sh contains SL2(Qq) ·U . By the strong approximation for B1, we find that B1(Af ) ⊂ Sh. �

Let ρπ,λ : Gal(Q̄/Q)→ GL2(Oπ,`) be the `-adic Galois representation attached to fπ.

Lemma 5.6. Suppose that the residual Galois representation ρ̄π,λ is irreducible and ` > k − 2. Let v ∈
Lk(Oπ,`). If v 6≡ 0 (mod λ), the function fv(g) := 〈v, f̂π′(g)〉k (mod λ) ∈M2(Oπ,`/λ) is not Eisenstein.

Proof. We note that fv is not a zero function by the irreducibility of Lk(Oπ,`/λ) as GL2(Oπ,`/λ)-module
when ` > k − 2. Therefore, if fv is Eisenstein, then ρ̄π,λ is reducible. �

5.4. The vanishing of µ-invariants. For each positive integer s, define the open compact subgroup I1(ps)

of R̂× by

I1(ps) :=

{
g ∈ R̂× | gp ≡

(
1 ∗
0 1

)
(mod ps)

}
.

Let $ be a generator of the maximal ideal of O := Oπ,`[χt]. Suppose that ` = p. We follow the approach of
Vatsal to study the µ-invariant of Θ∞(π, χt) ∈ OJΓ−K.

Theorem 5.7. Let r0 be as in Theorem 4.8. In addition to (ST) and (ord), we assume that
(1) p > k − 2 and p - 2r0 ,
(2) ρ̄π,λ is absolutely irreducible.

Then Iwasawa µ-invariant of Θ∞(π, χt) vanishes.
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Proof. We define a function fp : B×\B̂×/Q̂× → O/$O by

(5.4) fp(g) =
√
β

2−k
2 · 〈Xk−2, f̂π′(g)〉k (mod $).

A direct computation shows that fp ∈M2(I1(p),O/$O). Let UD0
be the open-compact subgroup given by

UD0
=
{
g ∈ R̂× | gq ∈ R×q ∩$KqR

×
q $
−1
Kq

for all q|DK

}
,

where $Kq is a uniformizer of Kq. It is easy to see that

(5.5) N(UD0
) ⊃

∏
q|DK

Z×q .

Let fD0
∈M2(UD0

∩ I1(p),O/$O) be the function defined by

fD0
(g) =

∑
d∈D0

fp(gd)χt(d) (mod $).

From Lemma 4.4, we can deduce that

Θn(f†π′ , χt) (mod $) = A−np
∑

[u]n∈Γ−n

(∑
τ∈D1

f†D0
(xn(uτ))χt(τ)

)
· [u]n,

where f†D0
∈M2(U ,O/$O) is given by

f†D0
:= fD0

− p
k−2

2 A−1
p · %(

(
p−1 0
0 1

)
)fD0

, U := UD0
∩ I1(p2).

To prove the vanishing of the µ-invariant, we need to show that for n� 0, there exists a ∈ K̂× such that∑
τ∈D1

f†D0
(xn(aτ))χt(τ) 6≡ 0 (mod $),

and in turn, it suffices to verify the assumptions for f†D0
in Corollary 5.2. By (5.5), N(U) ⊃

∏
q|DK Z×q . By

Lemma 5.6, fp is not Eisenstein, which implies that f†D0
∈ M2(U ,O/$O) is not Eisenstein by the following

Lemma 5.8. �

Lemma 5.8. Suppose that fp is not Eisenstein. Then f†D0
is not Eisenstein.

Proof. Let q|DK be a ramified place and let $Kq be a uniformizer of K×q . Put

R′q := 1 + χt($Kq )%($Kq ) ∈ End(M2(O/$O)).

Let {qi}i=1,···s be the set of prime divisors q of DK with q - N−. By the assumption (ST), we have

fD0
= 2r0 · R′q1 ◦ R

′
q2 · · · ◦ R

′
qs(fp).

Applying Lemma 5.4 and Lemma 5.5, we conclude that f†D0
= Rp(fD0

) with Rp := 1−α2
pAp · %(

(
p−1 0
0 1

)
) is

not Eisenstein if fp 6∈ M2(O/$O)Eis. �

5.5. The non-vanishing modulo ` with anticyclotomic twists. Suppose that ` 6= p. We prove the non-
vanishing of central L-values modulo ` with anticyclotomic twists, using a Galois average trick of Sinnot in
[Sin87].

Theorem 5.9. Let χ be an anticyclotomic Hecke character of conductor ps0 and weight (m,−m) with −k/2 <
m < k/2. Suppose that

(1) (π, χ) satisfies (ST),
(2) ` - 2r0pNDK and ` > k − 2,
(3) ρ̄π,λ is absolutely irreducible.

Then for all but finitely many ν : Γ− → µp∞ , we have

L(fπ/K, χν,
k
2 )

Ωπ,N−
6≡ 0 (mod λ).
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Proof. Choose a finite extension O of Z` in C` so that O contains Oπ,` and the values of χ on A×K,f .
Moreover, let $ be a uniformizer of O. Let f̂†π′ be the `-adic avatar of the p-stabilization f†π′ . Define a
function F` : B×\B̂× → O by

F`(g) = 〈ρk(γ−1
l )v∗m, f̂

†
π′(g)〉k (v∗m = D

2−k
2

K ·X
k−2

2 −mY
k−2

2 +m).

Note that γl ∈ GL2(OKl
) as ` - DK . For each integer n ≥ s0, we put

Θχ
n :=

∑
[a]n∈Gn

F`(xn(a))χ̂([a]n) · [a]n ∈ O[Gn],

where χ̂ : G∞ → O× is the `-adic avatar of χ. One checks by definition that

(ϕ
[m]
π′ )†(xn(a))χ(a) = F`(xn(a))χ̂(a), a ∈ K̂×,

and hence for each ν : Γ− → µp∞ ,

ν(Θχ
n) = ι`ι

−1
p (χ̂ν(Θ[m]

n (f†π′))).

In view of Proposition 4.3, it suffices to show ν(Θχ
n) 6≡ 0 (mod λ) for all but finitely many ν.

Let k` = O/$O[µp] be the finite extension of the finite field O/$O generated by the values of µp. Put

I ′ =
{
g ∈ R̂× | g ≡ 1 (mod `), gp ∈ Ip

}
.

Then F` (mod λ) ∈M2(I ′,k`). Define FD0 ∈M2(U ′D0
,k`) by

FD0(g) :=
∑
d∈D0

χ̂(d)F`(gd) (mod λ) (U ′D0
= I ′ ∩ UD0).

It is clear that FD0
is invariant by the Iwahori subgroup Ip and is an Up-eigenform with eigenvalue αp. Let

ps be the order of the Sylow p-subgroup of k×` . Let ν : Γ−n → µp∞ be a character of conductor pn with
n > max {s, s0} (so ν : Γ−n ↪→ µp∞ is injective). Put

Cn =
{
γ ∈ Γ−n | ν(γ) ∈ k×`

}
.

Then we have Cn = Ker(Gn → Gn−s). Let k`(ν) be the field generated by the values of ν over k`. Since k`
contains µp, dν := [k`(ν) : k`] is a p-power, and for a p-power root of unity ζ ∈ k`(ν), we have

Trk`(ν)/k`(ζ) =

{
0 if ζ 6∈ k`,

dν if ζ ∈ k`.

It follows from the above that for each a ∈ A×K,f ,

(5.6)

Trk`(ν)/k`(α
n
p χ̂ν(a−1) · ν(Θχ

n) (mod λ))

=dν ·
∑

[u]n∈Cn

∑
τ∈D1

FD0
(xn(aτu))χ̂(τ)

=dν ·
∑
τ∈D1

∑
y∈Z/psZ

FD0(xn(aτ)

(
1 y

ps

0 1

)
)χ̂(d)ζyν

for some primitive ps-th root of unity ζν . Define F̃D0 ∈M2(k`(ν)) by

F̃D0
(g) :=

∑
y∈Z/psZ

ζyν%(

(
1 y

ps

0 1

)
)FD0

(g).

Then F̃D0 ∈M2(U ′,k`(ν)) for U ′ = I1(p2s) ∩ U ′D0
. We can rephrase (5.6) as

(5.7) Trk`(ν)/k`(α
n
p χ̂ν(a−1) · ν(Θχ

n) (mod λ)) = dν ·
∑
τ∈D1

F̃D0
(xn(aτ))χ̂(τ).
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We proceed to show that F̃D0
is not Eisenstein. Under our assumptions, FD0

is not Eisenstein by Lemma 5.6
and Lemma 5.8. A simple computation shows that∑

a∈(Z/psZ)×

%(

(
a 0
0 1

)
)F̃D0 =

∑
a∈(Zp/psZ)×

∑
y∈Z/psZ

ζayν %(

(
1 y

ps

0 1

)
)FD0

=ps · FD0 − ps−1
∑

y∈Z/pZ

%(

(
1 y

p

0 1

)
)FD0

=ps · (1− p−1αp · %(

(
p−1 0
0 1

)
))FD0

.

The above equation implies that F̃D0 is not Eisenstein by Lemma 5.5. On the other hand, it is clear that
N(U ′) ⊃

∏
q|DK Z×q by (5.5). Hence, we can deduce the theorem from Corollary 5.2 in view of (5.7). �

6. The comparison between periods

In this section, we compare the periods Ωπ,N− defined in (4.3) and Hida’s canonical period Ωπ. Henceforth,
we assume that ` = p and f†π′ is p-ordinary. Let T(Γ0(N)) be the Hecke algebra over O of the space of elliptic
modular forms Sk(Γ0(N)). Then π gives rise to an O-algebra homomorphism λπ : T(Γ0(N)) → O such that
λπ(Tq) = Tr ρπ,p(Frobq) for every prime q - pN , where Frobq is the arithmetic Frobenious at q. Let ηπ(N) be
an O-generator of the congruence ideal Iπ(N) := λπ(AnnT(Γ0(N)) Kerλπ) ⊂ O. Then Hida’s canonical period
Ωπ is defined by

Ωπ :=
(4π)k‖ϕπ‖Γ0(N)

ηπ(N)
.

Here we are making use of the fixed embedding O ↪→ Cp ' C. In general, the ratio Ωπ,N−/Ωπ lies in O.
The purpose of this section is to show that Ωπ,N−/Ωπ ∈ O× in certain favorable situations. When k = 2
and N is square-free, under mild assumptions, Pollack and Weston [PW11, Theorem6.8] prove that the ratio
Ωπ,N−/Ωπ is a product of local Tamagawa components at primes dividing N−. Their approach does not make
use of the ordinary hypothesis, but it is not clear to us if it is applicable if k > 2. Nonetheless, it is pointed
out in [PW11] that the statement Ωπ,N−/Ωπ ∈ O× is equivalent to the freeness of spaces of modular forms
on B over the associated Hecke algebra and the vanishing of these local Tamagawa components. Therefore, it
is natural to study the comparison between periods Ωπ,N− and Ωπ by the standard techniques developed by
Wiles, Taylor-Wiles, Diamond and Fujiwara in the proof of "R = T" theorems.

Let GQ = Gal(Q̄/Q). For each place q, we fix a decomposition of group Gq in GQ and let Iq be the inertia
group in Gq. Let ρ0 := ρ̄π,p denote the residual Galois representation and let Nρ0

be the prime-to-p part of
the Artin conductor of ρ0.

Hypothesis (CR+). Throughout, we assume the following:
(1) The prime p > k + 1 and p - N .

(2) The restriction of ρ0 to the absolute Galois group of Q(

√
(−1)

p−1
2 p) is absolutely irreducible.

(3) If q | N− and q ≡ ±1 (mod p), then q | Nρ0 .
(4) If q ‖ N+ and q ≡ 1 (mod p), then q | Nρ0

.
(5) Nρ0

and N/Nρ0
are co-prime.

We will prove the following proposition in §6.3 after preparing some notation and recall basic facts in the
first two subsections.

Proposition 6.1. Suppose that the hypothesis (CR+) holds and that ρ0 is ramified at every prime dividing N−

(i.e. N− | Nρ0
). Then the congruence ideal Iπ(N) is generated by 〈fπ′ , fπ′〉R. In other words, Ωπ,N− = u ·Ωπ

for some unit u ∈ O×.

6.1. Hecke algebras and congruence ideals. For an open compact subgroup U ⊂ B̂×, put S(U) :=

Mk(U,O). For g ∈ B̂×, Let [U1gU2] ∈ HomO(S(U2),S(U1)) be the Hecke operator defined by

[U1gU2]f(g) =
∑
i

ρk,p(gi)f(ggi) (U1gU2 =
⊔
i

giU2).
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Let M+ be a positive integer with (M+, N−) = 1 and let M = N−M+. Recall that RM+ denotes the Eichler
order of level M+. We put UM := R̂×M+ and S(M) = S(UM ). If q -M , let Tq denote the operator

[UM
(
q 0
0 1

)
UM ],

and if q |M , let

Uq =

[
UM

(
q 0
0 1

)
UM
]

for q - N− and Uq = [UM$qUM ] for q | N−,

where $q ∈ B×q such that N($q) = q. Let T(M) be the Hecke algebra generated over O by Hecke operators
Tq for q -M and Uq for q|M in EndO S(M). Define the perfect pairing 〈 , 〉M : S(M)×S(M)→ O by

(6.1) 〈f1, f2〉M :=
∑
[g]

〈f1(g), f2(gτM
+

)〉k · (](B× ∩ gUMg−1Q̂×)/Q×))−1,

where [g] runs over B×\B̂×/UMQ̂×. It is easy to verify that

〈tf1, f2〉M = 〈f1, tf2〉M for all t ∈ T(M).

Let λπ′ : T(N) → O be the O-algebra homomorphism induced by π′. Let N−1 be the product of prime
factors of N− but not dividing Nρ0

. Note that for each q | N−1 we have q 6≡ ±1 (mod p) and Tr ρ0(Frobq)
2 ≡

(1 + q)2 (mod p) by (CR+). Put N∅ := Nρ0
·N−1 . By the level lowering/raising (cf. [Jar99] and [DT94]), there

exists a modular lift λ∅ : T(N∅) → O such that λ∅(Tq) ≡ λπ′(Tq) (mod mO) for all q - N (mO = O ∩ λ). We
write

N = N∅
∏
q

qmq .

Under the hypothesis (CR+), it is known (cf. [DT94, pp.435-436]) that
• mq ≤ 2;
• mq = 0 unless q | N+ and q - N∅;
• If mq = 1, then q 6≡ 1 (mod p).

Let Σ be a subset of prime factors of N/N∅. Set NΣ := N∅ ·
∏
q∈Σ q

mq . Let mΣ be the maximal ideal of T(NΣ)
generated by

mO, Tq − λ∅(Tq) for q - NΣ, Uq − λπ′(Uq) for q | NΣ.

Let TΣ := T(NΣ)mΣ
be the localization at mΣ.

Lemma 6.2. The following statements hold.
(1) If q2 | NΣ, then the Hecke operator Uq = 0 in TΣ.
(2) The Hecke algebra TΣ is reduced.

Proof. Part (1) is clear if q2 | N∅, and if q2 | NΣ/N∅, it is proved in [Tay06, Corollary 1.8] (cf. [Wil95,
Proposition 2.15]). To prove part (2), it suffices to show that Uq are semisimple elements in TΣ for q | NΣ.
This is clear by part (1) if q | N∅ or q2 | NΣ, and it follows from Hypothesis (CR+)(4) if q ‖ NΣ/N∅. �

Let εp : GQ → Z×p be the p-adic cyclotomic character. It is well known that there exists a Galois represen-
tation

ρΣ : GQ → GL2(TΣ)

such that
• ρΣ is unramified outside pNΣ.
• Tr ρΣ(Frobq) = Tq for all q - pNΣ and det ρΣ = εp.
• There exists a character δp : Gp → T×Σ such that

ρΣ|Gp ∼
(
δ−1
p εp ∗
0 δp

)
and δp|Ip = ε(2−k)/2.

• For each q ‖ NΣ/N
−
1 , there exists a character δΣ,q : Gq → T×Σ such that

ρΣ|Gq ∼
(
δ−1
Σ,qεp ∗

0 δΣ,q

)
and δΣ,q(Frobq) = Uq.
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• For q | N−1 ,

ρΣ|Gq ∼
(
±εp ∗

0 ±1

)
, ∗ ∈ mΣ.

Let q | N/N∅ such that q 6∈ Σ. We define an element uΣ,q ∈ TΣ and a level-raising map Lq : SΣ → SΣ∪{q}
as follows. If mq = 2, set uΣ,q := 0 and define

Lq(f) = qf −
(

1 0
0 q

)
Tqf +

(
1 0
0 q2

)
f.

If mq = 1, then the Hecke polynomial Pq(X) = X2 − TqX + q ∈ TΣ[X] is congruent to (X − εqq)(X − εq)
modulo mΣ for some εq ∈ {±1}. Since q 6≡ 1 (mod p), there exists a unique root uΣ,q ∈ TΣ of Pq(X) such that
uΣ,q ≡ εq (mod mΣ) by Hensel’s lemma. Define

(6.2) Lq(f) = uΣ,qf −
(

1 0
0 q

)
f.

In either case, it is easy to verify that Uq ◦Lq = Lq ◦uΣ,q. Moreover, Lq induces a surjective map TΣ∪{q} → TΣ,
sending Uq to uΣ,q by the following lemma:

Lemma 6.3. The map Lq is injective, and SΣ∪{q}/Lq(SΣ) is a free O-module.

Proof. This is [Tay06, Lemma3.1] (cf. Lemma 5.5). �

The above construction gives rise to a homomorphism TΣ � T∅. If λ : TΣ → O is an O-algebra homomor-
phism, we write Iλ for the kernel of λ and put

SΣ[λ] := {x ∈ SΣ | Iλx = 0} .

Let λΣ : TΣ → T∅
λ∅−→ O be the composition. The O-module SΣ[λΣ] is free of rank one by the strong

multiplicity one theorem and the reducedness of TΣ. Let SΣ[λΣ]⊥ be the O-module defined by

SΣ[λΣ]⊥ = {x ∈ SΣ[λΣ]⊗O E | 〈x, y〉NΣ ∈ O for all y ∈ SΣ[λΣ]} ,
where E is the fraction field of O. Then SΣ[λΣ]⊥ ⊃ SΣ[λΣ]. We let C(NΣ) := SΣ[λΣ]⊥/SΣ[λΣ] be the
congruence module of λΣ and let ηΣ = λΣ(AnnTΣ

IλΣ
) be the congruence ideal of λΣ. It is known that

(6.3) ]C(NΣ) ≤ ](O/ηΣ)

and the equality holds if SΣ is free over TΣ (so TΣ is Gorenstein).

Lemma 6.4. If q ‖ N/N∅ and q 6∈ Σ, then we have

]C(NΣ∪{q}) = ]C(NΣ) · ](O/(λ∅(u∅,q)2 − 1)O).

Proof. Note that λ∅(u∅,q) 6= 1 as λ∅ is unramified outside N∅. Let L∗q : SΣ → SΣ∪{q} be the adjoint map
of Lq with respect to 〈 , 〉NΣ

and 〈 , 〉NΣ∪{q} . It follows from Lemma 6.3 that

(6.4) Lq(SΣ[λΣ]) = SΣ∪{q}[λΣ∪{q}] ; L∗q(SΣ∪{q}[λΣ∪{q}]
⊥) = SΣ[λΣ]⊥.

Let U = UNΣ and U1 = UNΣ∪{q} . A direct computation shows that

L∗q = uΣ,q · [U
(
q 0
0 1

)
U1]− [UU1].

Therefore, we find that

L∗q ◦ Lq =uΣ,q · [U
(
q 0
0 1

)
U ] · uΣ,q − uΣ,q · [U

(
q 0
0 q

)
U ] · (1 + q)− [UU ] · (1 + q)uΣ,q + [U

(
1 0
0 q

)
U ]

=(1 + u2
Σ,q) · Tq − 2uΣ,q · (1 + q)

=u−1
Σ,q(u

2
Σ,q − 1)(u2

Σ,q − q).

Since u2
Σ,q − q ≡ 1− q 6≡ 0 (mod mΣ), by (6.4) we find that

]C(NΣ∪{q}) = ](SΣ[λΣ]⊥/L∗q ◦ Lq(SΣ[λΣ]))

= ]C(NΣ)) · ]O/(λ∅(u∅,q)2 − 1)O. �
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6.2. Deformation rings and Selmer groups. We introduce a certain deformation ring. Recall that ρ is a
deformation of ρ0 if ρ (mod mA) ' ρ0. Consider the functor DΣ from local Noetherian complete O-algebras
with the residual field k to sets which sends A with the maximal ideal mA to the isomorphism classes of
deformations ρ : GQ → GL2(A) of ρ0 satisfying:

(D1) det ρ = εp;
(D2) ρ is minimally ramified outside N−1 Σ in the sense of [Dia97a, Definition 3.1];
(D3) There exists a character δp : Gq → A× such that

ρ|Gp ∼
(
δ−1
p εp ∗
0 δp

)
and δp|Ip = ε(2−k)/2

p ;

(D4) For each q ‖ NΣ/N∅, there exists a unramified character δq : Gq → A× such that

ρ|Gq ∼
(
δ−1
q εp ∗
0 δq

)
and δq(Frobq) ≡ 1 (mod mA).

(D5) If q | N−1 , then ρ|Gq satisfies the sp-condition in [Ter03, Definition 2.2]. Namely,

ρ|Gq ∼
(
±εp ∗

0 ±1

)
, ∗ ∈ mA.

Under (CR+), it is a standard fact that DΣ is represented by the universal deformation

ρRΣ
: GQ → GL2(RΣ).

The universal property of RΣ gives rise to two O-algebra homomorphisms RΣ → R∅ and RΣ → TΣ under
which ρRΣ pushes forward to ρR∅ and ρΣ respectively.

Lemma 6.5. The map RΣ → TΣ is a surjection.

Proof. By Lemma 6.2, TΣ is generated by Tq for q - NΣ and Uq for q ‖ NΣ. If q - NΣ, we have
Tr ρRΣ(Frobq) 7→ Tq. If q|N−1 , then Uq = ±1 by the sp-condition. If q ‖ NΣ/N

−
1 , then

ρRΣ
|Gq '

(
δ−1
RΣ,q

εp ∗
δRΣ,q

)
for a unramified character δRΣ,q : Gq → R×Σ

such that δRΣ,q(Frobq) ≡ 1 (mod mRΣ
), and we have δRΣ,q(Frobq) 7→ Uq. �

Let ℘Σ be the kernel of the O-algebra morphism:

RΣ → R∅ → T∅
λ∅−→ O.

Let Wρ denote the discrete Galois module ad0 ρλ∅ ⊗ E/O. Define the subspace W+
ρ by

W+
ρ =

{(
a b
0 −a

)
| a, b ∈ E/O

}
⊂Wρ =

{(
a b
c −a

)
| a, b, c ∈ E/O

}
.

We define the subgroup Lq ⊂ H1(Qq,Wρ) as follows. We denote Lq = H1(Qq,W
+
ρ ) if q ‖ NΣ/N∅, Lq =

ker
{
H1(Qq,Wρ)→ H1(〈F 〉 ,Wρ)

}
, where F is a lifting of Frobq in Gq if q | N−1 , and Lq = H1

f (Qq,Wρ) be
the local Bloch-Kato group otherwise. Define the Selmer group by

SelΣ(Wρ) := ker

{
H1(Q,Wρ)→

∏
q

H1(Qq,Wρ)

Lq

}
.

It is not difficult to show that we have an O-module isomorphism:

(6.5) HomO(℘Σ/℘
2
Σ, E/O) ' SelΣ(Wρ).

Let Q2 be the set of prime factors q | N/N∅ with mq = 2.
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Lemma 6.6. We have a natural inclusion map

H1
f (Qq,Wρ) ↪→ H1(Qq,W

+
ρ ).

In particular, if Σ ⊃ Q2, then we have

](SelΣ(Wρ))/](SelQ2
(Wρ)) |

∏
q‖NΣ/N∅

](H1(Iq,W
+
ρ )Gq ).

Proof. Let q ‖ N/N∅. Let W−ρ := Wρ/W
+
ρ be a discrete Gq-module of O-corank one. Consider the

following diagram:

0 // H1
f (Gq,Wρ) //

��

H1(Gq,Wρ)
π //

π1

��

H1(Iq,Wρ)
Gq

π2

��

// 0

0 // H1(Gq/Iq,W
−
ρ ) // H1(Gq,W

−
ρ ) // H1(Iq,W

−
ρ )Gq // 0.

Since q 6≡ 1 (mod p), we have that H0(Gq,W
−
ρ ) = H1(Gq/Iq,W

−
ρ ) = 0. It follows that kerπ1 = Lq =

H1(Gq,W
+
ρ ) and H1(Gq/Iq,W

+
ρ ) ' H1

f (Gq,Wρ). By the snake lemma, H1
f (Gq,Wρ) is a submodule of Lq.

The second assertion follows from the exact sequence

0→ SelQ2
(Wρ)→ SelΣ(Wρ)→

∏
q‖NΣ/N∅

Lq
H1
f (Gq,Wρ)

and the isomorphism

H1(Iq,W
+
ρ )Gq ' H1(Gq,W

+
ρ )/H1(Gq/Iq,W

+
ρ ) ' Lq/H1

f (Gq,Wρ). �

Corollary 6.7. If Σ is the set of prime factors of N/N∅, then we have

](℘Σ/℘
2
Σ) | ](℘Q2/℘

2
Q2

) ·
∏

q‖N/N∅

](O/(λ∅(u∅,q)2 − 1)O).

Proof. By (6.5) and Lemma 6.6,

] ker(℘Σ/℘
2
Σ → ℘Q2

/℘2
Q2

) = ](SelΣ(Wρ)/SelQ2
(Wρ))

divides ∏
q‖N/N∅

](H1(Iq,W
+
ρ )Gq ) =

∏
q‖N/N∅

]H0(Gq,W
+
ρ (−1))

=
∏

q‖N/N∅

](O/((q − 1)(λ∅(u∅,q)
2 − 1)O)). �

6.3. Proof of Proposition 6.1. Let Σ be the set of prime factors of N/N∅. We begin with the following
proposition on the freeness of the Hecke module SΣ.

Proposition 6.8. With the hypothesis (CR+), SΣ is a free TΣ-module of rank one.

Proof. First consider the case Σ = ∅. We have

Hom(m∅/m
2
∅,O/mO) = ker

{
H1(Q, ad0 ρ0)→

∏
q

H1(Qq, ad0 ρ0)

Lq

}
,

where Lq = H1
f (Qq, ad0 ρ0) if q - N−1 and Lq = ker

{
H1(Qq, ad0 ρ0)→ H1(〈F 〉 , ad0 ρ0)

}
for a lifting F of

Frobq in Gq if q | N−1 . This is the minimal case in the sense that ](Lq) = ](H0(Gq, ad0 ρ0)) for all q ([Ter03,
§3.4]). Using the Taylor-Wiles system constructed in [Tay06, §2], we deduce that S∅ is a free T∅-module of
rank one and

](℘∅/℘
2
∅) = ]C(N∅) = ](O/η∅).

Furthermore, the argument in [Tay06, §3] shows that

](℘Q2
/℘2

Q2
) = ]C(NQ2

) = ](O/ηQ2
).



SPECIAL VALUES OF ANTICYCLOTOMIC L-FUNCTIONS 33

Combined with Lemma 6.4 and Corollary 6.7, the above equation yields that

](℘Σ/℘
2
Σ) | ]C(N) | ](O/ηΣ).

The proposition follows from [Dia97b, Theorem2.4]. �

Now we are ready to prove Proposition 6.1. The Jacquet-Langlands correspondence induces a surjective
O-algebra homomorphism JL∗ : T(Γ0(N))m � TΣ such that λπ = JL∗ ◦ λπ′ , where m is the maximal ideal
containing kerλπ. The assumption N− | Nρ0

implies that JL∗ is an isomorphism. On the other hand, by
definition SΣ[λπ′ ] = O · f̂π′ and 〈fπ′ , fπ′〉R = 〈f̂π′ , f̂π′〉NB . Therefore, by Proposition 6.8 we conclude that

](O/Iπ(N)) = ](SΣ[λπ′ ]
⊥/SΣ[λπ′ ]) = ](O/〈fπ′ , fπ′〉RO).

This completes the proof.
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