THE VANISHING OF p-INVARIANT OF p-adic HECKE L-FUNCTIONS FOR CM
FIELDS

ASHAY BURUNGALE AND MING-LUN HSIEH

ABSTRACT. Let p > 2 be an ordinary prime for a CM field K. Katz and Hida-Tilouine constructed the
p-adic Hecke L-function attached to a p-ordinary CM type and a branch character. In this note, we prove
that the p-invariant of this p-adic Hecke L-function always vanishes when p is unramified in K.

1. INTRODUCTION

The purpose of this note is to prove the vanishing of the p-invariant of p-adic Hecke L-functions for CM
fields constructed by Katz and Hida-Tilouine. We let F be a totally real field of degree d over Q and K be
a totally imaginary quadratic extension of F. Let Dz (resp. Dz) be the discriminant (resp. different) of
F/Q. Let p > 2 be an odd rational prime. Fix two embeddings to,: Q — C and ¢,: Q — C,, once and for
all. Let Z be the ring of algebraic integers and let Z, be the p-adic completion of ¢,(Z) in C,. Denote by
¢ the complex conjugation on C which induces the unique non-trivial element of Gal(/F). We assume the
following hypothesis throughout this article:

(ord) Every prime of F above p splits in K.

Fix a p-ordinary CM type X, namely X' is a CM type of K such that p-adic places induced by elements in X
via ¢, are disjoint from those induced by elements in X'c. The existence of such X' is assured by our assumption
(ord). Let Dy /7 be the relative different of I/ F. Let € be a prime-to-p integral ideal of Ox and let ¥ € K
such that

(d1) ¢(¥) = =0 and Imo(¥) > 0 for all o € X,

(d2) ¢(Ok) := D' (20Dx, 5) is prime to p&&° Dy r.
Let KX and K be the cyclotomic Z,-extension and anticyclotomic Zg—extension of K. Let Koo = KL K, be
a Zg“-extension of IC. If one assumes Leopoldt’s conjecture for I, then I, is the maximal Zg“-extension of
K. Let Tt := Gal(KZ /K) and let T' = Gal(K./K) ~ Tt xI'". Let Z(€) be the ray class group of X modulo
¢p>. In [Kat78] and [HT93], a Z,-valued p-adic measure L¢ 5; on Z(€) is constructed such that
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where (i) A is a Hecke character modulo €p™ of infinity type kX + (1 — ¢) with either £ > 1 and k € Z>o[X]
or k <1and kX + k € Z-o[X], and \ is the p-adic avatar of A\ regarded as a p-adic Galois character via
geometrically normalized reciprocity law, (ii) Eul,(A) and Fulg+(X) are certain modified Euler factors (For
the definitions, see [Hsil2, (4.16)]).

We fix a Hecke character X of infinity type kX, £ > 1. Let £ » be the p-adic measure on I' obtained by
the pull-back of £¢ 5 along A. In other words, for every locally constant function ¢ on I', we have
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2 A. BURUNGALE AND M.-L. HSIEH

We call £ 5 the p-adic L-function of the branch character A with respect to the p-adic CM-type X. It is
conjectured by Gillard [Gil91, Conj. (i), p.21] that the p-invariant py 5 of £ » always vanishes. In this note,
we prove this conjecture when p{ Dx.

Theorem A. Suppose that pt Dr. Then uy x = 0.

When F = Q and A arises from elliptic curves over Q with CM by K, this theorem is an immediate
consequence of the vanishing of the p-invariant of Coates-Wiles p-adic L-functions due to Gillard [Gil87] and
Schneps [Sch87] independently. When the conductor of the residual character h) (mod p) is a product of primes
split in K/F, the above theorem is due to Hida in [Hid11]. Note that since the branch character A is of infinite
order, this p-adic L-function £, 5 indeed is a suitable twist of the p-adic L-functions considered by Hida.

To explain the idea of Hida, we need to introduce some notation. Let XT be the set consisting of finite
order characters v : I't' — . For every v € X', we shall regard v as a Hecke character of £* by the
geometrically normalized reciprocity law recg : Ag — Gal(Q/K)*® — T'. Let P, s denote the p-invariant

of the anticyclotomic projection L;% 5> of Katz p-adic L-function £, 5 attached to the brach character \v.
When A has split conductor, Hida in [Hid10] proves a precise formula of [y, s in terms of the p-adic valuation
of Fourier coefficients of certain Eisenstein series. Based on this exact formula, Hida concludes the vanishing
of px,x by showing directly that liminf, cx+ p13,, 5 = 0.

Our proof of Theorem A follows the approach of Hida. It is shown in [Hsil2, Thm. 5.5] that oy, s in general

can be written to be the p-adic valuation of Fourier coefficients of certain special toric Eisenstein series ]EQV w

We are not able to calculate the Fourier coefficients of these toric Eisenstein series in full generality, so we

do not obtain a precise formula of i), 1. in full generality. However, we can estimate an upper bound of the

h
Av,u?

this upper bound is as small as possible when v € X+ has sufficiently deep conductor.

In virtue of [HT93, Thm. 8.2], Theorem A provides an alternative proof of the one-sided divisibility between
anticyclotomic p-adic L-functions and the congruence ideals of CM forms, which was proved in [Hid09, Cor. 3.8]
using the trick of base change. This divisibility result eventually leads to the solution of the anticyclotomic
main conjure proved in [Hid09, Theorem, p.914| combined with results of Hida and Tilouine [HT94| and Hida
[Hid06]. In addition, we remark that the p-invariant py 5 considered in this note is referred to as the analytic
p-invariant in Iwasawa theory. Iwasawa main conjecture for CM fields implies that uy s equals the algebraic
p-invariant attached to A, i.e. the p-invariant of characteristic power series of a certain Iwasawa module
(¢f. [HT94, Main conjecture, p.90]). In particular, we can consider an CM elliptic curve E over the totally
real field F with complex multiplication by the ring of integers of an imaginary quadratic field M. Assuming
the validity of the main conjecture for the CM field K = FM, our result would imply the algebraic p-invariant
for E over K4 vanishes as well. The arithmetic aspect of the vanishing of algebraic p-invariants of elliptic
curves in a more general setting is discussed in [Suj10].

p-adic valuation of Fourier coefficients of E and obtain an upper bound of u},, .. Following Hida, we show

Acknowledgments. The authors would like to thank Prof. Hida for pointing out the application of the vanishing
of p-invariants to the anticyclotomic main conjecture. The authors also thank the referee for the careful reading
and suggestion on the improvement of this manuscript.

2. EISENSTEIN SERIES AND ANTICYCLOTOMIC j-INVARIANTS

In this section, we recall without proofs the construction of certain special Eisenstein series, which are used
to compute the anticyclotomic p-invariant in [Hsil2].

2.1. Eisenstein series on GLy(A £). Let x be a Hecke character of infinity type kX', k > 1. Suppose that ¢
is the prime-to-p conductor of x. We write € = €T€~ such that €* (resp. €7) is a product of prime factors
split (resp. non-split) over F. We further decompose € = FF. such that (§,J.) =1 and F C F¢. Let Dy ,r
be the discriminant of /C/F and let
D = p&&Dyr.
We will identify the CM-type X C Hom (K, C) with the set Hom(F, R) of archimedean places of F by the
restriction map. Let K% =[], .5 SO(2,R) be a maximal compact subgroup of GL2(F ®q R). We put

1
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For s € C, we let I(s, ¥, ) denote the space consisting of smooth and K2 -finite functions ¢ : GLy(Ax) — C
such that

g ao=ct@|3f, oo,

Conventionally, functions in I(s, x4 ) are called sections. Let B be the upper triangular subgroup of GLg. The
adelic Eisenstein series associated to a section ¢ € I(s, x) is defined by

Ealg,¢) = > ?(19)-
~EB(F)\ GLa(F)

It is known that the series Ea (g, ¢) is absolutely convergent for Res > 0.
2.2. Fourier coefficients of Eisenstein series. Let ¢ = [[¢, : Ax/F — C* be the standard additive

(1) _01} Let v be a place of F
and let I,(s, x+) be the local constitute of I(s, x+) at v. For ¢, € I,(s,x4+) and S € F,, we recall that the

B-th local Whittaker integral Wz (¢, g,) is defined by

character such that ¢ (z) = exp(27iT£,q(z)) for v € F ®q R. Put w = [

Ly

Watoea) = [ ontw g ] gopit—pa s,

and the intertwining operator My, is defined by

de)v(gv) :‘/}_ ¢U(W |:é Jélv:| gv)dfw

Here dz, is Lebesgue measure if 7, = R and is the Haar measure on F, normalized so that vol(Oz,, dxz,) =1

if 7, is non-archimedean. By definition, My, ¢, (g, ) is the 0-th local Whittaker integral. It is well known that

local Whittaker integrals converge absolutely for Res > 0, and have meromorphic continuation to all s € C.
If $ = ®,¢, is a decomposable section, then Ea (g, ¢) has the following Fourier expansion:

Ea(g,0) = ¢(9) + Mwd(g) + > Ws(Ea,g), where

(2.1) i

My ¢(9)

:\/|DlT|R . Hqubv(gv); Wﬁ(EAvg) = \/|DlT|R . HWﬂ((bvagv)'

v
2.3. The choice of the local sections. We briefly recall the choice of local sections in [Hsil2, §4.3]. We
begin with some notation. Let v be a place of F. Let F = F, (resp. E = K ®x F,). Denote by z — Z the
complex conjugation. Let |-| be the standard absolute values on F' and let |-|, be the absolute value on £
given by |z|p := |2Z|. Let dp = dr, be a fixed generator of the different Dr of F/Q. Write x (resp. x4) for
Xv (resp. x4.). If v € h, denote by w, a uniformizer of F,. For a set Y, denote by Iy the characteristic
function of Y.

Case I: v { € Dy r. We first suppose that v = o € ¥ is archimedean and F' = R. For g = [i Z] €

GLy(R), we put J(g,4) := ci + d. Define the sections (;SZ,S’U of weight k in I,(s, x+) by

—S8

Onsr(9) = (9,1) 7" ldet(g)]” - | T(9.3) (g, )

Suppose that v is non-archimedean. Denote by S(F) and (resp. S(F' @ F')) the space of Bruhat-Schwartz
functions on F' (resp. F & F'). Recall that the Fourier transform $ for ¢ € S(F) is defined by

20) = [ e@yitye)ds.
For a character p: F* — C*, we define a function ¢, € S(F) by
() = Loy (2)a(a).
If v | pEE° is split in K, write v = ww with w|FX,, and set
Pw = Py, and g = Pyt
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To a Bruhat-Schwartz function ® € S(F' & F'), we can associate a Godement section fo s € I,,(s, x4 ) defined
by

(22 fiola) i= ldetgl” [ @((0.000)x: @) ol 0o,

where d”z is the Haar measure on F'* such that vol(Oj,d*z) = 1. Define Godement sections by

Top (x)HdgloF (y) v,

2.3 Oy,s,0 = fao s, where @2 x,y) = "
23) xow = Jage, where &(2,) {ww(x)ww(y) v | FF

Let u € OF. Let ¢l and cpkf] € S(F) be the Bruhat-Schwartz functions defined by

() = Livm,00 ()5 (2) and 0l (2) = Lu(14w,05) (2) Xw (@)-

Define &) € S(F & F) by

1
vol(1 + @w,OF,d*x

(2.4) e (z,y) = )wlm(x)ﬂff] (y) = (jw] ™ = Depiol2) @ (9)-

Case I1: v | Dx; €. In this case, £ is a field. We define an embedding p : E < M(F) by

2
a+ b plz+ b)) = {‘b’ b } .
Then GLy(F) = B(F)p(E*). We fix a Op-basis {1,0,} of O such that 8, is a uniformizer if v is ramified

and 0, = -0, if v{2. Let t, = 6, + 0, and put
. d]:“ 7271751,
Let ¢y, s, be the smooth section in I, (s, x+) defined by

S

a b a xYz) (b€ B(F), ze€ EX).

(2) bent (g ] P = L) 3@ |5

Here L(s, x.) is the local Euler factor of y,.

2.4. Fourier expansion of normalized Eisenstein series. Let U, be the torsion subgroup of O;-p. For

U = (Uy)ylp € Up, let <I>1[)u] = ®U‘p<I>Lu“] be the Bruhat-Schwartz function defined in (2.4). Define the section

h(@hT) € I(s,x4) by
(@) = X o Q) Srsio @) faon -

oeX vEh, v|p
otp

We put
Xt ={r=(70)oex €C¥ |Im7, >0foralloc € I}.
The holomorphic Eisenstein series Ef , : X*x GLa(Af ) — C is defined by
) B u(r07) = e B (e 00) (@) oo IS
(9o = (9o )0 € GLa(F @Q R), (9oi)oex = (To)oex):
Letc = (c,) € A;’f such that ¢, = 1 at v | D and let ¢ = ¢(Or®zZ)NF. Define a function E! lc: Xt = C
by B ule(r) = Bl g

X an
the sense of [Kat78, p.211].

COI} ). Then Ezu\c is a ¢-Hlbert modular form of weight kX' defined over C in
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Proposition 2.1. The g-expansion of Eﬁu|c at the cusp (O, ¢ 1) is given by
E;,u'(o,cfl)(q) = Z aﬁ(EZ,ua C) : qB-
BEF4
The B-th Fourier coefficient ag(E;u, ¢) is given by
aﬁ(EQ,ua C) :B(k_l)z H Xw(B)HO; (5) H Xw(ﬂ)ﬂuv(lerqu)(B)
w|F weX),
v(c, B) 4 B
X H Z X (@) | - H L(0, xv)Ap(X0),
v{D i=0 U|Q‘7D)C/.7-'
where
AB(X1;) ::/ X;lH%(xv + 9v)¢(—d}3ﬁl‘u)d$u|5=o
(2.7) T
— -1 -1
_nh—{%o /w,u"of, Xy (zy + 0)Y( d}-uﬁsr:v)da:v.

PROOF. This follows from (2.1) and the calculations of local Whittaker integerals of special local sections in
[Hsill, §4.3] (¢f. [Hsil2, Prop.4.1 and Prop. 4.4]). O

2.5. The p-invariants of anticyclotomic p-adic L-functions. Let Z(€)~ be the anticyclotomic quotient
of Z(€). Let Ox = Ox ®zZ and U(€p™) := {u € @,é | u =1 (mod Qp”)}. The reciprocity law recx : Ag ; —

Z(€)~ induces the isomorphism:

recg : l'gllCXA;f\A;é,f/U(Qp") 5 z(e).
n

Let '~ be the maximal Z,-free quotient of Z(€)~. Each function ¢ on I'~ will be regarded as a function on
Z(€) by the natural projection 7_: Z(€) — Z(€)~ — I'". The anticyclotomic projection £ y, of the measure

L¢, 5 is defined by
/ ¢d5;,2 ::/ X¢dLe 5.
r- Z(¢)

Recall that the p-invariant u(¢) of a Z,-valued p-adic measure ¢ on a p-adic group H is defined to be

ulp) = inf | vp(e(U))-

We shall give a formula of the p-invariant p s, of £y in terms of p-adic valuation of Fourier coefficients of
EZu To state the formula precisely, we introduce some notation.
Let Cl_ := K*A% f\A}C,f/@;é and let C1™'® be the subgroup of Cl_ generated by ramified primes. Let

Op = Or ® Zy,. Let I be the open subgroup of I'" generated by the image of O, x [] K via reck.

v|DicyF
The reciprocity law recx at X, induces an injective map recy,: 14+ pO, = O) = @uwesx, OF, =K Z(¢)
with finite cokernel as pf Dz, and it is easy to see that rec 5, induces an isomorphism recy, : 1+ pO, 51
We thus identify I with the subgroup recy, (1 + pO,) of Z(€)~. Let Z’ := n_"(I") be the subgroup of Z(€)
and let CI”_ D CI™® be the image of Z’ in Cl_ and let D} (resp. DY) be a set of representatives of C1’_/CI™®
(resp. C1_/Cl") in (A;?})X Let Dy := D}/'Dj be a set of representatives of CI_/CI™®. Let U, be the torsion
subgroup of (O ®z Z,)* and let U8 := @,é N (K*)1=¢. Let Dy be a set of representatives of U, /U8 in U,.
For a € A,éf, let ¢(a) := ¢(Ox)Ng,r(a), where a = a(Ok ®z Z) N K. The following theorem is proved by the
ideas of Hida in [Hid10].

Theorem 2.2 (Thm. 5.5 [Hsil2]). Suppose that pt Dx. Then we have

o= inf E" :
:UX7Z‘ (u,a)érll)oXDl 'Up(aﬁ( X,u? C(CL)))
BEF+
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PrOOF. For the convenience of the readers, we sketch the proof here. For each b € D, we denote by Lf(’ D

the p-adic measure on 1 + pO, ~ I obtained by the restriction of £  to b.I" := m_(reck(b))I'". To be
precise, we have

/ ¢d£§<72 = / I[bvl‘l . ¢|[b71}dﬁ;72
I =

where I is the characteristic functions of b.I". Let ui’(’ 5 be the p-invariant of the p-adic measures L;’ 5
_ PR
Note that I'™ = |_|b€D,1/ b.I", so it is clear that
- . b
(2.8) My, = b.leng;' Hoy,x-

For (u,a) € DoxDy, we let €, 4 be the p-adic avatar of E?  |cq) ([Hsil2, §2.5.5]). Let ¢ be the Serre-Tate
coordinate of the CM point x with the polarization ideal ¢(Ox) defined in [Hsil2, §5.2]. For a € D, let (a) .
be the unique element in 1 + pO, such that recs, ({a)y,) = 7_(recx(a)) € I'. For each b € DY, we define a
t-expansion £°(t) by

E) = U Y (@b el ,
(u,a)€Do xbD]
where |[a] is the Hecke action induced by a (See [Hsil2, Remark 4.5]). With the help of an an explicit formula
of toric period integral of Eisenstein series ([Hsill, Prop.5.1] and [Hsil2, Prop.4.9]), it is shown in [Hsil2,
Prop. 5.2] that £°(t) essentially gives rise to the t-expansion of the measure L?c, 5, and hence we find that

(2.9) i =it {7 € Quo | p7E(t) # 0 (mod mg )}

where mz s the maximal ideal of Zp. By the linear independence of p-adic modular forms modulo p [Hid10,

Cor. 3.2], the g-expansion principle of p-adic modular forms combined with [Hsil2, Lemma 5.3], we can con-
clude from (2.8) and (2.9) that

T = inf ub = inf ag(E" ¢ . O
p’x,E bleDi' lu‘x,Z (u,a)elDoxDl,vp( 5( XU (CL)))
BEFy

3. PROOF OF THEOREM A

We go back to our setting in the introduction. Let A be a Hecke character of infinity type kX with £ > 1
_1
and let \* := A[-[, 2. We may further assume that

¢ is the prime-to-p conductor of .
To prove Theorem A, we prepare two lemmas. The first lemma is taken from [Hid11].
Lemma 3.1. Let w{p be a place of K and let w,, be a uniformizer of K.,. Let a € Z,. Given e > 0, we have
vpla+ v(wy)) < e for all but finitely many v € X+.

PrROOF. We note that v(w,,) is a primitive p"-th root of unity for some n € Zxg, and for sufficiently large
n, we have
1
'Up(a + I/(ww)) S 'Up(l/(ww) - 1) = W < e.
The first equality holds precisely when v,(a 4+ 1) > 0. Therefore, it is not difficult to deduce the lemma from
the fact that the image of w,, in I'" under recx : A$ — I't generates a subgroup of I't' with finite index. O

Lemma 3.2. Let v | € Dy 7 and let e; > 0 be a positive number. Then there exists 3, € F,* such that for
almost all v € X%, we have

UP(L(07 >\'UVU)AV,BU ()\UZ/U)) <ej.

Here "for almost all” means "for all but finitely many”.
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PrROOF. Let E =K, and F' = F,. Let mg be the maximal ideal of Og. For brevity, we drop the subscript
v and simply write A = A,, v = v,. Let a(X) := inf{n € Z>¢ | A(1 + m’;) = 1} be the conductor of A.
Suppose that a(A) > 1. Then A1+ m) # 1, and the invariant p,(A\) := inf,cpx vp(A(x) — 1) = 0 as
v t p. It follows from [Hsill, Lemma 6.4] that there exists § such that vp(gﬂ(k)) = 0. Moreover, since
As(Av) = Ag()) (mod mz ), we find that v,(Ag(Ar)) = 0 for all v € X*+. To prove the remaining part, we
assume the conductor a(A) = a(Av) < 1. In virtue of Lemma 3.1, it suffices to show that there exists 8 such
that

(3.1) op(As () = v(a+ b v(wy))

for some a € Zp, be Z; independent of v and a uniformizer w,, of F.
Let w be a uniformizer of F. Suppose that v is ramified. Recall that 8 = 8,, is chosen to be a uniformizer
of E. Let 8 € w105, so v(B) = —1. If v{ €, then by [Hsill, Lemma 4.1], we have

Ag(Ww) = [Dr| " AT (8) [
If v | €7, then it follows from [Hsill, Prop.4.4 (1)] that
Ag(Ww) =" (071) [&]? w(071) + A" (=B W(—Bw)e(1, AL || T, 9) (Mg = Alpx)
A0 1) @] - v(071) + A (=Bdit e (1A || ).

Here €(s, )\+|~|71, 1) is the Tate’s local epsilon factor attached to the additive character 1, : FF — C*. In any
case, it is clear that (3.1) holds for 8 € w™'O} when v is ramified.

Suppose that v is inert. Then a(A\v) = 1. Let 8 € Op (so v(B) = 0). By [Hsill, Prop.4.5], if A|ox =1,
then

Ap(W) = — @] (1 + Xy (w)),

and if |, % is non-trivial, then

A(A) =T, (0) + N* (=Bt v(@)e(1, A || 1 ),
where

Z.(0) :/ A2 + 0)da.
OF

Recall that @ is chosen such that Op = Op + Opf. We have z + 6 € O, for x € Op. As v is unramified at
v, we find that

70, (0) :/ A (@ + 0)da
Op
is independent of v. Therefore, in either cases, (3.1) holds for 5 € OF. O
Theorem 3.3. Suppose that pt Dg. Then
prx = 0.

PROOF. Let S~ be the set of prime factors of €~ Dy, . By Lemma 3.2, for e; > 0, we choose (8,) €
HvIG*D;c/f F.X such that

(3.2) > (L0, M) Ag, (o)) S #(S7) - e

’UlQ:*D)C/]:

for almost v € X~. Let c € A% 7 and ¢ be the associated ideal as in Prop. 2.1. We define an idele € A,éf
such that /

o 1, = ;! forall v ¢ Dk,
e 7, = ¢, for all finite v { D,
e 1, = 1 for the remaining places v.
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Let U = [[U, be an open subgroup of A% such that U, = O% at all v { € Dyx,r and Uy, = (F @ R)4.
Moreover, it is not difficult to see from [Hsill, (4.17)] that for v | € Dk 7, U, can be chosen small enough,
depending on A, and 3, so that

gﬁvu()\vyv) = /Tgv (Apvy) for all u € U, and v € XT.

Consider the idele class F*nU in A%. We may choose a uniformizer w,, € K,, with a finite place vo t ® such
that w,, lies in the class F*nU. We can write

@y, € AU for some § € F*.

Since 7, = 1 when v is archimedean or v|p, we find that 8 € F; N (’);— ®) by the choice of U. Let u € U, such
that 8 = u (mod p). By Prop. 2.1 we have

v(Bcy)

vp(ag(BR, 0n ) = Y wp(L(0, M) Ag(Aumn)) + > vp( Y Nu(wh)
v|€~ D, 7 vtD 1=0

= > (L0, M) Ap, (M) + 0p (A () + 1),

’U‘@fD)C/}-
It follows that for almost all v € X1, we have
Up(ag(ER, ., 0)) < #(S7) - e1 + up(N (@) - (@, ) + 1)
Hence, from Theorem 2.2 and Lemma 3.1 we deduce that
0 < pyx < liminfpy, o < liminfvp(aﬁ(EKV’u, ) < H#(S7) - eq.
This inequality holds for all e; > 0, so py » = 0. ]
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