SPECIAL VALUES OF ANTICYCLOTOMIC L-FUNCTIONS FOR MODULAR FORMS

MASATAKA CHIDA AND MING-LUN HSIEH

ABsTrRACT. In this article, we generalize some works of Bertolini-Darmon and Vatsal on anticyclotomic L-
functions attached to modular forms of weight two to higher weight case. We construct a class of anticyclotomic
p-adic L-functions for ordinary modular forms and derive the functional equation and the interpolation formula
at all critical specializations. Moreover, we prove results on the vanishing of p-invariant of these p-adic L-
functions and the non-vanishing of central L-values with anticyclotomic twists.
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INTRODUCTION

The purpose of this article is to generalize works of Bertolini, Darmon and Vatsal on anticyclotomic p-adic L-
functions attached to modular forms of weight two to higher weight. We construct anticyclotomic p-adic L-
functions for ordinary modular forms and prove the interpolation property at all critical specializations and
the functional equation. In addition, following the ideas of Vatsal, we prove results on the vanishing of the
p-invariant of this anticyclotomic p-adic L-functions and the non-vanishing modulo ¢ of central L-values with
anticyclotomic twists. To state our results precisely, we introduce some notation. Let f € Si(T'o(N)) be an
elliptic new form of weight k (even) and conductor N. Let p be a rational prime. Let K be an imaginary
quadratic field of discriminant —Dg < 0. Then K determines a factorization

N=p""NtTN~ (p, NTN™)=1,
where N (resp. N ™) is only divisible by primes that are split (resp. inert or ramified) in K. We assume that
N~ is the square-free product of an odd number of primes.

Fix a decomposition N*Ox = MTNF. For each finite prime, let ¢,(f) € {£1} denote the local root number
of f,s0¢,(f)=11if ¢t N, and €,(f) is the eigenvalue of Atkin-Lehner involution at ¢ if ¢|N. The global root

number ¢(f) = (—1)% [], €;(f). Let

@)= enlf)e"
n=1

be the g-expansion of f at the infinity cusp. It is known that ¢,(f) = —q%cq(f) if g || N. Let A, be
a complex root of X2 — c,(f)X +pF~tif pt N (or X% — c,(f)X if p|N). Let KL be the anticyclotomic
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Z,-extension over K and let '™ = Gal(Ky/K) be the Galois group. Denote by recx : Ax — G2 the
geometrically normalized reciprocity law map. Fix two embeddings ¢ : Q — C and lp : Q<= C,. To each
locally algebraic p-adic character X : T~ — CJ of (p-adic) weight (m,—m) € Z?, we can associate a Hecke
character x : Ay /K* — C* of (archimedean) weight (m,—m) defined by

m

x(a) == Loob;zjl(SC\(TGCK(a))(ap/ap)m)(GOO/aw) )
where a, € (K ®q Qp)* and as € (K ®g R)* are the p-component and co-component of a. We call X the
p-adic avatar of x. Let %Zc,rit be the set of critical specializations consisting of locally algebraic p-adic characters
X:I'7™ — C of weight (m,—m) with

—k/2 <m < k/2.

Let Oy be the ring of integers of the Hecke field of f. Fix a prime A of Q and let Oy » be the completion
of Oy with respect to A. Suppose that X is induced by ¢, (so A has residue characteristic p). Denote by
L(f/K,x,s) the Rankin L-series associated with f and the theta series attached to x. Our first theorem is
the construction of the anticyclotomic p-adic L-function attached to f over K with the explicit evaluation
formula at critical specializations.

Theorem A. Suppose that

(a) p>k—2,

(b) A, is a A-adic unit.
Then there exist an element O € Of z[I'"] and a complex number Qs - € C* such that for every X € %ffit
of weight (m, —m) and conductor p", we have the following interpolation formula:

k
2(02) =1 (& myr(d oy FIPEXS) gm0 gm0
fiN~
VDN T (- alh) v
al(Dk,N~)

where ug = 4(0%)/2 and ey(f, x) is the p-adic multiplier given by

1 if n >0,
k— — k— . —_ . .
er(f,x) = (L= x(P)p =T 4,1 —x@E)p = A,Y) if n=0 and p = pp is split,
m 1 —Pk72A;2 ifn=0 and p=p is inert,
1- X(P)P¥A;1 if n=0 and p = p? is ramified.
Remark. (1) The existence of A, satisfying the assumption (b) is usually referred to the p-ordinary hy-

pothesis for f, i.e. the p-th Fourier coefficient c,(f) is a A-adic unit.
(2) The complex number Qy n- is given by

()" fllro (v
ff(N+7N7) '

where || f||r, () is the Petersson norm of f and (N, N~) € Oy  is an integer connected with certain
congruence number of f. The precise definition is given in . It is interesting and important to
make a comparison between 0y y- and Hida’s canonical period {2y attached to f. In general, we have
Qp n-/Qp € Oy x. If k =2, then under a mild hypothesis, Pollack and Weston [PW11] have shown
that this ratio is a product of local Tamagawa numbers at primes dividing N~ modulo a unit in Oy y.
We will investigate this subtle problem in §6|for general weight k.

(3) Theorem [A| indeed gives the construction of the anticyclotomic p-adic L-function that interpolates
square root of central L-values. In the case k = 2, ©, is precisely the theta element 6., (with trivial
tame branch character) given by Bertolini and Darmon [BD96, p.436]. Therefore, combined with
the anticyclotomic Iwasawa main conjecture for elliptic curves [BD05], the usual control theorem and
the comparison between periods [PW11, Proposition 3.7, Theorem 6.8], the evaluation formula of O,
at the trivial character yields the optimal upper bound of the size of p-primary Selmer groups of
certain elliptic curves over K in terms of central L-values as predicted by Birch and Swinnerton-Dyer
conjecture.

Qf7N7 ==
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Let % : Oy \[T7] = OpA[T7] be the involution defined by o + o~!. Then O satisfies the following
functional equation.

Theorem B. Let oyt be the image of T in I'™ under the reciprocity law map recr. Then we have the
functional equation:
0% = (el f) - O - 7yt

In the case k = 2 and (D, N~ ) = 1, this theorem is proved in [BD96, Proposition 2.13] up to an element in
I'~. The above functional equation suggests that the product |@Oo|2 = O - OF, be intrinsic. Namely, |0, 2
does not depend on the choice of an auxiliary decomposition Nt = M*+9N+. Combined with Theorem
this verifies the formula of x(|©s|”) in [BD96, Conjecture 2.12]. If x is ramified character of finite order and
pt Dk N, then the formula of y(|Ou|?) actually is a consequence of Gross special value formulae first obtained
by B. Gross in a special case k = 2 and N is a prime and generalized by Shou-Wu Zhang [Zha04, Theorem 7.1]
for k = 2 and Haiping Yuan [Yua03] for k& > 2.

In [Vat03, Theorem 1.1], Vatsal determines the p-invariant of anticyclotomic p-adic L-functions for modular
forms of weight two. Our second theorem provides a partial generalization of his result to modular forms of
higher weight.

Theorem C. Let pyy : Gal(Q/Q) — GL2(Oy ) be the Galois representation associated to f. With the
assumptions in Theorem [A] suppose further that

(1) (Dg,N7) =1,

(2) the residual representation py , is absolutely irreducible.

Then the Twasawa p-invariant of © ., vanishes.

Remark 1. Theorem [C|has important applications to Iwasawa theory for elliptic modular forms. In the proof
of Iwasawa main conjecture for elliptic curves by Skinner-Urban [SU14], Vatsal’s theorem on the vanishing of
p-invariant plays a key role. To be precise, Skinner-Urban prove the cyclotomic main conjecture for modular
forms on T'o(N) of weight & = 2 (mod p — 1) [SU14, Theorem 3.6.4], and Theorem [C| enables us to lift their
assumption k = 2 (mod p — 1). For consequences in anticyclotomic Iwasawa theory for modular forms, see
[CHI15].

Now we suppose that A has residue characteristic £ # p and consider the problem of non-vanishing modulo
A of central L-values with anticyclotomic twists. We obtain the following result, which is a generalization and
an improvement of [Vat03, Theorem 1.2] in the weight two case.

Theorem D. Suppose that p?> t N and (D, N~) = 1. Let { be a rational prime such that
(1) £1pNDg and £ >k — 2,
(2) Py is absolutely irreducible.

Then for all but finitely many characters x : I'™ — pp, we have

k

7[/(]0/[(7)(’ 2) Z 0 (mod ).

Qf,N7
Remark 2. Theorem [D| has several consequences in number theory and representation theory. In number
theory, this theorem removes the assumptions on p  Dg and the p-indivisibility of the class number of K
in [Vat02, Theorem 1.4, and shows the finiteness of the £-primary Selmer groups of elliptic curves over K
in virtue of [LVI10]. From representation theoretic point of view, this theorem provides a simultaneous non-
vanishing result of central L-values with anticyclotomic twist, and hence has application to the non-vanishing
of Bessel models of certain theta lifting on GSp(4) by [PTB11l Theorem 3].

The construction of the theta element O, is based on an adelic formulation of the method of Bertolini and
Darmon, with which one can borrow tools from representation theory (Such kind of adelic formulation was
also used by Van Order [VO12] in the case of Hilbert modular forms of parallel weight two). The interpolation
formula is the elaboration of an explicit Waldspurger formula combined with a p-adic congruence argument.
We briefly describe these ideas in what follows. Let B be the definite quaternion algebra over Q of the
absolute discriminant N~ and let R be an Eichler order of level N/N~. Let ¢ : B* \BK/]BLX — Sym"%(C?)
be a vector-valued automorphic new form on B attached to f via Jacquet-Langlands correspondence. For each
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positive integer n, let O,, = Z+p" Ok be the order of K of conductor p™ and let G,, = Gal(H,,/K) be the Galois
group of the ring-class field of K of conductor p™. Then the Picard group Pic O,, will be called Gross points
of level p™, which is a homogeneous space of G,. Our hypothesis on N assures that there exists an optimal
embedding ¢, : K — B with respect to (O,, R), which in turn induces a map ¢, : PicO,, — BX\BX/EX.
Fix a distinguished point P, € PicO, and let P! be the regularized Gross point (See §4.2). The module
Symk_Q(O%)\) has a natural Oy \-basis {v;} indexed by integers —k/2 < j < k/2 (See (2.10)), and we can

write
=) @Egi @ vy
—k/2<j<k/2
Here cp[fj] : B*\Bx — C are automorphic forms on By. One can take p-adically optimal normalization of
cpgf)] using the integral structure Symk_Q(O]%, \) (see 3.' Moreover, under the ordinary assumption, it can be

shown that the restriction of the normalized ¢ fo I'to regularized Gross points does take value in Oy 5. We can
thus define
= 0
Ou= Y 0@ pp (1n(o(P))) € OralG).
Uegn
Then {(:)n} is compatible with respect to the natural quotient G, 11 — G,,. Then we obtain (:)OO by taking

n

the limit {C:)n} € 04 2[G], where Goo = lim Gn. The Galois group I'™ = Gal(K/K) is the maximal

Z,-free quotient of G. The theta element O.,in Theorem |A|is defined to be the projection of O, obtained
by the quotient map Go, — I'". If x is a finite order character of conductor p", the evaluation of (0 )>
indeed can be translated into an explicit Waldspurger’s formula. Let gp} be the p-stabilization of <p[f0] with
respect to A,. Then X(©) is essentially the global toric period given by

T _ te,
P(soﬁx)—/KXAé\A;{ @ (1 (8))x (t)dt.

The value P(gp;, x)? is a product of local toric period integrals by the fundamental formula of Waldspurger
[Wal85, Proposition 7]. We make an explicit calculation of these local integrals. The new input is the calcula-
tion of the local toric integral of the p-stabilized local new vector at p. It is no surprise that the p-adic multiplier
ep(f, x) is contributed by this local integral. Note that Waldspurger’s formula only computes X(O) for finite
order characters y. We obtain the formula of X(©,) for characters y € %grit of infinite order by a congruence
trick (Corollary [4.5)).

The proof of Theorem [C]is based on the uniform distribution of CM points in the zero dimensional Shimura
variety attached to the definite quaternion algebra B, which is the idea of Vatsal in his study on the non-
vanishing of anticyclotomic central L-values of weight two modular forms. In the higher weight situation,
the new idea is to use the congruences among modular forms. Roughly speaking, we construct a weight two
Fp—valued modular form f, such that the evaluations of f, and gogf)] at Gross points are congruent to each
other. We thus reduce the problem to f,,, for which the approach of Vatsal can be applied. Since the form f, is
not a new form in general, we have to use a stronger uniform distribution result [CV05l Proposition 2.10] and
slightly generalized Thara’s lemma (Lemma. The proof of Theorem@ is based on the same idea combined
with a Galois average trick.

This paper is organized as follows. After fixing basic notation and definitions in we give a brief review
of modular forms on definite quaternion algebras and an adelic description of Gross points in §2] In §3| we
give the explicit calculation of the toric periods of p-stabilized modular forms based on Waldspurger’s formula
(Proposition. The calculation of the local toric integral at p is carried out in Proposition and the final
formula is summarized in Theorem In §4] we give the construction of theta elements (Defefinition [4.1)).
The functional equation is proved in Theorem and the evaluation formula Theorem (Theorem is
obtained by combining Proposition [£.3] and the congruence property Corollary [4.5] among theta elements. In
§5] after preparing a key result of Vatsal-Cornut on the uniform distribution of CM points and Thara’s Lemma,
we prove Theorem (Theorem and Theorem@ (Theorem|5.9)). Finally, in We give a sufficient condition
(Proposition under which the complex number €1y ;- equals Hida’s canonical periods €2y up to a unit in
O¢.x, applying techniques of Wiles, Taylor-Wiles and Diamond in their proofs of modularity lifting theorems.
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1. NOTATION AND DEFINITIONS

1.1. If L is a number field, then Of is the ring of integers of L, Ay is the adele of L and Ay s is the
finite part of Ayp. Let A = Aqg. Let ¢ = [[¢, be the standard additive character of A/Q such that
P(Zoo) = exp(2TiTs), Too € R.

We fix once and for all an embedding to : Q — C and an isomorphism ¢ : C ~ C, for each rational prime
¢, where Cy is the completion of an algebraic closure of Q. Let 1y = tto : Q < C; be their composition. Let
orde : Cy — QU {00} be the f-adic valuation on C; normalized so that ordy(f) = 1. We regard L as a subfield
in C (resp. Cy) via to (resp. t7) and Hom(L, Q) = Hom(L, Cy).

Let Z be the ring of algebraic integers of Q and let Zg be the ¢- adlc completion of Z in C,. Denote by Z
the finite completion of Z. For an abelian group M, let M:i=M Rz, Z.

1.2. Measures on local fields. We fix some general notation and conventions on local fields used in §3 Let
q be a place of Q and let |'|Qq be the standard absolute value on Q. Let F' be a finite extension of Qg. If
F is non-archimedean, we usually denote by wp a uniformizer of F. Denote by Op the ring of integers of F'.
Let Dp be the discriminant of F//Q,. Let |-|» be the absolute value of F' normalized by |z|, = ‘NF/Qq (:c)|Q .
We often simply write |z| = |z| for # € F if its meaning is clear from the context without possible confusion.
Let ¢ : A/Q — C* be the additive character such that ¢ (z) = exp(2miz). Let 9, be the local component
of ¢ at ¢ and let ¢ := ¢, 0 Tp/q,, where Tr/q, is the trace from F' to Q.

Let dx be the Haar measure on F' self-dual with respect to the pairing (z,z’) — ¢Yp(xz’). If F is non-

1

archimedean, then vol(Op,dz) = [Dp|g . We recall the definition of the local zeta function (p(s). If F is

non-archimedean, then
1
F(s) = ——.
Crls) == =il

If F'is archimedean, then
(r(s) = Tr(s) :== 7 */’T(s/2); Cc(s) = Ta(s) := 2(2m) ~°T(s).
The Haar measure d*x on F'* is normalized by
d*z = (p(1) |z]p" da.

In particular, if F' = R, then dz is the Lebesgue measure and d*z = |x|1§1 dx, and if F = C, then dx is twice
the Lebesgue measure on C and d*z = 27~ r~tdrdd (z = re'?).

1.3. L-functions. Let F' be a non-archimedean local field. Let m be an irreducible admissible representation
of GLy(F). Let L(s,7) and e(s,m, %) be the associated local L-function and local epsilon factor respectively
(JL70, Theorem 2.18 (iv)]).

Let E be a quadratic extension of the local field F. We write wg for the base change of w. Let u,v
F* — C* be two characters of F*. Suppose that either m = 7(u,v) is a principal series if yv=! # |-\i1 or
7 = o(u,v) is a special representation if ur=! = |-|. Let x : EX — C* be a character. We recall the definition
of local L-functions L(s, g ®x) (see [Jac72, §20]). If E = F& F, then we write x = (x1,x2) : F*®F* — C*
and put

L(s,m®x1)L(s, 7 ® x2) if uv=t# Hil,

L(s, g ® x) =
e ) {L(&uxl)L(&um) if =t =1.

If F is a field, then

L(s, W/ x)L(s,v'x)  if =t # || =

||
L(saﬂ-E ®X) = .
L(s. ) i 1 = ||

Here p/ = poNpg,p, V' = voNg,p are characters of E*.
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1.4. Whittaker functions on GL2(Q). Let ¢ be a place of Q and let 7 be an admissible irreducible
representation of GL2(Qg) with the trivial central character. Let W(w, 1) be the Whittaker model of m
attached to the additive character ¢ = 1), : Q, — C*. Recall that W(w, ) is a subspace of smooth functions
W : GLo(F) — C such that
1
(1) W( <0 T) g) = Y(z)W(g) for all z € Q,.

a 0
0 1

If Qg is non-archimedean and N is a positive integer, we put

Uo(N)y = {g = (i Z) € GLy(Z,) | c € qu} .

Let ¢ be the conductor of w. Let W, be the normalized Whittaker new form characterized by W, (1) =1 and
We(gu) = Wr(g) for all uw € Up(c)y. If Q = R and = is a discrete series of weight k, then the normalized
Whittaker new form W, € W(m, ) is defined by

a T cos  sinf k _ora i
W (§ 1) (S o)) =0 o) st oo

(a,z € R*, 2,0 € R).

(2) If g is the archimedean place, W(( )) = O(|a|™) for some positive number M.

Here Ig, (a) denotes the characteristic function of the set of positive real numbers. Recall that the zeta integral
(s, W,x) for W € W(m, 1) and a character x : Q; — C* is defined by

v = [ ; w((p D@l seo)

Then U(s, W, x) converges absolutely for Re s > 0 and has meromorphic continuation to the whole s € C.
Let IC(m, v) be the Kirillov model of 7 with respective to ¢. Then K(m, ) is a subspace of smooth functions
¢ : QF — C, and there is an isomorphism W(mr,¢) = K(m,1)) given by

a 0
W dw(a) = W((O 1))
We call ¢y, the normalized Kirillov new form. By the list of Kirillov new forms [Sch02] §2.4], we can verify
that
(1.1) U (s, Wr,x) = L(s,m ® x) for unramified character x.

2. (GROSS POINTS AND MODULAR FORMS ON DEFINITE QUATERNION ALGEBRAS

2.1. Let K be an imaginary quadratic field with the discriminant —Dy < 0 and let 6 = /—Dg. Write z — 2z
for the complex conjugation on K. Define 8 € K by
:D/+5 D — Dy if 2¢ D,

2 Dy /2 if 2| Dg.

0

Then O = Z+Z- 6 and 60 is a local uniformizer of primes that are ramified in K. Fix positive integers N+
that are only divisible by prime split in K and N~ that are only divisible by primes inert or ramified in K.
We assume that
N~ is the square-free product of an odd number of primes.
Let B be the definite quaternion over Q which is ramified precisely at the prime factors of N~ and the
archimedean place. We can regard K as a subalgebra of B. Write T and N for the reduced trace and norm
of B respectively. Let G = B* be the algebraic group over Q and let Z = Q* be the center of G. Fix a
distinguished rational prime p such that
ptNTN™.
Let p be the prime of K above p induced by ¢, : K < C,. Let £{ N~ be a rational prime (¢ can be p). We
choose a basis of B= K @ K - J over K such that

e J2=3cQ* with f<0and Jt=1%J forallt € K.
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e fe(ZF)*forallq|p/NT and 5 € Z) for q|D.

Fix a square root /B € Q of 3. We fix an isomorphism i = [] i, : BN ~ MQ(ASCNi)) as follows. For each
finite place q[p¢ N, the isomorphism i, : By ~ M>(Q,) is defined by

. T(6) —N(@ . -1 T(0
(21) wo)= (M0 ) =vE () waez,
For each finite place ¢ { p/N, the isomorphism i, : By := B ®q Qq ~ M>(Qy) is chosen so that
(2.2) i(Ok @ Zy) C My(Zy).

Hereafter, we shall identify B, and G(Q,) with M3(Q,) and GL2(Q,) via i, for finite ¢ { N~. Finally, we
define
ix : B — My(K)

(2.3) a b

a+bJ—ig(a+bJ):= (b a) (a,b € K)
and let ic : B — M3(C) be the composition ic = teo 0 ik
2.2. Optimal embeddings and Gross points. Fix a decomposition NtOx = 9T+ once and for all. For

each finite place g 1 p, we define ¢; € G(Q,) as follows:
¢ =1if gt pNT,

2.4 0
(24) Gy =0"" (? ?) € GL2(K4) = GL2(Q,) if ¢ = qq is split with q|9T.

For g € B, we put
te,(g) = iq_l(gq_liq(g)%)-

If g/ Nt and ¢ = (t1,t2) € Ky := K ®q Q4 = Kq ® Ky, then

(2.5) 1, (1) = (t(; t‘l) .

For each non-negative integer n, we choose §,(,n) € G(Qp) as follows. If p = pp splits in K, we put
n 6 -1\ (p* 0
(2.6) ¢ = (1 0 > (O 1> € GLy(Ky) = GL2(Qp).

If p is inert or ramified in K, then we put

(2.7) ggw(_ol (1)) (p(; ?)

Define z, : A} — G(A) by

(2.8) tn(a) :=a-¢™ (¢ .= §,§") H Sq)-
a7p
This collection {xn(a)},c ax of points is called Gross points of conductor p™ associated to K.

Let O, = Z + p"Ok be the order of K of conductor p™. For each positive integer M prime to N~, we
denote by Ry the Eichler order of level M with respect to the isomorphisms {i, : B, ~ Mg(Qq)}qTN,. It is
not difficult to verify immediately that the inclusion map K < B is an optimal embedding of O,, into the
Eichler order B N¢(™ Ry (™)~ if ord,(M) < n. In other words,

(2.9) (BN<™Ry (")) NK = 0,.
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2.3. Modular forms on definite quaternion algebras. Let k£ > 2 be an even integer. For a ring A, we
denote by Li(A) = Symk_Q(Az) the set of the set of homogeneous polynomials of degree k —2 with coefficients
in A. We write

(2.10) L= @ A vm (Vm=XT7T myTom)

—§<’m<§
We let py, : GLa(A) — Auta Ly (A) be the unitary representation defined by
k=2
pr(g)P(X,Y) =det(g)” = - P((X,Y)g) (P(X,Y) € Ly(A4)).
If Ais a Z,-algebra with p > k — 2, we define a perfect pairing (, )z : Lr(A)xLy(A4) — A by

. v — u nE2m L (k/24+m)T(k/2 —m)
<; l “;bj o —k/2<zm<k/2 b (21 P(k—1) .

This pairing is GLg(A)-equivariant, i.e. For P, P’ € Ly(A), we have

(pr(9) P, pi(9) P )i = (P, P ).
Via the embedding ic in (2.3, we obtain a representation

Proo : G(R) = (B®q R)* ~S GL,(C) — Autc Ly (C).

Then C - vy, is the eigenspace on which py (t) acts by (¢/t)™ for t € (K ®q R)*. If A is a K-algebra and
U C G(Ay) is an open compact subgroup, we denote by My (U, A) be the space of modular forms of weight k&
defined over A, consisting of functions f : G(Ay) — Li(A) such that

flagu) = pr.oo() f(g) for all @ € G(Q), u € U.

The right translation makes My (A) := lim, M, (U, A) an admissible G(A y)-representation.

Let A(G) be the space of automorphic forms on G(A). For v € Li(C) and f € My(C), we define a function
U(ve f): G(Q)\G(A) — C by
(2.11) (v @ f)(g) = (Pr,00(9o0) v, f(95))k-
Then the map v® f — ¥(v ® f) gives rise to a G(A)-equivariant morphism L (C) ® M;(C) — A(G). Let
w be a unitary Hecke character of Q. We let

M, (U,w,C) ={f € My(U,C) | f(z9) =w(z)f(g) for all z€ Z(A)}.

Let Ai(U,w,C) be the space of automorphic forms on G(A) of weight k and central character w, consisting
of functions ¥(f ®v) : G(A) — C for f € S;(U,w,C) and v € L;(C). Denote by 1 the trivial character. For
each positive integer M, we put

Mk(M7 C) :Mk(§5\</I7 17 C)a
Ax(M,C) =Ar(R%,,1,C).

3. SPECIAL VALUE FORMULA

3.1. Global setting. Let 7 be an unitary irreducible cuspidal automorphic representation on GLy(A) with
trivial central character. Henceforth, we make the following assumptions:
e The archimedean constituent m., is a discrete series of weight k;
e The conductor of 7 is N = p"» NTN~;
e ord,(N)=n, <1 < p*{N.
Let 7/ = ®7r('1 be the unitary irreducible cuspidal automorphic representation on G(A) with trivial central
character attached to 7 via Jacquet-Langlands correspondence. Then we have
(1) The archimedean constituent 7., =~ (pk,00, Lx(C)) as G(R)-modules, and 7 is an unramified one
dimensional representation for ¢ | N~
(2) The local constituent 7, = 7, is either an unramified principal series (1, v},) or an unramified special
representation o (g, vp) with v, ! = Ilq,
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3.2. p-stabilization of new forms. Let 7r} denote the finite constituent of w’. Let
N =p"™ Nt =N/N—

and let R := Ry, be the Eichler order of level Np. The multiplicity one theorem together with our as-
sumptions in particular imply that 7, can be realized as a unique G(A y)-submodule My (7’) of My (C) and
Mg (N, C)[ﬂ'}] = Mk(w})ﬂl\/[k (Np, C) is one dimensional. We fix a nonzero new form f,» € My(Np, C)[ﬂ'}]
Throughout this section, we fix an integer m such that

—k/2 <m < k/2.
Define the automorphic form (pgzl] € Ax(Ng,C) by
—m k=2
(3.1) Pl = @ fr) (V=B D V).

[77]

We shall simply write ¢, for ¢, for brevity. Set

ap = 1) Il * -

Define the p-stabilization f;, with respect to a,, as follows: If p | N, let f;, = fo,and if pt N, let

fho=to= o w(y Do
For f € My(Np, C), recall that the Up-operator on f is defined by

o= % sy 5)

©€Z/pZ
Thus f;, is an Up-eigenform with the eigenvalue o,,. Let gojr, be the p-stabilization of ¢,/ given by
(3.2) Pl = W(vh, @ fl).
By definition, one can verify that
ek (rau)) =pL (n(a5)) (@oo /ace)"

(3.3) N .
(ye K*,a=(ax,af5) € C*xK*, ueO)).

3.3. The Petersson inner product of new forms on GL3(A). For each place of Q, recall that W is
the Whittaker new form normalized so that Wy (1) = 1. Let ¢, be the normalized new form in m. In other

words,
NOEDY Ww(<g 2) 9) (We=]]W=)-

acQ
Let 7V = [, 7 € GLy(A) be the Atkin-Lehner element defined by 78 = (& 0 ) ana 78 = ( 01
et % =[[, 7, € GL2(A) be the Atkin-Lehner element defined by 75, = 0 _p)and Ty =
if ¢ # oo. Let d'g be the Tamagawa measure on GLy. We put

(@r, PrdaL, = / er(9)px(gT™)d'g.
AX GL(Q)\ GLa(A)

To give a formula of (¢r, ¥r)GL,, We define the GL2(Qq)-equivariant pairing b, : W(mg, 1) x W (g, ¢4) — C
by

(3.4) by (Wi, Wa) = /qu W1(<8 2))%((‘0“ ?))dxa.

The convergence of this integral follows from the fact that m, is the local constituent of a unitary cuspidal
automorphic representation. Let |||, be the local norm of ¢, at ¢ defined by

[P pp— AL
T (g, (1)L(1, Ad )

(3.5) by (Wa,, w(T )W)
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It is not difficult to deduce from [Wal85, Proposition 5] that

_ 2L(1,Adm)
(3.6) <¥7777907r>GL2 = CQ(Q) ];[H‘Pﬂnq.

Define the local root number €(m,) by

1
e(mg) == 6(5,7Tq,1/)q) e {£1}.
The following lemma is well-known.
Lemma 3.1. Let q be a finite place. We have n(TY )Wy = e(mg) - W, .

ProoOF.  We suppress the subscript ¢ and write 7 = 7, and @ = 1), for brevity. Since W(Tév YW, is also a
nonzero new vector of 7w, we find that F(Tév YWr = C - W, for some constant C € C*. Recall that we have
the local functional equation [JL70, Theorem 2.18 (iv)]:

(1 —sW,1)
L(1—s,m)

U(s, W, 1)

= E(Sﬂfﬂ/)) : mv

0 1
-1 0

C-V(s, Wy, 1) = \I’(S,W(Té\’)wﬂ, 1)
= [ a5 D)lartana

vt (O (9t

= |IN[*"% (s, Wy, 1)

where W(g) =W(g ( )) € W(m, ). To evaluate C, we compute the zeta integral:

—|NP7 (1 - s,w,qp)m SU(1 — 5, Wy, 1).
It follows from that
C = NP1 = 5,m,) = e, m, )
This completes the proof. (|

Lemma 3.2. We have |¢x|lq = 1 for finite ¢4 N and ||pr |00 = 27571 If N, then
lonllq = €(mq) - (1 +lal) "

PrROOF.  The assertions for ¢ t N and ¢ = oo are straightforward. Suppose that ¢|/N~. Then 7 = m,; is a
unramified special representation, and L(1, Ad ) = (q,(2). By Lemma we have

b Wrrtr W) = [ wa((§ )mma ()

—cgmo) [ wa(g Dpwe(§ e

1
:6(5,7T,w)L(1,Ad7T). O
The Petersson inner product ||¢x||r,(n) of ¢r is defined by

lonllro) = vol(Uo(N), d'g) ™ - / lon(9)2 d',
AX GL2(Q)\ GL2(A)

where Ug(N) = O(2,R)x [] Up(N),. Note that

vol(Up(N),d'g) " = Cq@)N [[(1+ 7).
qlN

q<oo
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We have the following proposition:

Proposition 3.3 (Theorem 5.1 [Hid81]). We have

B e(mq)
L, Adm) = llallrgn - 2"N 7 ] g5y
Lo(N) ql;[B (I +a Hlexllq

Proor. By (3.6) and Lemma we have

2L(1,Adm)
(rsPr)GL, = CQ( )

o ] o

|N_ q|Ns

On the other hand, it is well known that

rlgm™) = e(ms) - onlg) (emp) == [] elmy)),

g<oco

and hence

<<pﬂ'a <p7r>GL2 ze(ﬂf) . VOl(UO(N)a dtg) ' ||907TI|F0(N)

_ 1 6(7‘11)
_H(pﬂ”Fo(N) NCQ(Q) (Ill_][vl+q_1~

Combining these formulae, we find that

6(; ) O
l(l Adﬂ) = 2kN 1H<F7T||F0(N) : H 1+ aYoll. _q
, 14+¢1 ®
Q\NB( e )H ﬂ—Hq

3.4. Local toric integrals. For each place ¢ of Q, denote by 7r; the local constituent of 7’ at g.

Definition 3.4. Define the new vector ¢, € m; as follows:

(a) if ¢ = oo, then ¢, is a multiple of v, € Ly(C) ~ 7.
(b) if ¢ | N7, then ¢, is a basis of the one dimensional representation 7, of G(Qy),

(c) if g1 N, then ¢, is fixed by (R ®z Z4)* ~ Up(N),.
Let 902;:9% if either ¢ # p or ¢ = p | N and let

1 10y, .
wfz:wq—-ﬂ(<0 p>)sﬂq ifg=ptN.

Qp

Define the local Atkin-Lehner element 75 € G(Qq) as follows: 7% = J for qlooN~, 7N5 = 1 for finite

place ¢ { N and 77 = (—]OVB (1)) if g/[Np. Let 7V5 := J][7» € G(A). Since n’ has trivial central

character, ; is self-dual. Hence, there exists a non-degenerate G(Qq)-equivariant pairing (, ),: m,xm, — C.
This pairing is unique up to a nonzero scalar.
For g € G(Qq) and a character x : K — C*, we define the local toric integral for the new vector ¢, by

(3.7) P(9,q:X) =

L(1,Adw,)L(1, "(tg)pl, ' (Jg)p!
(1, Ad7g) L( TKq/Qq)./X/Q (n'(tg) el 7' (J9)Ph)q ©(t)dty,

CQ0(2)L(%”/TK(1 ®X) <¢Q7W/(T'§VB)QOQ>Q
where Tx_ /q, denotes the quadratic character of Q associated to K, /Qq and dt, is the quotient measure of

the Haar measures of K and Q; fixed in An important observation is that the number P(g, ¢4, x) does
not depend on the choice of the pairing (, ),, depending only on x and the line spanned by ¢,.
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3.5. Waldspurger’s formula. Let x : K*\Aj% — C* be an anticyclotomic Hecke character of archimedean
weight (m, —m). Namely,

(crit) Xlax =1 and xoo(2) = (%)m (—=k/2 <m < E/2).

Let mx be the automorphic representation on GLo (A ) via the quadratic base change of 7 and let L(s, mx ®)
be the automorphic L-function of mx ® x, which satisfies the functional equation

L(S77TK ®X) = E(Saﬂ-K ®X)L(1 - 857‘-}/{ ®X_1)7

where €(s, Tr®x) = ][, €(s, Tk, ®Xq> VYK, ) is the product of local epsilon factors. Let A(7') be the automorphic
realization of 7’ in A(G). For ¢ € A(n’) and g € G(A), define the global toric period integral by

Plg.o0x) = / o(tg)x(t)dt,

KXAX\AX

where dt is the measure of K*/Q* with the volume vol(K*A*\A ¥, dt) = 2L(1,7x,q), where L(s,Tx/q) is
the complete L-function of the quadratic character attached to K/Q (¢f. [Wal85] p.180]). For @1, v € A(n'),
we define the G(A)-equivariant pairing:

(p1,02)a = / v1(9)p2(9)dg,
G(Q)Z(A)\G(A)

where dg is the Tamagawa measure on G/Z. By the theory of new forms [Cas73|, ¢, is characterized
uniquely up to a scalar by the equations 7' (R*)¢r = pn and 7l (¢)or = (t/t)"pa for t € K*, so we have
7' (TV8 ), (9) = C - o (g) for some constant C' € C*. This in particular implies that

<907T'a7r/(TNB)()O7T'>G 7é 0.

Since (, )¢ is a nonzero multiple of the product ®,(, )4, we have

(3.8) (g5 ﬁ'(TéVB)ga(I)q # 0 for each place q.

We shall make use of the following version of Waldspurger’s formula, which expresses the global toric period
integral as a product of local toric integrals.

Proposition 3.5. We have

Pi™ ol )2 (Q2)

1
= CL(Z . (n)
(o P )b~ 2E(1, Adm) g™ EX) 1P ¢axa),

2
q

where ¢ runs over all places of Q.

PRrOOF.  Fix an isomorphism i : 7' ~ ®,7; such that i(pr) = @4, for ¢, chosen in Defefinition Set
o1 = (")l o = 7 (Tl s = o and o4 = 7' (TP )pr. Let i(p;) = @gpig. Let X be the
character defined by X(¢) = x(¢). Note that P(1,¢1,x) = P(g(”),cpjr/,x) and P(1,p9,%) = P(c("),goir,,x).
It follows from Waldspurger’s formulae [Wal85, Proposition 4, Proposition 5, Lemme 7| that if {v3, ¢4)c # 0,
then

P(179017X)P(17§027y) :CQ(2)L(%77TK®X
(w3, P4)c 2L(1,Adm)

)
' HPQ(golaQOQ,SO?ﬂ(prX),
q

where

X(tq)dtq~

L(laAdﬂ- )L(laTK ) ' (t )
Py(p1, 2, 93,01, X) = g a/Qq ./KX/QX (m'(tg)¢1.0: P2.0)a

L(%’ﬂ-Kq ®Xq)CQq(2) <‘P37q,904,q>q

Moreover, we have P, (1, p2, @3, ¢4, x) = 1 for all but finitely many ¢. The proposition follows immediately.
a
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Let CI(R) be a set of representatives of Bx\ﬁx/ﬁxéx in B* = G(Ay). Define the inner product of fr
by

(3.9) Forsfodri= 3

gECI(R)

ﬁ ; (9): far (97" )k (Dg:= (B NgR*g7'Q")/Q%).

Let €4(mx, X) := €(3, Tk, ® Xq,Vk,) € {£1} be the local root number of mx, @ X,

Corollary 3.6. Suppose that x is unramified outside p. Then we have

||907rHF0(N) 722_]“(_1)77le;{72

1
P(e™, o, 1)? - L ex) [ (-l x)

7y )’ N 2
fa frr)r VDx al(Dxc.N")
Pr
X H P(sq> a> Xq) - ”;#
alpN+ |DK|(3q €(mq)

PROOF. Let vg be the volume of G(R)R* in Z(A)G(Q)\G(A) and dgs be the Haar measure on the
compact group G(R)/Z(R) with the volume one. By Schur orthogonality relations, we have

<LP7T’77T/(TNB)‘PW>G = Z u . /G <pk,00(goo)V:me’ (9 - (Pk,00 (Good )V s frr (QT;VB»kdgoo " UR

JcOlR (R)/Z(R)

1 Vins Phioo(S) Vi
> i, {fa(9), F(gm™")) - : dimp; Lk(—2)(c)>k o

geCIl(R)
—k
_ (—1)F D5 (Vin, Vi—m—2)k
_<f‘ﬂ'/7f7'l'/>R (k‘-l) UR,
By the Eichler mass formula:
1 ¢a(2) - _
> e > HITa+a™,
gecur) "I a|N- a|N

and vol(Z(A)G(Q)\G(A),dg) = 2, we find that
T g é(gW)N I ¢ [T +aH7,

q|N— q|Np
and hence
(3.10)
_1\ymnk—2 k k _
<S07r’77T/(TNB)<,D7r’>G = <f7r’uf7r’>R' ( 1) DK F( /2+m)r( /2 H CQq H 1+q_1)_1'

(k)

qlN~— q|Np
Combining with Proposition [3.3] Proposition and (3.10) , we find that
lenllrgny 227 *DE 2 (—1)"T(k/2 + m)T(k/2 —m) 1

(n) 2 _ e
o e TR Lz 7 93
<16 ) TT o0+ IT 222l
4es q|N~ qlpN+ q

We proceed to compute the local toric integrals P(gén), ©q, Xq) for ¢t pN*t. At the archimedean place, we
have 7/ = pr.oo and Yoo (t) = (t/£)™. In addition, 7Y% = J and ¢, = v,y is characterized by pg oo (t)(Vin) =
Xoo(t) "1V, for t € C*, so we have

<pk,oo(t)vm7pk,oo(J)vm>k

<Vma pk,oo(TgB )Vm>k

“Xeo(t)=1forallt € C* = KX.

Recall that )
L(1,Ad my) = 2 k= (DD (k); L(5: 7k ® X) =T (k/2+m)To(k/2 —m).
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We conclude that

_ L'(k) L'(k)

- 2nl(k/2 +m)T(k/2 — m) al'(k/2 + m)T(k/2 —m)’

If ¢ { pN, then ¢, is the spherical vector in m,, and by [Wal85, Lemme 14| (use the fact that i,(J) is an
element of i,(K ) GLa(Z,)) we have

1
(3.13) P(sq> a: Xq) = | Dk -

Suppose that ¢ [ N7. Then 7, = £ o N is the one dimensional representation of a unramified quadratic

(3.12) P, Vin, Xoo) vol(C* /R, dt o) =

character £ : QX — C*, and 7, = o(¢]- |%7§| . |7%), and a simple calculation of local root numbers shows that

(Xq - € o N)(wk,) + (7, x) = 0.
In particular, if K,/Q, is unramified, then €,(7x, x) = —1. Therefore, we find that

_ 11 if K,/Q, is unramified,
(3.14) P(L, 00 Xg) =G, () IDxl - M0/ Qs e
(1 —e€4(mr,x)) if K;/Qq is ramified .
Combining (3.12)), (3.13)), (3.14) and (3.11)), we obtain the desired formula. O

3.6. Local toric integrals at ¢ | pN*. In this subsection, we carry out the computation of the local
toric integral P(g,gn),goq,xq) using the Whittaker model for ¢ | pN*. Let F = Q, and E = K, and write
T =T, =Ty, X = Xq and ¢ = ¢, for brevity. Define the toric integral for Whittaker functions W € W(rw, 1)
by

|Dk| 2 L(1,75/F)
P(W,x) ==

( Cr(1)

Lemma 3.7. Let J™ := ({"™)=17d{™ . For ¢| N+, we have
. Nt 0
wUg)ea = (7 )en

PRrROOF. A straightforward computation shows that

0 1
(n) — . 1
g = \/B (1 0) if g/ NT.

+ +
Thus, by Lemma [3.1| we have w(Jé"))goq =m( <J\6 (1)) ) (TN, = e(m)m( (Z\(f) (1)> )@q- O

Proposition 3.8. Let q | NT. Write q = qq in K with q | MW", If x 4s unramified, then we have

b)) (.
EX |FX

|on
| Hq — Xq(m+)~

P(gqa(PmX) : T
|Dk|? €()

PROOF.  Since ¢ {p is split in E, we have L(1,75,r) = (r(1), |Dx| =1 and g(gn) = ¢,. By definition ,
f— 1 . 1 .
lerlly L(z 72 @ X)
Write x = (Xq, Xg)- A straightforward computation shows that

P(7(s))Wr, X) :e(w)/FX /F Wﬂ(<aél ?))Wﬂ(<‘“§+ ?))Xq(mdxadm (by Lemma [577)

—cmra) [ [ w5 Q) we(§ )t @aarn
— Xa(NH)e(m) U (- Weoxih)

P(g(gn)7§0Q7X) P(Tl’((q)Wﬂ.,X).

1
i’Wqu)\I’(i,
1
= Xq(NT)e(m) - L(i’ TE @ X)-

The last equality follows from (|1.1)). |
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We continue to compute the local toric integral at the place ¢ = p. Recall that we assume m = 7, is a
unramified principal series m(up,7p) or a special representation o (i, ) with unramified character p, and
HpVy L'=|.|. Let Z, be the Iwahori subgroup given by

b
I, = {g = (i d) € GLy(Z)) | poZp}.

By the complete description of Kirillov models in [Jac72|, the function p,|-|2(a)lz,(a) lies in the Kirillov
model K(7,1), and hence there exists a unique Whittaker function Wg e W(r, )

N|=

w5 9=l @iz, o

One can verify that Wg is invariant by Z, and is an Uj,-eigenfunction with eigenvalue oy = p1,(p) |p|7%. If =
is unramified, then

a 0Ny it (o He(pa) —vp(pa),
W’T(<0 1>)_| AT

Wl(g) =Wx(g) — alp -Wal(g (é g))

If 7 is special, then it is well known that

0 1
(3.15) W, =W and ﬂ(_p 0>)Wﬂ = —a,Wr.
We have
1
Dg|? 1
(3.16) P o) = 1P P(r()W ).

lenlly Lz me @ X)
Definition 3.9. Define the p-adic multiplier e, (7, x) by

1 if xp, is ramified;
(7. 3) (1- a;lx(p))(l — a;lx(ﬁ)) if xp is unramified, p = pp is split;
ep(m,x) =
AT X 1-— a;2 if xp is unramified, p = p is inert;

1—a,'x(p) if x, is unramified, p = p? is ramified
(¢f. [BD9G, §2.10]).
Proposition 3.10. Suppose that x has conductor p*. Let n = max {1, s}. Then

1
L(%uﬂ—E ®X)

Therefore, by (3.16) we have

ozf,p_2 if s=0,

P (oYW x) = ep(m, x)* ™ L(1, 7)) - {p—s ifs>0

n HSO’”” —ord, a?p_Q ZfS = 07
P(ggg ),Soan) : 71; = ep(Tr7X)2 dp(N) . L(17TE/F)2 : pfs ’Lfs < 0.

Proor. Fort e E, we put
(1) = () D"

It is easy to see that LE”)(J) €Z,ifn>1.
Suppose that p = pp is split in E. Recall that § =6 — 0 € (’)IX{p =Z;. A direct computation shows that

pu-( )6 )6 )
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We find that
P(r(sS" YW, x)

t.fax 0 —§~1pn t(—a 0\ (1 =46~ Lp=n < %
/Fx /F Wl ( 1) (o 1 Wl o 1) Lo 1 Jxp(w)d”ad”z
[ e [ wE @
{0} Z,—{0}
If n=s2>1, then L(3,75 ® x) =1, and as
/ 1/J(p_7"as)xfot(as)dxx =0 for all r < n,
z;
we find that
P W) = [ o5y apg@de: [ o6 @da
=e(1, xp, ¥)e(1, x5, ¥) - Cp(1)?
:|pn|L(1,TE/F>2

If s =0 and n = 1, then y is unramified and

i 1
n —|p tpXpl % (p —|p X 112 (p)
P(r (())WT Y) = (1_|||| P pH (;) ) 1_|||+ pXp : )
p l—upo|~|2(p) Pl 1 — ppxy ' 2 (p)
1
- ) Lo ol PR)

-Cp(1)? - pz(p) [pl

L= mpxel 12(0) 1= pox -7 (0)

L(5, tipXp)L(3, tpXp)
2Ipf? SEEEERIEZIERR L (1) (=t X = X )
? L(3,vpXp) L(5: vpXp) R

=«

(1- Oflx;l(P))Z(l - Oé‘lxp_l( )? i piN,

— a2 pl?. lﬂ . r 2, .
= ap bl B @)L {<1a LGN - 0p g ) | N

This proves the formula in the split case.

Now we assume that p is non-split. We introduce the matrix coefficient m' : G(Q,) = GL2(Q,) — C

defined by
mf(g) := b(x(9) W}, W)).
The function mf(g) only depends on the double coset Z,gZ,, and by definition
1
m(l)=——F—.
1—pz(p) |pl

Put
P / mf () (1)) x (1) dt.
EX |FX
It is clear that
1Dl ™? L(L, 75k
Cr(1)

To compute P*, we make some observations. Let r € Z>(. For y € p"Z,, we have

L§n>(1+y9)ezpw<p0 p,«O_n>Ipif0S7“<” (W:<—O1 (1)>)

(3.17) P(r(\MWi, x) = P* -

and LE”)(l +y0) € I, if r > n. For y € pZ,, we have

n+e—1 0
LE") (y+0)ecl,w (p 0 p") Z,,
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where e = 1 if p is inert and e = 2 if p is ramified. Put
X, ::/ X(1+y8)d'y,
p"Zp
where d'y is the Haar measure on Z, such that vol(Z,,d'y) = L(1,7g,r) |DK\%. Using the decomposition
EX = F*(1+ Z,0)| | F*(vZy +0),
we find that
P [ 1+ y0m (0 00+ [l + Oml (0 +0)) -+ 015
P

P

(318) n—1

_ . + B 0 pnfr 0 . t anrefl 0
X, -m'(1) + ;(Xr X, 41)m (w( 0 p’”>) +Y, - m (w( 0 t ),

p

where
Yy = / X(y+0)d'y - |=|' 7.
pZ

P

Suppose that n = s > 1. Then it is easy to verify

e X, =0if0<r<n,
e Xy + Yy =0if pisinert, and Xg = Yy = 0 if p is ramified.
It follows from (3.18]) that
* 0 1
P =X, mf(1)+ (-X,) mf(w (2(; p_l)) (Xn = [p"| L(1,75/Fr) |DK|?).
If 7 is a unramified principal series, then
-1
0
o m)  m@) ] — tipvy | 1(p)
L= v '|(p)  1=1pl" p(p) = vp(p)
1
=¢r(1) - Ip"| L, 75/F) | DK -

If 7 is special, then by (3.15)),

P*

P* = b(W, — n((p 2>)WW,WJ) X,

X,

_ 1+ Np’/;l(p)
1= vy |- (p)

1 _
=Cr(1) - [p"| L1, 7g/r) D12 (mpv, *(p) = Ip)).

Suppose that s = 0 and n = 1. Then we have

- X,

—~

X 0 e 0
P* =X, -m'(1) + (Xo - X1) - m'(w <€ p1>) +Yp - mf(w <p 1))~
Note that
e If p is inert, then Xo =1 — X; = L(1,7g/p) and Yy = X;.
e If p is ramified, then X, = |DK|% and Yy = x(wg) |DK|%.
Case (1): p is inert and 7 is unramified. Then

P*=m'(1) + X, - (mf(w (1([)) pol)) —mf(1))
1
S 1-p2) el 11— p?

_ 1
=ap Ipl* (1 - o, )2 (p(1)L(L, 7g/F) - L(§77TE ® X)
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Case (2): p is inert and 7 is special. Then af, =1, so ep(m,x) =0 and

1
pr_ Pl = (@) p* _
2
1= |p|
Case (3): p is ramified and 7 is unramified. Note that

wiw (7 ) =i (50,

0.

0 p—

Let 8 := X(wE)pp\~|%(p). Then we have
1 2
Dl 4P = 1)+ () (52 ) atmeml e (B 00 )

0
— (1ol p)mw (50
(1—-1Ipl+8)  1+8

T 2 — B2 _ 212
== o Tiog W®kl=5 =)

= 2ol (1~ x(@p)a " e (DG me @ )

Case (4): p is ramified and 7 is special. Then o2 = x(wg)? = 1 and

1>> “ (1)) + (1 + Ami(1)

[Dre| 2 P* = |p|lm'(1) + (1 = [p))(=ap)m'({ "y | )) +x(@e)(=ap)m ({7 | ])
P (= x(@r)ay)
1—p2(p) Ip|
We find that if x(wg) = a;, then P* = ey(m, x) = 0 and if x(wg) = —ay, then

1 2|p|°
Dy| "} P = ; Ip| ;
(1= x(@e)up| -1 ()1 + x(@E)up|-|* ()
_ 1
=p* (1 - a, "x(@g)) - Cr(DL(5, mE ® X)-
The above calculations together with formula (3.17)) completes the proof in the inert or ramified case. O

3.7. Central value formula. We are ready to prove the central value formula connecting the toric period
integral of the p-stabilized form gojr, in (3.2)) and the central L-value of mx twisted by anticyclotomic characters

X satisfying .
Theorem 3.11. Suppose that x has conductor p*. Let n = max {1, s}. Then we have
2 lenllron _227H (=)™ Dj
<f7r’af7r/>R VDK
a?p™?  ifs=0
xx(MHe(my) [ (1= eglmre,x))- {pfs

2D N-) if s > 0.

1 —or
: L(*ﬂTK by X) : ep(W>X)2 ordp(N) . L(LTKP/QP)Q

P(g(n)a (JDI‘—HX) 2

PrOOF.  This follows from Corollary Proposition [3.8 and Proposition [3.10 (|

4. THETA ELEMENTS AND p-ADIC L-FUNCTIONS

4.1. ¢-adic modular forms. Let £ N~ be a rational prime in We briefly review f-adic modular forms
on B*. Let A be a Og,-algebra. For an open compact subgroup U C R*, we define the space of f-adic
modular forms of weight k& and level U by

~

My(U, 4) ={F: B* = L(4) | Jlagu) = pu(u; ) f(g), o € B*, ue UQ"}.
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We write Mk(_NB, A) = ./\/lk(]%x, A). Recall that we have fixed an embedding ¢, : Q < C;. Let A and [ be
the primes of Q and K induced by ¢4 respectively. We let ig, : B — My(K|) be the composition i, 1= tp0ix
defined in (2.3). Define py ¢ : B} — Aut Ly(Cy) by

(4.1) Pr,e(9) = pr(iK,(9))-

By definition, py e is compatible with pg o in the sense that pg¢(g) = pr.co(g) for every g € B>, and one
checks that .
(‘_/? _‘QB") € GLy(K)).

Here iy : By ~ M>(Qy) is the isomorphism fixed in (2.I). If A = A[}], there is an isomorphism:

pre(9) = pr(viie(9)y Y, i :

~

My (Np,A) = M(Ng, A), [ = f(g) = pe(v orelg, ) fg).

We call f the (-adic avatar of f € My (Ng, A).

Let Q(m) be the Hecke field of 7. In other words, Q(m) is the finite extension of Q generated by Fourier
coefficients of the elliptic new form fr. Let O, ¢ C C; be the completion of the ring of integers of Q(7) with
respect to A\. The O -module My (Ng, Oﬂ’z)[ﬂ}] = My(Ng,Or ) NMy(Ng, Cg)[ﬂ'}] has rank one. We say
frr € My(Np, C)[r] is A-adically normalized if its (-adic avatar f. is a generator of M (N, O ¢)[m}] over
Or ¢. This is equivalent to the following condition:

Fxr(g0) # 0 (mod ) for some go € G(Ay).

4.2. Theta elements. Let n > 1 be a positive integer. Let G, = KX\I?X/@\,f be the Picard group of the
order O,,. We identify G,, with the Galois group of the ring class field of conductor p” over K via geometrically
normalized reciprocity law. Denote by [], : K* — G,,, a — [a],, the natural projection map. We consider the

automorphic form go[m] =U(v: ® fr) in (3.1) and define the function

PR e, am @ (a) = o (@ (a)e, Y@y fay)™

Replacing fr/ by f ., we can define the p-stabilizations (QDET, ])T = \Il(v ®fT ) and (&, B ]) in a similar manner.

By (3.3), we can verify that g and ()T factor through K>*\K*.

Definition 4.1. Fix a set =,, of representatives of G,, in KX\IA(X, define the n-th theta element O (fjr/) €
C[G,] of weight m is defined by

ol (fl) ==a,™ - 3 (B0 (a) - [aln

a€EE,
o™ 3 (o) (e (@))iy ! @/ ay)™ - [a].
a€E=,
We consider theta elements of weight zero. The function gp[/] factors through G,, so we can extend ga[O]
hnearly to be a function @ <p : C[G,] — C, and the definition of oL ]( fJr ) does not depend on the choice of
. Let P, :=[1],, € G,, be the dlstmgulshed Gross point of conductor p™. Then
20 (P) = ¢ (@n(a)) if o = [a] € Gn.
Define the regularized Gross point P} as follows. If p{ N, we define P] by the formal sum
1 1
Pli=— P, — —= P,_1,
ap " apt

and if p | N, we define P/ = a,™ - P,. We have

V()= &% (P o

oc€Gn

and {@L? } ( f,i/)} satisfy the following compatible relation.
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Lemma 4.2. Let my41,n : Gny1 — Gn be the natural quotient map. We have

0
Tt 1 (Ops (F1)) = O (£L).
ProoF. This is standard. For n’ > n, let K, ,, := Ker(G,, — G,,). Using the description

Kn/,n = [(On ® Zp))(]n/ e {[1 +pnu9]n/ ‘ = Z/pnlfnz} 7

we find that
S (@D @nia(aw) = @D Up(an(a) = ap - (0D (@n(a)).
ueKn+l,7l

The lemma follows. O

Let fr € Si(To(N)) be the elliptic new form corresponding to ¢,. The Fourier coefficients of the g-expansion
fx(@) =22, <0 Cn(fr)q" at the infinity cusp are given by

et =Wes((y V)t 0% = T] W)

q<oo
Let A, = pg_lap be a root of the Hecke polynomial of f. at p ie. X2 —c,(f)X +p*Lif p{ N, and
X —cp(fr) if p| N. Let x be an anticyclotomic Hecke character of conductor p® and weight (m,—m) for
an integer —k/2 < m < k/2. Recall that Y : _K'X\I/(\'>< — Oép denotes the p-adic avatar of x defined by
X(a) = x(a)(ap/a,)™. We are going to give the interpolation formula of the square of

RO =™ Y7 (el @a(@)ey (@/a,)™ - (a))

a€E,

=, Y () (@n(@)x(a)

laln€Gn

for every integer n > max {1, s} in terms of the central value of the Rankin-Selberg L-function L(f./K, X, $)
attached to f, and the theta series attached to x. Recall that connection between the automorphic L-function
L(s,mx ® x) and the Rankin L-series L(f./K, X, $) is given by

k—1 k—1 k—1
(42) L(smi ©) =Tols + 2 tmPo(s + o2 —m) - Lo/ + 520,
Define the period 2, n- of ©’ by

(4m)* ll@xllro vy
(4.3) QN =
<f7r’a f‘n”>R
Proposition 4.3. Suppose that x has the conductor of p*. For every n > max {s, 1}, we have the interpolation
formula

. L(fw/KaX7 %)

ROIIAL)) =P(5 + m)T (s —m) -

5 5 . ep(ﬂ,xty)Qfordp(N) . A;QS(pSDK)k’l

2

x I M )e(m) (1™ [ (1 em)x(a)).
m q|(Dk,N~),q=q?

PROOF. We may assume n = max {1, s}, using the argument in Lemma By (3.3)) and the definition of
theta elements, we have

P(r'(s™), ¢l x) = vol(O)a - R(OI(£1)) (¢l = (1),

where vol(OX) denotes the volume of the image of C*OX in K *AX\A% with respect to the measure dt.
Recall that dt is chosen so that vol(K* A*\ Ay, dt) = 2L(1,7x,q). Together with the class number formula,
we have

. N " 4 _
vol(Oy ) = vol(Og) - L(1, 7k, /q,) IP|" = mL(LTKp/Qp)p "
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Combining these equations, we find that

~ralm VDk -u o, "p"
x©M(fl)) = = L

: P(g(n)a (P;rrla X)

4 L(]., TKP/QP)
The proposition thus follows from Theorem (4.2) and the formula:
eq(mi, X) = e(mq)x(q) for ¢|(Dx, N7), ¢ = q°. O

Remark. This proposition verifies [BDIS02, Conjecture2.17], and hence removes the assumption in [BDIS02,
Theorem 3.4],

4.3. p-adic L-functions. We shall use theta elements to construct anticyclotomic p-adic L-functions attached
to f and derive the evaluation formulae. We begin with a key observation.

Lemma 4.4. Let A C C, be an Ok, -algebra. Let f € My(Np,C,) such that the p-adic avatar f €
My (Np, A) is a p-adic modular form over A. Let
fy,, =V (v ®f) € AG)
be defined as in . For a € I?X, we have
(1) P50 fo, (0 (@) (@ /ap)™ € o As

(2) the congruence relation

2—k 7

P o (@) @)™ = VBT, F (@) (mod

A).
Proor. We write a = (aP), a,) € (K (P))x x K. By definition, we have

(4.4) Fom @ @) @5/ ap)™ = (p1(3) i ((55™) ™ )Vis F(@n (@)
Here we are making use of the fact that py ,(t) acts on v, by (¢/t)" for t € (K ®Q,)*. A direct computation
shows that pi (5 1) (pk p((s5™) 1) = pr(Z,), where

VBN
Zp—(o pn\/m) if p is split in K

and

Ly = — | if p is non-split in K.
? (—p"O ~p"vBo) "7 P
Note that det Z, = v/Bp™9,

2, M0x). 2,= (g %)) (10d "Ma(O, )

For P(X,Y) € Ly(A), we find that

n(k—2) k—2 n(k—2) kE— 2—k
2

k=2
P T D k(Do) T P(X,Y) =p~ 5 Dy P((X,Y)Z,)(det Z,)
2—k

=B ® P((X,Y)Z,) € Li(A).

In particular,
n(k—2) 2-k

P o Dok () v =B T XF7? (mod p"'Li(A)).
In view of (4.4)), the assertions of the proposition follow immediately. O

We make the following ordinary hypothesis:

2-k
(ord) fxr is p-adically normalized, and the p-adic valuation of the Up-eigenvalue ord,(a,) = —

Corollary 4.5. Suppose (ord|) holds. Then ol (f;,) € [(k =270 ,[Gn]. Moreover,
O (fL) = O (£1,) (mod p"[(k — 2) ] Or p[Ga]).
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PROOF. By definition, for a € K* we have

o " (@) (@) = o "o (@) @/ ap)™ — 0, (0, "V (@) @ ) ™).
Applying Lemma [{4] to f = fr/, we find that
o ;" (@2)!(a) € Ony,
o a;"((ﬁﬁ?]))f(a) (mod p"[(k — 2)!]7!) is independent of m.
The corollary follows immediately. O

Let G = ]gln Gn. Let '™ ~ Z, be the maximal Z,-free quotient group of G, and let A be the torsion
subgroup of G,,. We have an exact sequence

0—A—G,,—T ™ —0.

Fix a non-canonical isomorphism G, ~ AXI'~ once and for all. If n > 1, the map A — G, — G, is injective,
and hence
n~ AxI~

S, I =T, =G,/A.
Let x; be a branch character, i.e. a character x; : A — Q* and let O = O, ,[x:]. Define the x;-branch of
Ol (f1) by
On(fhxe) = xe (O (1)) € [(k — 217 O, ).
We define
Ouc(m) = {ON(f1)} €12 0I0x]:  Ouolmxe) = {Onlflix)} = xe(Oc(m)) € [(k=2)] O[T .

Let %ffit be the set of critical specializations defined in the introduction. Note that Xffit consists of the
p-adic avatars of Hecke characters y of p-power conductor satisfying (crit]) and trivial on A.

Theorem 4.6. Let U € %;rit be a p-adic character of weight (m,—m) and conductor p*. We have the inter-
polation formula

. L(fﬂ—/K,th/, g)
QW,N*

x ufey/ D - €(mp) (=)™ I1 (1= e(mg)xe(a)) - xev/(MF).

q|(Dx,N7),q=q?

7(Oc(m, x¢)?) =L (5 +m)L (5 —m) e (m, xo) 2O A2 (p D )F 2

PROOF. Let ng = max{s,1}. For each integer r > ng, we choose n > r such that v (mod p") is trivial on
O). Let x = xwv. By Corollary we have

D(Ouo(m,x1) = X(OV(£1)) = R(OIM(£1,) = R(OF(£1)) (mod pr[(k — 2)1]71).

This congruence relation holds for all » > ng. Therefore, V(O (7, xt)) = )?(@L@(fi,)), and the theorem
follows from Proposition [£.3} O

Remark 4.7. The theta element O (7, x:) is the square root of the anticyclotomic p-adic L-function associ-
ated to (m, x¢). In view of the evaluation formula, we assume the following local root number condition in the
remainder of this article:

(ST) e(mq)xt(q) = —1 for every q | (Dg, N~) with ¢ = g°.
Note that (ST) is always satisfied if (Dg, N7) = 1.

Let * : O[Go] — O[Gw] be the involution defined by o +— o~!. We show that ©.(m) satisfies the
functional equation in the following sense.

Theorem 4.8. Let rog be the number of prime divisors of (Dx,N~). Let

¢ = (—1)rot3 H €(mq) € {£1}

atpDk
and let om+ = {[NT],} be the image of Mt in Goo. We have the functional equation:

Ouo(m)* =€ - Oy () - 0'9_,11+.
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PRrROOF. Let ¢ = <p7r,. Using the automorphy of ./, we have

oo (2a(a™) = 61, (20 (@) = o (@) o) (T = ()L
By the choice of J and Lemma [3.7] it is straightforward to show that
T(Jen)on (Q) = ¢ - pr(om+(Q)) for Q € Gy,.

Therefore,

= > pwlo (P = 0,(m) - (1]
o€Gn
This proves the theorem. |

N

Remark. Note that e(m) = (—1)
It follows that

. If x¢ = 1 is the trivial character, then e(m,) = —1 for all ¢| N~ by (ST).

¢ = (=1)% [] e(mg) = e(m)e(my).

q#p
5. THE NON-VANISHING OF THETA ELEMENTS MODULO /¢

5.1.  We retain the notation in the previous section. Throughout, we suppose that f: is A-adically normalized.
The purpose of this section is to study the non-vanishing properties of theta elements {@n( fjr, , Xt)} modulo
n

A. Let A% be the subgroup of G, generated by the image of KX := quDK K. Tt is clear that A2 g g
(2,---,2)-subgroup of A. Let Dy be a set of representatives of A*® in KX . Choose an arbitrary set D; of
representatives of A/A*8 in K*. Then D := D;Dy be a set of representatives of A in K*. By definition, we

can write

(5.1) Wl =D Dl (ap” > @L/(wn(m)d)xt(d)> fuln (oL =¥(vg e L)

[uln €y T€D1 deDy

5.2. Uniform distribution of CM points. We recall a crucial result in [CV05]. Let K™ the closure of K*
in K* and let B” be the closure of B* in B*. Let CM := K \B*, X := B \B* and Z := Q,\Q*. The
group B* acts on these spaces by the right translation and K> acts on CM and Z by the left multiplication.

Let Red : CM — X be the /I\latural quotient map and let ¢ : X — Z be the map induced by the reduced
norm N: B* — Q*. For g € B*, let [g] denote the image of g in CM. Let &/ be an open compact subgroup
of B*. Put

X(D,U) = [] /U and 2(Dy,u) = [] 2/NU
TED; T€D1
Define
Redp, :CM — X (D1,U), z+— (Red(7-2z)U)rep,
and

cp, :X(D1,U) — Z(D1,U), (27)rep, = (N(21))rep; -
The following proposition is a special case of [CV05], Corollary 2.10].
Proposition 5.1. Let H be a B -orbit in CM and let H be the image of H in CM/U. Then for all but finitely
many x € H, we have R R
Redp, (Of - x) = 051((9;(( - T),
where T = ¢p, o Redp, ().
Proor. This is [CV05] Corollary 2.10] with & = {#} and R = D;. O

The following corollary is a immediate consequence of the above proposition.

Corollary 5.2. Let {5}
that

(1) f is not Eisenstein;

rep, be a sequence in A such that B, € A* for some 1. Let f € My(U, A). Suppose
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(2) NU) > Iy p, Z
Then there exists an integer ng such that for every n > ng, we have

ZBT- (2n( aT);AOforsomeaGI?X.

T€D,
PROOF.  Let Py := [¢(V)] € CM. Let % = Py - B} be the B)-orbit of Py. Then P, := P, - (po (D €H,
and from (2.9) we find that the image of {P,},_, , .. are distinct in K*\B*/R*. By Proposition there
exists ng such that
(5.2) Redpl(@IX(P ) = ¢p, ((’)X P,) for every n > ny.
Fix n > ng. Since f is not Eisenstein, f(y) # f(z) for some y, z € X with ¢(y) = ¢(z). The assumption (2)
implies that the norm map N : K* — Z/N(U) is surjective as the class number of Q is one. Hence, replacing
Dy by a’D; for some a’ € K* if necessary, we may assume

c(y) = c(z) = c(Red(Py)) (mod N(U)).
Take (w;)rep, € cp, L(P,). By (6-2), there exist a1, as € OIX( such that
Redp, (a1 Py) = (Y, Wry, -+ ) ; Redp, (a2 Pp) = (2, wry, -+ ).

It follows that
Y Be flaalar)) = Y Br - flaalazr)) = B (f(y) = f(2) #0.

T7€D, T7€D,
It is clear that either a; or as does the job. O

5.3. Eisenstein functions. Let A be a Z—ilgebra. Let U be an open-compact subgroup of B*. Denote
by My (U, A) the set of functions h : B*\B* — A such that h is right invariant by U. Let M3(A) =
lin, 5. My (U, A) be the space of smooth A-valued functions on B*\B*. We write ¢ : B* — Aut My(A)

for the right translation of BX.
Definition 5.3. Let B! = {g € BX | N(g) = 1} be an algebraic group over Q. Put
Mo (A)gis := {h € Ma(A) | o(g1)h = h for all g; € B'(Ay)}.
It is clear that My(A)g;s is a B*-invariant subspace of My(A). Let
S2(A) := Ma(A)/ Ma(A)gis.
Let S3(U, A) denote the image of M2 (U, A) in S3(A).

A function h € My(A) is called Fisenstein if h € Ma(A)gis. Equivalently, h is Eisenstein if and only
h(g) = h1(N(g)) for some smooth function h; : QF\Q* — A.

We make the following observations in the flavor of Thara’s lemma. The first one is taken from [Vat03]
Proposition 5.3].

Lemma 5.4. Let ¢ { N~ be a finite place. Let t, € By such that N(t,) = q. Let R" € End M3(A) be the
endomorphism defined by

RI= 146 ofty) (BeA).
Suppose that U O Ry := (R®z Z,)* = GLa(Z,). Then R : Sa(U, A) — Sa2(A) is injective.

PROOF. Let h € My(U, A). If R(h) € Ma(A)gis, then it is easy to see that h is right invariant by SLs(Z,)
and t, SLy(Z,)t, . By a theorem of Thara, h is right invariant by SLy(Q,) and hence by Bi(A) in virtue of
the strong approximation theorem for Bj. O

Lemma 5.5. Let ¢t N~ be a finite place. Let B1,---,Bs € A and let R € End(M3(A)) be the endomorphism

defined by .
R:1+Zﬁi'9(<qoz 2))
i=1

Then R : S2(U, A) — Sa2(A) is injective.
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PRrROOF. Let h € My(U, A). We need to show that if
P . ¢ 0
R =1+ 30 () e Matage

then h € My(A)gis. Let S, D U be the stabilizer of h in B*. Namely,

Sp = {g € BX | o(g)h = h}
Let N(Qq) be the unipotent radical of the upper triangular subgroup in GL2(Q,) and let
N' = N(Qq) NnU CSy.

-1
. _(q 0
Write u := ( 0 1) and

P(u)=—_ Bio(u) ' € End My(A)N".
i=1
By the assumption that h — o(u)P(u)h € Ms(A)gis, we find that for every positive integer n,
(5.3) h—o(u™)P(u)" - h € Ma(A)gis.

. N /- . . . (1 = 1 "z
Since h, P(u)"h € My(A)"Y and N’ is a proper subgroup, using the identity u™™ 0 1 u" = o 1)
we deduce from (5.3) that

1 =z
(O 1) € Sy, for all z € Q,.

1 0

On the other hand, <y 1> € Sp, for some y € Q. By the relation

b= )G )6 )

> € Sy, and hence

1 0y (1 —y’z
(2 =ugt () ) mes

It follows that Sj, contains SL2(Q,) - U. By the strong approximation for B!, we find that B'(Af) C S,. O

-1

_(0 ¥
Weﬁndwo(_y 0

Let pr 0 Gal(Q/Q) — GL2(Ox ) be the f-adic Galois representation attached to f.
Lemma 5.6. Suppose that the residual Galois representation pr  is irreducible and £ > k — 2. Let v €
Li(Or ). If v £ 0 (mod X), the function fy(g) := (v, fz(9))x (mod X) € M3(Or ¢/A) is not Eisenstein.

PROOF. We note that f, is not a zero function by the irreducibility of Ly(Or¢/A) as GL2(Oy ¢/A)-module
when ¢ > k — 2. Therefore, if f, is Eisenstein, then p,  is reducible. O

5.4. The vanishing of p-invariants. For each positive integer s, define the open compact subgroup Z; (p*)
of R* by

Ti(p®) == {g € R |g,= <é i) (mod ps)}.

Let @ be a generator of the maximal ideal of O := Oy ¢[x:]. Suppose that £ = p. We follow the approach of
Vatsal to study the p-invariant of O (7, x:) € O[T ].

Theorem 5.7. Let rg be as in Theorem . In addition to (ST) and , we assume that
(1) p>k—2andpt2m,
(2) prx is absolutely irreducible.

Then Iwasawa p-invariant of O (7, xt) vanishes.
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PrROOF.  We define a function £, : BX\B*/Q* — O/wO by
2-k ~
(5.4) fo(9) = VB * - (X*72, frr(9))k (mod ).
A direct computation shows that f, € My (Z;(p), O/wO). Let Up, be the open-compact subgroup given by
Up, = {g c RX | g4 € R; ﬁquRqul}i for all q|DK},
where wp, is a uniformizer of K. It is easy to see that

(5.5) N(Up,) > [] 2z;-

q|Dk

Let fp, € Ma(Up, NZ1(p), O/wO) be the function defined by

f,(9) = > f,(9d)x:(d) (mod ).
deDo

From Lemma [£.4] we can deduce that
On(fl xt) (mod @) = A," - <Z fygo(xn(UT))Xt(T)> [u]n,
[u]nel—‘; T€D1
where f%o € My(U,0/wO) is given by

k-2 10
fZTDo =1fp, —p 2 Ap1 - o( (pO 1>)fpo, U :=Up, ﬂIl(pQ).

To prove the vanishing of the u-invariant, we need to show that for n > 0, there exists a € K> such that

> £ (za(ar))xe(r) # 0 (mod @),

T7€D,

and in turn, it suffices to verify the assumptions for f{r)O in Corollary By (5.5), N/) D I] alDx Z;. By

Lemma f, is not Eisenstein, which implies that fiT?o € My(U,0/w0O) is not Eisenstein by the following
Lemma 5.8 0

Lemma 5.8. Suppose that £, is not Eisenstein. Then f%o 18 not Eisenstein.
PROOF. Let ¢|Dg be a ramified place and let @, be a uniformizer of K. Put
R, =14 xi(wk,)o(wk,) € End(M2(0O/w0)).
Let {Qi}i:L---s be the set of prime divisors ¢ of Dg with ¢t N~. By the assumption , we have
fp, =20 - R oR,, ---oR; (fp).

1
not Eisenstein if f, & M2(O/wO)g;s. O

—1
Applying Lemma [5.4] and Lemma 5.5, we conclude that féo = Rp(fp,) with R, :=1—a2A, - o (p() O)) is

5.5. The non-vanishing modulo ¢ with anticyclotomic twists. Suppose that ¢ # p. We prove the non-
vanishing of central L-values modulo ¢ with anticyclotomic twists, using a Galois average trick of Sinnot in
[Sin&7].

Theorem 5.9. Let x be an anticyclotomic Hecke character of conductor p*° and weight (m, —m) with —k/2 <
m < k/2. Suppose that

(1) (m,x) satisfies (ST,

(2) £12°pNDg and £ >k — 2,

(3) pr.x is absolutely irreducible.
Then for all but finitely many v : T'™ — p,0c, we have

L(fr /K, xv, %)

O n Z 0 (mod \).
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Proor. Choose a finite extension O of Z, in C; so that O contains O, and the values of x on AIX(f.

Moreover, let w be a uniformizer of O. Let fjr, be the /-adic avatar of the p-stabilization f;,. Define a
function Fy : B*\B* — O by
7 2ok =2 iy E224m
Fo(9) = (pe(ri Wi [l (9 (v, =DyF - X7 7"y 2 0m),
Note that v € GLy(Ok,) as £ 1 Dg. For each integer n > sg, we put
Y Frza(@)X([aln) - [al € O[Gy],
[a]negn

where X : Goo — O is the f-adic avatar of x. One checks by definition that

() (@a(@)x(a) = Fu(wa(a))R(a), a € K,
and hence for each v : I'™ = o,
v(O3) = ety (Rw(OF(F1))).
In view of Proposition it suffices to show v(0X) # 0 (mod ) for all but finitely many v.
Let k; = O/wO|p,]| be the finite extension of the finite field O/wO generated by the values of p,,. Put
I’:{geﬁx |gEl(m0d€),gp€Ip}.
Then Fy (mod \) € M3(Z', k). Define Fp, € Ma(Up, , k) by
Fpy(9) = Y X(d)Fi(gd) (mod \) (Up, =T' Nip,).
deDy

It is clear that Fp, is invariant by the Iwahori subgroup Z, and is an Up-eigenform with eigenvalue «;,. Let
p® be the order of the Sylow p-subgroup of k;. Let v : I';; — My be a character of conductor p™ with
n > max{s,s0} (so v : T <= p,. is injective). Put

Cn:{'yel";|u(7)€kex}.
Then we have C,, = Ker(G,, — G,_s). Let ky(v) be the field generated by the values of v over k. Since ky

contains p,,, d,, := [k¢(v) : k] is a p-power, and for a p-power root of unity ¢ € k(v), we have

0 if ¢ &k,

Try, (1) /%, () = {d e ek

It follows from the above that for each a € A}; o
Tric, () /i, (@2 XV (a™1) - v(OX) (mod N))
=d, - > Y Fpy(walaTu)R(7)
(56) [u]ln,€C, TED:

=d, - Z Z Fp,(z,(aT) (é

TE€ED yEZ/pSZ

=S e

)t

for some primitive p*-th root of unity ¢,. Define ﬁpo € Ma(ke(v)) by

Yy

Foo)= 3 ctel(y 7 )info)

YyEZ/psZ

Then Fp, € My, k() for U = Iy (p*>) N Up,. We can rephrase (5.6) as

(5.7) T )1 (0 0(a™") - v(€) (mod ) = dy, - 3 Fip, () R(r).
T7E€D1
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We proceed to show that ﬁpo is not Eisenstein. Under our assumptions, Fp, is not Eisenstein by Lemma
and Lemma[5.8] A simple computation shows that

) g<(g 0))FDO— D cay< %))FDO

a€(Z/p°Z)> €(Zy/p°2)* ye€Z/p*Z
))FDO
-1

=p" - Fp, —p*" > 0(((1)
==ty ))0rn

=S ke

y€Z/pZ

The above equation implies that ﬁpo is not Eisenstein by Lemma On the other hand, it is clear that
NU') > quDK Z; by (5.5). Hence, we can deduce the theorem from Corollary in view of (5.7). ]

6. THE COMPARISON BETWEEN PERIODS

In this section, we compare the periods €, n- defined in and Hida’s canonical period §2,.. Henceforth,
we assume that £ = p and f;, is p-ordinary. Let T(T'o(N)) be the Hecke algebra over O of the space of elliptic
modular forms S;(I'o(N)). Then 7 gives rise to an O-algebra homomorphism A : T(I'y(N)) — O such that
M (Ty) = Tr pr p(Froby) for every prime g { pN, where Frob, is the arithmetic Frobenious at ¢. Let 7, (N) be
an O-generator of the congruence ideal I (N) := Az (Annypr,(ny) Ker Ax) C O. Then Hida’s canonical period
Q, is defined by
(4m)*lonllre ()

n=(N)

Here we are making use of the fixed embedding O — C, ~ C. In general, the ratio 0, y-/Q, lies in O.
The purpose of this section is to show that Q, y-/Q; € O* in certain favorable situations. When k = 2
and N is square-free, under mild assumptions, Pollack and Weston [PW11l Theorem 6.8] prove that the ratio
Q. n- /€ is a product of local Tamagawa components at primes dividing N~. Their approach does not make
use of the ordinary hypothesis, but it is not clear to us if it is applicable if k& > 2. Nonetheless, it is pointed
out in [PW11] that the statement Q, y-/Q; € O is equivalent to the freeness of spaces of modular forms
on B over the associated Hecke algebra and the vanishing of these local Tamagawa components. Therefore, it
is natural to study the comparison between periods €2, y- and €. by the standard techniques developed by
Wiles, Taylor-Wiles, Diamond and Fujiwara in the proof of "R = T" theorems.

Let Gq = Gal(Q/Q). For each place ¢, we fix a decomposition of group G4 in Gq and let I, be the inertia
group in Gy. Let pg := pr ), denote the residual Galois representation and let N,; be the prime-to-p part of
the Artin conductor of py.

Q=

Hypothesis (CR™1). Throughout, we assume the following:
(1) The prime p > k+1and p{ N.

2) The restriction of pg to the absolute Galois group of Q(y/(—1)"z p) is absolutely irreducible.
) If | N~ and ¢ = £1 (mod p), thenq|Np0
) Ifq|| Nt andq:l(modp) then g | N
) N

5 and N/N,, are co-prime.

(
(3
(4
( Po

We will prove the following proposition in §6.3 after preparing some notation and recall basic facts in the
first two subsections.

Proposition 6.1. Suppose that the hypothesis (CRY) holds and that pq is ramified at every prime dividing N~
(i.e. N7 | Np,). Then the congruence ideal I.(N) is generated by (fx/, fr')r. In other words, Q; n— = u-Qx
for some unit u e O*.

6.1. Hecke algebras and congruence ideals. For an open compact subgroup U C B * put S(U) =
My (U, O). For g € B>, Let [U1gUs] € Homop (S(Usz),S(U1)) be the Hecke operator defined by

[U1gUa]£(9) = > prpl9i) f9g:)  (Urgla = |_|m



SPECIAL VALUES OF ANTICYCLOTOMIC L-FUNCTIONS 29

Let M™ be a positive integer with (M, N7) =1 and let M = N~ M ™. Recall that Rj;+ denotes the Eichler

o~

order of level M. We put Uy := Ry, and S(M) = SUns). If ¢ M, let T, denote the operator

[Uns <g (1)) Uni],

and if ¢ | M, let
0 _ _
U, = {uM (g 1) uM] for ¢t N~ and U, = [UnsmogUn] for q | N~

where @, € B such that N(cww,) = ¢. Let T(M) be the Hecke algebra generated over O by Hecke operators
T, for ¢t M and U, for ¢|M in Endp S(M). Define the perfect pairing (, )as : S(M)xS(M) — O by

(6.1) (f1, f2)nr = Z<f1(9)af2(gTM+)>k (B N glarg T Q) Q)

lq]

where [g] runs over BX\B* /Uy;Q*. It is easy to verify that

(tf1, fa)ar = (f1,tf2)as for all t € T(M).

Let A : T(N) — O be the O-algebra homomorphism induced by 7’. Let Ni be the product of prime
factors of N~ but not dividing N,,. Note that for each ¢ | N we have ¢ # £1 (mod p) and Tr po(Frob,)? =
(14 ¢)? (mod p) by (CRT). Put Ny := N, - N; . By the level lowering/raising (cf. [Jar99] and [DT94]), there
exists a modular lift Ay : T(Ny) — O such that A\y(T;) = A () (mod me) for all g f N (mp = ONA). We
write

N=nNy[[ ™.
q

Under the hypothesis (CR™), it is known (cf. [DT94] pp.435-436]) that

® mg <2

e m, =0 unless ¢ | N* and ¢ { Ny;

o If m; =1, then ¢ # 1 (mod p).
Let ¥ be a subset of prime factors of N/Ny. Set Ny, := Ny -[]
generated by

gex @". Let my be the maximal ideal of T(Nx)

mo, T, — M\g(T,) for ¢t Ny, Uy — A (Uy) for ¢ | Nx.
Let Ty := T(Nx)my, be the localization at my.

Lemma 6.2. The following statements hold.

(1) If ¢* | Ny, then the Hecke operator U, = 0 in Tx.
(2) The Hecke algebra Ty, is reduced.

PROOF. Part (1) is clear if ¢* | Ny, and if ¢* | Ng/Np, it is proved in [Tay06, Corollary 1.8] (cf. [Wil95,
Proposition 2.15]). To prove part (2), it suffices to show that U, are semisimple elements in Ty, for ¢ | Nx.
This is clear by part (1) if ¢ | Ny or ¢? | Ny, and it follows from Hypothesis (CR*)(4) if ¢ || Nx/Np. O

Let ¢, : Gq — Z,; be the p-adic cyclotomic character. It is well known that there exists a Galois represen-
tation
ps - GQ — GLQ(TE)
such that
e py is unramified outside pNy.
o Tr py(Frob,) = Ty, for all ¢ { pNx, and det py; = ).
e There exists a character d, : G, — Ty such that

—1

psla, ~ 6p Ep k¥ and 6,|; = c(2-k)/2.
P 0 5p P

e For each ¢ || Nx;/N;, there exists a character ds, , : G, — Ty such that

o5te *
psla, ~ < 2’6’ P

> and 0y 4(Frob,) = Uj,.
ds.q
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e For q | Ny,

| +e, * vem
rla, 0 +1)/° -

Let q | N/Ny such that ¢ ¢ ¥. We define an element us , € Ty and a level-raising map Lg : Sg — Ssuqq)
as follows. If my = 2, set us 4 := 0 and define

L =a-(y )iy o) r

If m, = 1, then the Hecke polynomial P,(X) = X2 — T,X + ¢q € Tx[X] is congruent to (X — €,9)(X — €,)
modulo my, for some €, € {£1}. Since ¢ #Z 1 (mod p), there exists a unique root uy; ; € Ty, of P,(X) such that
Us;,q = €q (mod my) by Hensel’s lemma. Define

(62) Lih =usaf - (5 1)

In either case, it is easy to verify that U,o L, = Ljous 4. Moreover, L, induces a surjective map Txyqp — Tx,
sending U, to us, ;4 by the following lemma:

Lemma 6.3. The map L, is injective, and Syuqqy/Lq(Sx) is a free O-module.
PROOF.  This is [Tay06, Lemma3.1] (cf. Lemma [5.5). O

The above construction gives rise to a homomorphism Ty — Ty. If A : Ty — O is an O-algebra homomor-
phism, we write I for the kernel of A\ and put

Sz[)\] = {33 € Sy, | Ihax = 0}
Let Ay : Ty, — Ty ﬂ) O be the composition. The O-module Sxg[As] is free of rank one by the strong
multiplicity one theorem and the reducedness of Tx. Let Sx[\s]* be the O-module defined by
Ss[\s]t = {z € Sg[\s] ®0 E | (z,9)n,, € O for all y € Sg[As]},

where E is the fraction field of O. Then Sx[Ag]t D Sx[Ag]. We let C(Nx) = Sg[\s]t/Ss[Asg] be the
congruence module of Ay, and let 9y = As(Annty, I, ) be the congruence ideal of Ax. It is known that

(6.3) 1C(Ns) < £(O/ns)
and the equality holds if Sy; is free over Ty (so Ty is Gorenstein).
Lemma 6.4. If q || N/Ny and q ¢ X, then we have
HC (Nsu(qy) = #C(Nx) - H(O/(Mo(ug 4)* — 1)O).

ProOF.  Note that A\g(up,) # 1 as Ag is unramified outside Ny. Let L} : Sx — Ssuiey be the adjoint map
of L, with respect to (, )ny, and (, )

Nsuig - It follows from Lemma that
(6.4) Lq(Ss[As]) = SsugarAsuia] s Li(SsugayAsuga] ™) = SsAs]
Let U = Uny, and Uy = Uny,,,,,- A direct computation shows that

Ly=usq-U (g (1)) Us] — [Uthy).

Therefore, we find that
" 0 0 10
LyoLy=us, U (g 1) U us g —usy- U (g q) U -1+q) —UU]- 1+ Qus,q + U (O q) U]

=(1+ug ) Ty —2usq - (1+9q)
:ug,lq(u%g - 1)(“%@ - q)
Since uz; , — ¢ = 1 — ¢ # 0 (mod myx), by we find that
1C(Nsu(qp) = #(SsAs]t/L; o Ly(Ss[As]))
=tC(Nx)) - 10/ (No(ug 4)* = 1)O. O



SPECIAL VALUES OF ANTICYCLOTOMIC L-FUNCTIONS 31

6.2. Deformation rings and Selmer groups. We introduce a certain deformation ring. Recall that p is a
deformation of pg if p(mod my4) ~ py. Consider the functor Dy from local Noetherian complete O-algebras
with the residual field k to sets which sends A with the maximal ideal m4 to the isomorphism classes of
deformations p : Gq — GL2(A) of py satisfying:

(D1) detp = ep;
(D2) p is minimally ramified outside N X in the sense of [Dia97al, Definition 3.1];
(D3) There exists a character 0, : G, — A* such that

5 le,  x 2-k)/2
pla, ~ ( "o " 5,,) and 6,1, = =7~/
D4) For each g || Nx /Ny, there exists a unramified character §, : G, — A* such that
0 q q

6 te,
pla, ~ ‘10 p 5 and d4(Frobg) =1 (mod my).
q

(D5) If ¢ | Ny, then p|g, satisfies the sp-condition in [Ter(3, Definition 2.2]. Namely,

| +ep,  x cem
qu O :tl b A'

Under (CRY), it is a standard fact that Dy is represented by the universal deformation
PRy : GQ — GLQ(RE)

The universal property of Ry gives rise to two O-algebra homomorphisms Ry, — Ry and Ry, — Ty under
which pr, pushes forward to pr, and px respectively.

Lemma 6.5. The map Ry — Ty is a surjection.

ProoF. By Lemma Ts is generated by T, for ¢ t+ Ny and U, for ¢ || Nx. If ¢ t Ny, we have
Tr pgy, (Froby) — Ty. If ¢| Ny, then U, = £1 by the sp-condition. If ¢ | Nx;/Ny , then

—1

PRy |G, <6R2’q€p ¥ ) for a unramified character dgy, 4 : G, = RS
Rs.q
such that dg,, q(Froby) =1 (mod mgy,), and we have dgy, 4(Froby) — Ug. O

Let px be the kernel of the O-algebra morphism:
Rs, — Ry — Ty 2% 0,

Let W, denote the discrete Galois module ad’ pxr, @ E/O. Define the subspace W; by

Wi = {(g _ba> a,beE/O} CW,= {(i _ba) |a,b,ceE/(9}.

We define the subgroup L, C H'(Qq, W,) as follows. We denote L, = H'(Qq, W,F) if ¢ || Ns/Ny, Ly =
ker {H'(Qq,W,) = H'((F),W,)}, where F is a lifting of Frob, in G, if ¢ | Ny, and L, = H}(Qq,WP) be
the local Bloch-Kato group otherwise. Define the Selmer group by

H! W,
Sels,(W,) :=ker {Hl(Q, W,) — H H(Qq, W) } .
q Lq
It is not difficult to show that we have an O-module isomorphism:
(6.5) Homo (ps/p%, E/O) ~ Sels(W,).

Let ()2 be the set of prime factors g | N/Ny with m, = 2.
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Lemma 6.6. We have a natural inclusion map
H{(Qq. W,) = H (Qq, W),
In particular, if ¥ D Q2, then we have
8(Sels(W,)/8(Sel, (W) | [ #(H" (1o, W,1)%).
qllNs /Ny

ProoF. Let q || N/Ny. Let W, := W,/W} be a discrete G,-module of O-corank one. Consider the
following diagram:

0

H}(quWp) Hl(anWp)4ﬂ>Hl(Ianp)Gq —0

T

0*>H1(Gq/fq,Wp’) HHl(Gq,Wp’) HHl(Iq,W;)Gq —0.

Since ¢ # 1(mod p), we have that H°(Gy, W, ) = H'(G,/I,,W,) = 0. It follows that kerm = L, =
HY(Gy, W) and H'(G,/1;, W) ~ H}(Gy,W,). By the snake lemma, H}(G,,W,) is a submodule of L,.
The second assertion follows from the exact sequence

Lq

0 — Selq,(W,) — Sels(W,) — W

qllNs/Ny
and the isomorphism
(I, W;)Gq ~ H'(Gy, W;)/Hl(Gq/qu Wp+) = Lq/H]l”(Gq’ Wp). O
Corollary 6.7. If ¥ is the set of prime factors of N/Ny, then we have
Hos/02) | 100, /00,) - [] #0/(M(uo,0)* = 1)O).

qlIN/Ng
Proor. By (6.5) and Lemma
tker(ps/0% = 9./ 0h,) = 1(Sels(W,)/Selq,(W,))
divides

IT s U whHoy =[] #H(Ge W, (1)

allN/Ng qllN/Ng

= [ #0/((a—1)(Np(upq)* — 1)O)). O

qllN/No

6.3. Proof of Proposition Let ¥ be the set of prime factors of N/Ny. We begin with the following
proposition on the freeness of the Hecke module Sy.

Proposition 6.8. With the hypothesis (CRT), Sx, is a free Tx-module of rank one.

ProOF. First consider the case ¥ = (). We have

0
Hom(my /mj, O/mo) = ker {Hl(Q,adO po) = [ Hl(Qqﬁ’ade)} :
q q

where £, = H}(Qq,ad’ po) if ¢ + Ny and L, = ker {H'(Qq,ad” po) — H'((F),ad’ py)} for a lifting F of
Frob, in G, if ¢ | Ny . This is the minimal case in the sense that #(L,) = #(H°(G,,ad’ pg)) for all ¢ ([Ter03,
§3.4]). Using the Taylor-Wiles system constructed in [Tay06, §2], we deduce that Sy is a free Tg-module of
rank one and

80/ 05) = 1C(Ng) = #(O/np)-
Furthermore, the argument in [Tay06, §3] shows that

ﬁ(sz/péz) = ﬁC(NQz) = ﬁ(O/an).
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Combined with Lemma [6.4] and Corollary [6.7], the above equation yields that

Hps/p%) [ HO(N) | 4(0/ng).

The proposition follows from [Dia97b, Theorem 2.4]. O

Now we are ready to prove Proposition [6.1] The Jacquet-Langlands correspondence induces a surjective
O-algebra homomorphism JL* : T(I'g(N))m — Tx such that A\ = JL* o Ay, where m is the maximal ideal
containing ker A,. The assumption N~ | N, 1mphes that JL* is an isomorphism. On the other hand, by

definition Sx[A\/] = O - f,r/ and (fr, fa )R = (f7r ,fw YNg- Therefore, by Prop051t10nwe conclude that

HO/1x(N)) = #(Se[Aw] /Se[An]) = 4O/ {frr, fr1) RO).

This completes the proof.
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