THE VANISHING OF μ -INVARIANT OF p-adic HECKE L-FUNCTIONS FOR CM FIELDS

ASHAY BURUNGALE AND MING-LUN HSIEH

ABSTRACT. Let p > 2 be an ordinary prime for a CM field \mathcal{K} . Katz and Hida-Tilouine constructed the p-adic Hecke L-function attached to a p-ordinary CM type and a branch character. In this note, we prove that the μ -invariant of this p-adic Hecke L-function always vanishes when p is unramified in \mathcal{K} .

1. INTRODUCTION

The purpose of this note is to prove the vanishing of the μ -invariant of p-adic Hecke L-functions for CM fields constructed by Katz and Hida-Tilouine. We let \mathcal{F} be a totally real field of degree d over \mathbf{Q} and \mathcal{K} be a totally imaginary quadratic extension of \mathcal{F} . Let $D_{\mathcal{F}}$ (resp. $\mathcal{D}_{\mathcal{F}}$) be the discriminant (resp. different) of \mathcal{F}/\mathbf{Q} . Let p > 2 be an odd rational prime. Fix two embeddings $\iota_{\infty} : \bar{\mathbf{Q}} \to \mathbf{C}$ and $\iota_p : \bar{\mathbf{Q}} \to \mathbf{C}_p$ once and for all. Let $\bar{\mathbf{Z}}$ be the ring of algebraic integers and let $\bar{\mathbf{Z}}_p$ be the p-adic completion of $\iota_p(\bar{\mathbf{Z}})$ in \mathbf{C}_p . Denote by c the complex conjugation on \mathbf{C} which induces the unique non-trivial element of $\operatorname{Gal}(\mathcal{K}/\mathcal{F})$. We assume the following hypothesis throughout this article:

(ord) Every prime of \mathcal{F} above p splits in \mathcal{K} .

Fix a *p*-ordinary CM type Σ , namely Σ is a CM type of \mathcal{K} such that *p*-adic places induced by elements in Σ via ι_p are disjoint from those induced by elements in Σc . The existence of such Σ is assured by our assumption (ord). Let $\mathcal{D}_{\mathcal{K}/\mathcal{F}}$ be the relative different of \mathcal{K}/\mathcal{F} . Let \mathfrak{C} be a prime-to-*p* integral ideal of $\mathcal{O}_{\mathcal{K}}$ and let $\vartheta \in \mathcal{K}$ such that

(d1) $c(\vartheta) = -\vartheta$ and $\operatorname{Im} \sigma(\vartheta) > 0$ for all $\sigma \in \Sigma$,

(d2) $\mathfrak{c}(\mathcal{O}_{\mathcal{K}}) := \mathcal{D}_{\mathcal{F}}^{-1}(2\vartheta \mathcal{D}_{\mathcal{K}/\mathcal{F}}^{-1})$ is prime to $p\mathfrak{C}\mathfrak{C}^c D_{\mathcal{K}/\mathcal{F}}$.

Let \mathcal{K}^+_{∞} and \mathcal{K}^-_{∞} be the cyclotomic \mathbf{Z}_p -extension and anticyclotomic \mathbf{Z}_p^d -extension of \mathcal{K} . Let $\mathcal{K}_{\infty} = \mathcal{K}^+_{\infty} \mathcal{K}^-_{\infty}$ be a \mathbf{Z}_p^{d+1} -extension of \mathcal{K} . If one assumes Leopoldt's conjecture for \mathcal{K} , then \mathcal{K}_{∞} is the maximal \mathbf{Z}_p^{d+1} -extension of \mathcal{K} . Let $\Gamma^{\pm} := \operatorname{Gal}(\mathcal{K}^{\pm}_{\infty}/\mathcal{K})$ and let $\Gamma = \operatorname{Gal}(\mathcal{K}_{\infty}/\mathcal{K}) \simeq \Gamma^+ \times \Gamma^-$. Let $Z(\mathfrak{C})$ be the ray class group of \mathcal{K} modulo $\mathfrak{C}p^{\infty}$. In [Kat78] and [HT93], a $\overline{\mathbf{Z}}_p$ -valued p-adic measure $\mathcal{L}_{\mathfrak{C},\Sigma}$ on $Z(\mathfrak{C})$ is constructed such that

$$\begin{aligned} \frac{1}{\Omega_p^{k\Sigma+2\kappa}} \cdot \int_{Z(\mathfrak{C})} \widehat{\lambda} d\mathcal{L}_{\mathfrak{C},\Sigma} = & L^{(p\mathfrak{C})}(0,\lambda) \cdot Eul_p(\lambda) Eul_{\mathfrak{C}^+}(\lambda) \\ & \times \frac{\pi^{\kappa} \Gamma_{\Sigma}(k\Sigma+\kappa)}{\sqrt{|D_{\mathcal{F}}|_{\mathbf{R}}} (\operatorname{Im} \vartheta)^{\kappa} \cdot \Omega_{\infty}^{k\Sigma+2\kappa}} \cdot [\mathcal{O}_{\mathcal{K}}^{\times} : \mathcal{O}_{\mathcal{F}}^{\times}], \end{aligned}$$

where (i) λ is a Hecke character modulo $\mathfrak{C}p^{\infty}$ of infinity type $k\Sigma + \kappa(1-c)$ with either $k \geq 1$ and $\kappa \in \mathbb{Z}_{\geq 0}[\Sigma]$ or $k \leq 1$ and $k\Sigma + \kappa \in \mathbb{Z}_{>0}[\Sigma]$, and $\hat{\lambda}$ is the *p*-adic avatar of λ regarded as a *p*-adic Galois character via geometrically normalized reciprocity law, (ii) $Eul_p(\lambda)$ and $Eul_{\mathfrak{C}^+}(\lambda)$ are certain modified Euler factors (For the definitions, see [Hsi12, (4.16)]).

We fix a Hecke character λ of infinity type $k\Sigma$, $k \geq 1$. Let $\mathcal{L}_{\lambda,\Sigma}$ be the *p*-adic measure on Γ obtained by the pull-back of $\mathcal{L}_{\mathfrak{C},\Sigma}$ along λ . In other words, for every locally constant function φ on Γ , we have

$$\int_{\Gamma} \varphi d\mathcal{L}_{\lambda, \varSigma} = \int_{Z(\mathfrak{C})} \varphi \widehat{\lambda} d\mathcal{L}_{\mathfrak{C}, \varSigma}.$$

Date: December 14, 2011.

²⁰¹⁰ Mathematics Subject Classification. 11F67 11R23.

The second author M.-L. Hsieh is partially supported by National Science Council grant 100-2115-M-002-012-.

We call $\mathcal{L}_{\lambda,\Sigma}$ the *p*-adic *L*-function of the branch character λ with respect to the *p*-adic CM-type Σ . It is conjectured by Gillard [Gil91, Conj. (i), p.21] that the μ -invariant $\mu_{\lambda,\Sigma}$ of $\mathcal{L}_{\lambda,\Sigma}$ always vanishes. In this note, we prove this conjecture when $p \nmid D_{\mathcal{F}}$.

Theorem A. Suppose that $p \nmid D_{\mathcal{F}}$. Then $\mu_{\lambda,\Sigma} = 0$.

When $\mathcal{F} = \mathbf{Q}$ and λ arises from elliptic curves over \mathbf{Q} with CM by \mathcal{K} , this theorem is an immediate consequence of the vanishing of the μ -invariant of Coates-Wiles *p*-adic *L*-functions due to Gillard [Gil87] and Schneps [Sch87] independently. When the conductor of the residual character $\hat{\lambda} \pmod{p}$ is a product of primes split in \mathcal{K}/\mathcal{F} , the above theorem is due to Hida in [Hid11]. Note that since the branch character λ is of infinite order, this *p*-adic *L*-function $\mathcal{L}_{\lambda,\Sigma}$ indeed is a suitable twist of the *p*-adic *L*-functions considered by Hida.

To explain the idea of Hida, we need to introduce some notation. Let \mathfrak{X}^+ be the set consisting of finite order characters $\nu : \Gamma^+ \to \mu_{p^{\infty}}$. For every $\nu \in \mathfrak{X}^+$, we shall regard ν as a Hecke character of \mathcal{K}^{\times} by the geometrically normalized reciprocity law $\operatorname{rec}_{\mathcal{K}} : \mathbf{A}_{\mathcal{K}}^{\times} \to \operatorname{Gal}(\bar{\mathbf{Q}}/\mathcal{K})^{ab} \to \Gamma$. Let $\mu_{\lambda\nu,\Sigma}^-$ denote the μ -invariant of the anticyclotomic projection $\mathcal{L}_{\lambda\nu,\Sigma}^-$ of Katz *p*-adic *L*-function $\mathcal{L}_{\lambda\nu,\Sigma}$ attached to the brach character $\lambda\nu$. When λ has split conductor, Hida in [Hid10] proves a precise formula of $\mu_{\lambda\nu,\Sigma}^-$ in terms of the *p*-adic valuation of Fourier coefficients of certain Eisenstein series. Based on this exact formula, Hida concludes the vanishing of $\mu_{\lambda,\Sigma}$ by showing directly that $\liminf_{\nu \in \mathfrak{X}^+} \mu_{\lambda\nu,\Sigma}^- = 0$.

Our proof of Theorem A follows the approach of Hida. It is shown in [Hsi12, Thm. 5.5] that $\mu_{\lambda\nu,\Sigma}^-$ in general can be written to be the *p*-adic valuation of Fourier coefficients of certain special *toric* Eisenstein series $\mathbb{E}^h_{\lambda\nu,u}$. We are not able to calculate the Fourier coefficients of these toric Eisenstein series in full generality, so we do not obtain a precise formula of $\mu_{\lambda\nu,\Sigma}^-$ in full generality. However, we can estimate an upper bound of the *p*-adic valuation of Fourier coefficients of $\mathbb{E}^h_{\lambda\nu,u}$, and obtain an upper bound of $\mu_{\lambda\nu,\Sigma}^-$. Following Hida, we show this upper bound is as small as possible when $\nu \in \mathfrak{X}^+$ has sufficiently deep conductor.

In virtue of [HT93, Thm. 8.2], Theorem A provides an alternative proof of the one-sided divisibility between anticyclotomic *p*-adic *L*-functions and the congruence ideals of CM forms, which was proved in [Hid09, Cor. 3.8] using the trick of base change. This divisibility result eventually leads to the solution of the anticyclotomic main conjure proved in [Hid09, Theorem, p.914] combined with results of Hida and Tilouine [HT94] and Hida [Hid06]. In addition, we remark that the μ -invariant $\mu_{\lambda,\Sigma}$ considered in this note is referred to as the analytic μ -invariant in Iwasawa theory. Iwasawa main conjecture for CM fields implies that $\mu_{\lambda,\Sigma}$ equals the algebraic μ -invariant attached to λ , i.e. the μ -invariant of characteristic power series of a certain Iwasawa module (*cf.* [HT94, Main conjecture, p.90]). In particular, we can consider an CM elliptic curve *E* over the totally real field \mathcal{F} with complex multiplication by the ring of integers of an imaginary quadratic field \mathcal{M} . Assuming the validity of the main conjecture for the CM field $\mathcal{K} = \mathcal{FM}$, our result would imply the algebraic μ -invariant for *E* over \mathcal{K}_{∞} vanishes as well. The arithmetic aspect of the vanishing of algebraic μ -invariants of elliptic curves in a more general setting is discussed in [Suj10].

Acknowledgments. The authors would like to thank Prof. Hida for pointing out the application of the vanishing of μ -invariants to the anticyclotomic main conjecture. The authors also thank the referee for the careful reading and suggestion on the improvement of this manuscript.

2. Eisenstein series and anticyclotomic μ -invariants

In this section, we recall without proofs the construction of certain special Eisenstein series, which are used to compute the anticyclotomic μ -invariant in [Hsi12].

2.1. Eisenstein series on $\operatorname{GL}_2(\mathbf{A}_{\mathcal{F}})$. Let χ be a Hecke character of infinity type $k\Sigma$, $k \geq 1$. Suppose that \mathfrak{C} is the prime-to-p conductor of χ . We write $\mathfrak{C} = \mathfrak{C}^+ \mathfrak{C}^-$ such that \mathfrak{C}^+ (resp. \mathfrak{C}^-) is a product of prime factors split (resp. non-split) over \mathcal{F} . We further decompose $\mathfrak{C}^+ = \mathfrak{F}\mathfrak{F}_c$ such that $(\mathfrak{F}, \mathfrak{F}_c) = 1$ and $\mathfrak{F} \subset \mathfrak{F}_c^c$. Let $D_{\mathcal{K}/\mathcal{F}}$ be the discriminant of \mathcal{K}/\mathcal{F} and let

$$\mathfrak{D} = p\mathfrak{C}\mathfrak{C}^c D_{\mathcal{K}/\mathcal{F}}.$$

We will identify the CM-type $\Sigma \subset \operatorname{Hom}(\mathcal{K}, \mathbf{C})$ with the set $\operatorname{Hom}(\mathcal{F}, \mathbf{R})$ of archimedean places of \mathcal{F} by the restriction map. Let $K^0_{\infty} := \prod_{\sigma \in \Sigma} \operatorname{SO}(2, \mathbf{R})$ be a maximal compact subgroup of $\operatorname{GL}_2(\mathcal{F} \otimes_{\mathbf{Q}} \mathbf{R})$. We put

$$\chi^* = \chi |\cdot|_{\mathbf{A}_{\mathcal{K}}}^{-\frac{1}{2}} \text{ and } \chi_+ = \chi|_{\mathbf{A}_{\mathcal{K}}}^{\times}.$$

For $s \in \mathbf{C}$, we let $I(s, \chi_+)$ denote the space consisting of smooth and K^0_{∞} -finite functions $\phi : \mathrm{GL}_2(\mathbf{A}_{\mathcal{F}}) \to \mathbf{C}$ such that

$$\phi(\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}g) = \chi_{+}^{-1}(d) \left|\frac{a}{d}\right|_{\mathbf{A}_{\mathcal{F}}}^{s} \phi(g).$$

Conventionally, functions in $I(s, \chi_+)$ are called *sections*. Let B be the upper triangular subgroup of GL₂. The adelic Eisenstein series associated to a section $\phi \in I(s, \chi_+)$ is defined by

$$E_{\mathbf{A}}(g,\phi) = \sum_{\gamma \in B(\mathcal{F}) \backslash \operatorname{GL}_2(\mathcal{F})} \phi(\gamma g).$$

It is known that the series $E_{\mathbf{A}}(g,\phi)$ is absolutely convergent for $\operatorname{Re} s \gg 0$.

2.2. Fourier coefficients of Eisenstein series. Let $\psi = \prod \psi_v : \mathbf{A}_{\mathcal{F}}/\mathcal{F} \to \mathbf{C}^{\times}$ be the standard additive character such that $\psi_{\infty}(x) = \exp(2\pi i \mathrm{T}_{\mathcal{F}/\mathbf{Q}}(x))$ for $x \in \mathcal{F} \otimes_{\mathbf{Q}} \mathbf{R}$. Put $\mathbf{w} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Let v be a place of \mathcal{F} and let $I_v(s, \chi_+)$ be the local constitute of $I(s, \chi_+)$ at v. For $\phi_v \in I_v(s, \chi_+)$ and $\beta \in \mathcal{F}_v$, we recall that the β -th local Whittaker integral $W_{\beta}(\phi_v, g_v)$ is defined by

$$W_{\beta}(\phi_{v}, g_{v}) = \int_{\mathcal{F}_{v}} \phi_{v}(\mathbf{w} \begin{bmatrix} 1 & x_{v} \\ 0 & 1 \end{bmatrix} g_{v})\psi(-\beta x_{v})dx_{v},$$

and the intertwining operator $M_{\mathbf{w}}$ is defined by

(2.1)

$$M_{\mathbf{w}}\phi_{v}(g_{v}) = \int_{\mathcal{F}_{v}} \phi_{v}(\mathbf{w} \begin{bmatrix} 1 & x_{v} \\ 0 & 1 \end{bmatrix} g_{v}) dx_{v}.$$

Here dx_v is Lebesgue measure if $\mathcal{F}_v = \mathbf{R}$ and is the Haar measure on \mathcal{F}_v normalized so that $\operatorname{vol}(\mathcal{O}_{\mathcal{F}_v}, dx_v) = 1$ if \mathcal{F}_v is non-archimedean. By definition, $M_{\mathbf{w}}\phi_v(g_v)$ is the 0-th local Whittaker integral. It is well known that local Whittaker integrals converge absolutely for Res $\gg 0$, and have meromorphic continuation to all $s \in \mathbf{C}$.

If $\phi = \bigotimes_v \phi_v$ is a decomposable section, then $E_{\mathbf{A}}(g, \phi)$ has the following Fourier expansion:

$$E_{\mathbf{A}}(g,\phi) = \phi(g) + M_{\mathbf{w}}\phi(g) + \sum_{\beta \in \mathcal{F}} W_{\beta}(E_{\mathbf{A}},g), \text{ where}$$
$$M_{\mathbf{w}}\phi(g) = \frac{1}{\sqrt{|D_{\mathcal{F}}|_{\mathbf{R}}}} \cdot \prod_{v} M_{\mathbf{w}}\phi_{v}(g_{v}); W_{\beta}(E_{\mathbf{A}},g) = \frac{1}{\sqrt{|D_{\mathcal{F}}|_{\mathbf{R}}}} \cdot \prod_{v} W_{\beta}(\phi_{v},g_{v}).$$

2.3. The choice of the local sections. We briefly recall the choice of local sections in [Hsi12, §4.3]. We begin with some notation. Let v be a place of \mathcal{F} . Let $F = \mathcal{F}_v$ (resp. $E = \mathcal{K} \otimes_{\mathcal{F}} \mathcal{F}_v$). Denote by $z \mapsto \overline{z}$ the complex conjugation. Let $|\cdot|$ be the standard absolute values on F and let $|\cdot|_E$ be the absolute value on E given by $|z|_E := |z\overline{z}|$. Let $d_F = d_{\mathcal{F}_v}$ be a fixed generator of the different $\mathcal{D}_{\mathcal{F}}$ of \mathcal{F}/\mathbf{Q} . Write χ (resp. χ_+) for χ_v (resp. $\chi_{+,v}$). If $v \in \mathbf{h}$, denote by ϖ_v a uniformizer of \mathcal{F}_v . For a set Y, denote by \mathbb{I}_Y the characteristic function of Y.

Case I: $v \nmid \mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}$. We first suppose that $v = \sigma \in \Sigma$ is archimedean and $F = \mathbf{R}$. For $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{GL}_2(\mathbf{R})$, we put J(g,i) := ci + d. Define the sections $\phi_{k,s,\sigma}^h$ of weight k in $I_v(s,\chi_+)$ by

$$\phi_{k,s,\sigma}(g) = J(g,i)^{-k} \left|\det(g)\right|^s \cdot \left|J(g,i)\overline{J(g,i)}\right|^{-s}$$

Suppose that v is non-archimedean. Denote by $\mathcal{S}(F)$ and (resp. $\mathcal{S}(F \oplus F)$) the space of Bruhat-Schwartz functions on F (resp. $F \oplus F$). Recall that the Fourier transform $\widehat{\varphi}$ for $\varphi \in \mathcal{S}(F)$ is defined by

$$\widehat{\varphi}(y) = \int_F \varphi(x)\psi(yx)dx$$

For a character $\mu: F^{\times} \to \mathbf{C}^{\times}$, we define a function $\varphi_{\mu} \in \mathcal{S}(F)$ by

$$\varphi_{\mu}(x) = \mathbb{I}_{O_{F}^{\times}}(x)\mu(x)$$

If $v \mid p\mathfrak{FF}^c$ is split in \mathcal{K} , write $v = w\overline{w}$ with $w \mid \mathfrak{F}\Sigma_p$, and set

$$\varphi_w = \varphi_{\chi_w}$$
 and $\varphi_{\overline{w}} = \varphi_{\chi_{\overline{w}}^{-1}}$

To a Bruhat-Schwartz function $\Phi \in \mathcal{S}(F \oplus F)$, we can associate a Godement section $f_{\Phi,s} \in I_v(s, \chi_+)$ defined by

(2.2)
$$f_{\Phi,s}(g) := \left|\det g\right|^s \int_{F^{\times}} \Phi((0,x)g)\chi_+(x) \left|x\right|^{2s} d^{\times}x,$$

where $d^{\times}x$ is the Haar measure on F^{\times} such that $\operatorname{vol}(\mathcal{O}_F^{\times}, d^{\times}x) = 1$. Define Godement sections by

(2.3)
$$\phi_{\chi,s,v} = f_{\Phi_v^0,s}, \text{ where } \Phi_v^0(x,y) = \begin{cases} \mathbb{I}_{O_F}(x)\mathbb{I}_{d_F^{-1}O_F}(y) & \cdots v \nmid \mathfrak{D}, \\ \varphi_{\overline{w}}(x)\widehat{\varphi}_w(y) & \cdots v \mid \mathfrak{FF} \end{cases}$$

Let $u \in \mathcal{O}_F^{\times}$. Let φ_w^1 and $\varphi_w^{[u]} \in \mathcal{S}(F)$ be the Bruhat-Schwartz functions defined by

$$\varphi_{\overline{w}}^{1}(x) = \mathbb{I}_{1+\varpi_{v}O_{F}}(x)\chi_{\overline{w}}^{-1}(x) \text{ and } \varphi_{w}^{[u]}(x) = \mathbb{I}_{u(1+\varpi_{v}O_{F})}(x)\chi_{w}(x).$$

Define $\Phi_v^{[u]} \in \mathcal{S}(F \oplus F)$ by

(2.4)
$$\Phi_v^{[u]}(x,y) = \frac{1}{\operatorname{vol}(1+\varpi_v O_F, d^{\times} x)} \varphi_w^1(x) \widehat{\varphi}_w^{[u]}(y) = (|\varpi_v|^{-1} - 1) \varphi_w^1(x) \widehat{\varphi}_w^{[u]}(y).$$

Case II: $v \mid D_{\mathcal{K}/\mathcal{F}}\mathfrak{C}^-$. In this case, E is a field. We define an embedding $\rho: E \hookrightarrow M_2(F)$ by

$$a + b\vartheta \mapsto \rho(x + b\vartheta) = \begin{bmatrix} a & b\vartheta^2 \\ b & a \end{bmatrix}$$

Then $\operatorname{GL}_2(F) = B(F)\rho(E^{\times})$. We fix a O_F -basis $\{1, \theta_v\}$ of \mathcal{O}_E such that θ_v is a uniformizer if v is ramified and $\overline{\theta_v} = -\theta_v$ if $v \nmid 2$. Let $t_v = \theta_v + \overline{\theta_v}$ and put

$$\varsigma_v = \begin{bmatrix} d_{\mathcal{F}_v} & -2^{-1}t_v \\ 0 & d_{\mathcal{F}_v}^{-1} \end{bmatrix}.$$

Let $\phi_{\chi,s,v}$ be the smooth section in $I_v(s,\chi_+)$ defined by

(2.5)
$$\phi_{\chi,s,v}\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \rho(z)\varsigma_v = L(s,\chi_v) \cdot \chi_+^{-1}(d) \left| \frac{a}{d} \right|^s \cdot \chi^{-1}(z) \quad (b \in B(F), z \in E^{\times}).$$

Here $L(s, \chi_v)$ is the local Euler factor of χ_v .

2.4. Fourier expansion of normalized Eisenstein series. Let \mathcal{U}_p be the torsion subgroup of $\mathcal{O}_{\mathcal{F}_p}^{\times}$. For $u = (u_v)_{v|p} \in \mathcal{U}_p$, let $\Phi_p^{[u]} = \bigotimes_{v|p} \Phi_v^{[u_v]}$ be the Bruhat-Schwartz function defined in (2.4). Define the section $\phi_{\chi,s}^h(\Phi_p^{[u]}) \in I(s,\chi_+)$ by

$$\phi_{\chi,s}^{h}(\Phi_{p}^{[u]}) = \bigotimes_{\sigma \in \varSigma} \phi_{k,s,\sigma}^{h} \bigotimes_{\substack{v \in \mathbf{h}, \\ v \nmid p}} \phi_{\chi,s,v} \bigotimes_{v \mid p} f_{\Phi_{v}^{[u_{v}]},s}.$$

We put

 $X^{+} = \left\{ \tau = (\tau_{\sigma})_{\sigma \in \Sigma} \in \mathbf{C}^{\Sigma} \mid \operatorname{Im} \tau_{\sigma} > 0 \text{ for all } \sigma \in \Sigma \right\}.$

The holomorphic Eisenstein series $\mathbb{E}^h_{\chi,u}: X^+ \times \operatorname{GL}_2(\mathbf{A}_{\mathcal{F},f}) \to \mathbf{C}$ is defined by

(2.6)
$$\mathbb{E}^{h}_{\chi,u}(\tau,g_{f}) := \frac{\Gamma_{\Sigma}(k\Sigma)}{\sqrt{|D_{\mathcal{F}}|_{\mathbf{R}}}(2\pi i)^{k\Sigma}} \cdot E_{\mathbf{A}}\left((g_{\infty},g_{f}),\phi^{h}_{\chi,s}(\Phi^{[u]}_{p})\right)|_{s=0} \cdot \prod_{\sigma\in\Sigma} J(g_{\sigma},i)^{k},$$
$$(g_{\infty} = (g_{\sigma})_{\sigma} \in \mathrm{GL}_{2}(\mathcal{F}\otimes_{\mathbf{Q}}\mathbf{R}), (g_{\sigma}i)_{\sigma\in\Sigma} = (\tau_{\sigma})_{\sigma\in\Sigma}).$$

Let $\mathbf{c} = (\mathbf{c}_v) \in \mathbf{A}_{\mathcal{F},f}^{\times}$ such that $\mathbf{c}_v = 1$ at $v \mid \mathfrak{D}$ and let $\mathbf{c} = \mathbf{c}(\mathcal{O}_{\mathcal{F}} \otimes_{\mathbf{Z}} \hat{\mathbf{Z}}) \cap \mathcal{F}$. Define a function $\mathbb{E}_{\chi,u}^h|_{\mathbf{c}} : X^+ \to \mathbf{C}$ by $\mathbb{E}_{\chi,u}^h|_{\mathbf{c}}(\tau) := \mathbb{E}_{\chi,u}^h(\tau, \begin{bmatrix} 1 & 0\\ 0 & \mathbf{c}^{-1} \end{bmatrix})$. Then $\mathbb{E}_{\chi,u}^h|_{\mathbf{c}}$ is a \mathbf{c} -Hlbert modular form of weight $k\Sigma$ defined over \mathbf{C} in the sense of [Kat78, p.211].

Proposition 2.1. The q-expansion of $\mathbb{E}^{h}_{\chi,u}|_{\mathfrak{c}}$ at the cusp (O, \mathfrak{c}^{-1}) is given by

$$\mathbb{E}^h_{\chi,u}|_{(O,\mathfrak{c}^{-1})}(q) = \sum_{\beta \in \mathcal{F}_+} \mathbf{a}_{\beta}(\mathbb{E}^h_{\chi,u},\mathfrak{c}) \cdot q^{\beta}.$$

The β -th Fourier coefficient $\mathbf{a}_{\beta}(\mathbb{E}^{h}_{\chi,u},\mathfrak{c})$ is given by

$$\begin{aligned} \mu_{\beta}(\mathbb{E}^{h}_{\chi,u},\mathfrak{c}) = &\beta^{(k-1)\Sigma} \prod_{w|\mathfrak{F}} \chi_{w}(\beta) \mathbb{I}_{O_{F}^{\times}}(\beta) \prod_{w \in \Sigma_{p}} \chi_{w}(\beta) \mathbb{I}_{u_{v}(1+\varpi_{v}O_{F})}(\beta) \\ & \times \prod_{v \nmid \mathfrak{D}} \left(\sum_{i=0}^{v(\mathfrak{c}_{v}\beta)} \chi^{*}(\varpi_{v}^{i}) \right) \cdot \prod_{v \mid \mathfrak{C}^{-}D_{\mathcal{K}/\mathcal{F}}} L(0,\chi_{v}) \widetilde{A}_{\beta}(\chi_{v}), \end{aligned}$$

where

(2.7)
$$\widetilde{A}_{\beta}(\chi_{v}) := \int_{\mathcal{F}_{v}} \chi_{v}^{-1} |\cdot|_{E}^{s} (x_{v} + \boldsymbol{\theta}_{v}) \psi(-d_{\mathcal{F}_{v}}^{-1} \beta x_{v}) dx_{v}|_{s=0}$$
$$= \lim_{n \to \infty} \int_{\varpi_{v}^{-n} \mathcal{O}_{\mathcal{F}_{v}}} \chi_{v}^{-1} (x_{v} + \boldsymbol{\theta}_{v}) \psi(-d_{\mathcal{F}_{v}}^{-1} \beta x_{v}) dx_{v}.$$

PROOF. This follows from (2.1) and the calculations of local Whittaker integerals of special local sections in [Hsi11, §4.3] (*cf.* [Hsi12, Prop. 4.1 and Prop. 4.4]). \Box

2.5. The μ -invariants of anticyclotomic p-adic L-functions. Let $Z(\mathfrak{C})^-$ be the anticyclotomic quotient of $Z(\mathfrak{C})$. Let $\widehat{\mathcal{O}}_{\mathcal{K}} = \mathcal{O}_{\mathcal{K}} \otimes_{\mathbf{Z}} \widehat{\mathbf{Z}}$ and $U(\mathfrak{C}p^n) := \left\{ u \in \widehat{\mathcal{O}}_{\mathcal{K}}^{\times} \mid u \equiv 1 \pmod{\mathfrak{C}p^n} \right\}$. The reciprocity law $\operatorname{rec}_{\mathcal{K}} : \mathbf{A}_{\mathcal{K},f}^{\times} \to Z(\mathfrak{C})^-$ induces the isomorphism:

$$\operatorname{rec}_{\mathcal{K}}: \lim_{n} \mathcal{K}^{\times} \mathbf{A}_{\mathcal{F},f}^{\times} \backslash \mathbf{A}_{\mathcal{K},f}^{\times} / U(\mathfrak{C}p^{n}) \xrightarrow{\sim} Z(\mathfrak{C})^{-}.$$

Let Γ^- be the maximal \mathbf{Z}_p -free quotient of $Z(\mathfrak{C})^-$. Each function ϕ on Γ^- will be regarded as a function on $Z(\mathfrak{C})$ by the natural projection $\pi_-: Z(\mathfrak{C}) \to Z(\mathfrak{C})^- \to \Gamma^-$. The anticyclotomic projection $\mathcal{L}^-_{\chi,\Sigma}$ of the measure $\mathcal{L}_{\mathfrak{C},\Sigma}$ is defined by

$$\int_{\Gamma^-} \phi d\mathcal{L}^-_{\chi, \varSigma} := \int_{Z(\mathfrak{C})} \widehat{\chi} \phi d\mathcal{L}_{\mathfrak{C}, \varSigma}.$$

Recall that the μ -invariant $\mu(\varphi)$ of a $\overline{\mathbf{Z}}_p$ -valued p-adic measure φ on a p-adic group H is defined to be

$$\mu(\varphi) = \inf_{U \subset H \text{ open }} v_p(\varphi(U)).$$

We shall give a formula of the μ -invariant $\mu_{\chi,\Sigma}^-$ of $\mathcal{L}_{\chi,\Sigma}^-$ in terms of *p*-adic valuation of Fourier coefficients of $\mathbb{E}^h_{\chi,u}$. To state the formula precisely, we introduce some notation.

Let $Cl_{-} := \mathcal{K}^{\times} \mathbf{A}_{\mathcal{F},f}^{\times} \setminus \mathbf{A}_{\mathcal{K},f} / \widehat{\mathcal{O}}_{\mathcal{K}}^{\times}$ and let Cl_{-}^{alg} be the subgroup of Cl_{-} generated by ramified primes. Let $O_p := \mathcal{O}_{\mathcal{F}} \otimes \mathbf{Z}_p$. Let Γ' be the open subgroup of Γ^{-} generated by the image of $\mathcal{O}_p^{\times} \times \prod_{v \mid D_{\mathcal{K}/\mathcal{F}}} \mathcal{K}_v^{\times}$ via rec $_{\mathcal{K}}$. The reciprocity law rec $_{\mathcal{K}}$ at Σ_p induces an injective map rec $_{\Sigma_p} : 1 + pO_p \hookrightarrow \mathcal{O}_p^{\times} = \bigoplus_{w \in \Sigma_p} \mathcal{O}_{\mathcal{K}_w}^{\times} \xrightarrow{\text{rec}} Z(\mathfrak{C})^{-}$ with finite cokernel as $p \nmid D_{\mathcal{F}}$, and it is easy to see that rec $_{\Sigma_p}$ induces an isomorphism rec $_{\Sigma_p} : 1 + pO_p \xrightarrow{\sim} \Gamma'$. We thus identify Γ' with the subgroup rec $_{\Sigma_p}(1 + pO_p)$ of $Z(\mathfrak{C})^{-}$. Let $Z' := \pi_{-}^{-1}(\Gamma')$ be the subgroup of $Z(\mathfrak{C})$ and let $Cl_{-}^{\prime} \supset Cl_{-}^{\text{alg}}$ be the image of Z' in Cl_{-} and let \mathcal{D}'_1 (resp. \mathcal{D}'_1) be a set of representatives of $Cl'_{-}/Cl_{-}^{\text{alg}}$ (resp. $Cl_{-}/Cl_{-}^{\text{alg}}$) \times . Let $\mathcal{D}_1 := \mathcal{D}''_1\mathcal{D}'_1$ be a set of representatives of $\mathcal{U}_p/\mathcal{U}^{\text{alg}}$ in \mathcal{U}_p . For $a \in \mathbf{A}_{\mathcal{K},f}^{\times}$, let $\mathfrak{c}(a) := \mathfrak{c}(\mathcal{O}_{\mathcal{K}}) N_{\mathcal{K}/\mathcal{F}}(\mathfrak{a})$, where $\mathfrak{a} = a(\mathcal{O}_{\mathcal{K}} \otimes_{\mathbf{Z}} \hat{\mathbf{Z}}) \cap \mathcal{K}$. The following theorem is proved by the ideas of Hida in [Hid10].

Theorem 2.2 (Thm. 5.5 [Hsi12]). Suppose that $p \nmid D_{\mathcal{F}}$. Then we have

$$\mu_{\chi,\Sigma}^{-} = \inf_{\substack{(u,a) \in \mathcal{D}_0 \times \mathcal{D}_1 \\ \beta \in \mathcal{F}_+}} v_p(\mathbf{a}_\beta(\mathbb{E}^h_{\chi,u}, \mathfrak{c}(a))).$$

PROOF. For the convenience of the readers, we sketch the proof here. For each $b \in \mathcal{D}''_1$, we denote by $\mathcal{L}^b_{\chi,\Sigma}$ the *p*-adic measure on $1 + pO_p \simeq \Gamma'$ obtained by the restriction of $\mathcal{L}^-_{\chi,\Sigma}$ to $b.\Gamma' := \pi_-(\operatorname{rec}_{\mathcal{K}}(b))\Gamma^-$. To be precise, we have

$$\int_{\Gamma'} \phi d\mathcal{L}^b_{\chi, \varSigma} := \int_{\Gamma^-} \mathbb{I}_{b.\Gamma'} \cdot \phi | [b^{-1}] d\mathcal{L}^-_{\chi, \varSigma}$$

where $\mathbb{I}_{b,\Gamma'}$ is the characteristic functions of $b.\Gamma'$. Let $\mu^b_{\chi,\Sigma}$ be the μ -invariant of the *p*-adic measures $\mathcal{L}^b_{\chi,\Sigma}$. Note that $\Gamma^- = \bigsqcup_{b \in \mathcal{D}''_1} b.\Gamma'$, so it is clear that

(2.8)
$$\mu_{\chi,\Sigma}^{-} = \inf_{b \in \mathcal{D}_{1}^{\prime \prime}} \mu_{\chi,\Sigma}^{b}$$

For $(u, a) \in \mathcal{D}_0 \times \mathcal{D}_1$, we let $\mathcal{E}_{u,a}$ be the *p*-adic avatar of $\mathbb{E}^h_{\chi,u}|_{\mathfrak{c}(a)}$ ([Hsi12, §2.5.5]). Let *t* be the Serre-Tate coordinate of the CM point **x** with the polarization ideal $\mathfrak{c}(\mathcal{O}_{\mathcal{K}})$ defined in [Hsi12, §5.2]. For $a \in \mathcal{D}'_1$, let $\langle a \rangle_{\Sigma}$ be the unique element in $1 + pO_p$ such that $\operatorname{rec}_{\Sigma_p}(\langle a \rangle_{\Sigma}) = \pi_-(\operatorname{rec}_{\mathcal{K}}(a)) \in \Gamma'$. For each $b \in \mathcal{D}''_1$, we define a *t*-expansion $\mathcal{E}^b(t)$ by

$$\mathcal{E}^{b}(t) := \# \mathcal{U}^{\mathrm{alg}} \cdot \sum_{(u,a) \in \mathcal{D}_{0} \times b \mathcal{D}'_{1}} \chi(ab^{-1}) \mathcal{E}_{u,a} | [a](t^{\langle ab^{-1} \rangle_{\mathfrak{L}} u^{-1}}),$$

where |[a] is the Hecke action induced by *a* (See [Hsi12, Remark 4.5]). With the help of an an explicit formula of toric period integral of Eisenstein series ([Hsi11, Prop. 5.1] and [Hsi12, Prop. 4.9]), it is shown in [Hsi12, Prop. 5.2] that $\mathcal{E}^{b}(t)$ essentially gives rise to the *t*-expansion of the measure $\mathcal{L}^{b}_{\chi,\Sigma}$, and hence we find that

(2.9)
$$\mu_{\chi,\Sigma}^{b} = \inf \left\{ r \in \mathbf{Q}_{\geq 0} \mid p^{-r} \mathcal{E}^{b}(t) \not\equiv 0 \pmod{\mathfrak{m}_{\mathbf{Z}_{p}}} \right\},$$

where $\mathbf{m}_{\mathbf{\bar{Z}}_p}$ is the maximal ideal of $\mathbf{\bar{Z}}_p$. By the linear independence of *p*-adic modular forms modulo *p* [Hid10, Cor. 3.2], the *q*-expansion principle of *p*-adic modular forms combined with [Hsi12, Lemma 5.3], we can conclude from (2.8) and (2.9) that

$$\mu_{\chi,\Sigma}^{-} = \inf_{b \in \mathcal{D}_{1}^{\prime\prime}} \mu_{\chi,\Sigma}^{b} = \inf_{\substack{(u,a) \in \mathcal{D}_{0} \times \mathcal{D}_{1}, \\ \beta \in \mathcal{F}_{+}}} v_{p}(\mathbf{a}_{\beta}(\mathbb{E}_{\chi,u}^{h}, \mathfrak{c}(a))).$$

3. Proof of Theorem A

We go back to our setting in the introduction. Let λ be a Hecke character of infinity type $k\Sigma$ with $k \ge 1$ and let $\lambda^* := \lambda |\cdot|_{\mathbf{A}_{\mathcal{K}}}^{-\frac{1}{2}}$. We may further assume that

\mathfrak{C} is the prime-to-*p* conductor of λ .

To prove Theorem A, we prepare two lemmas. The first lemma is taken from [Hid11].

Lemma 3.1. Let $w \nmid p$ be a place of \mathcal{K} and let ϖ_w be a uniformizer of \mathcal{K}_w . Let $a \in \overline{\mathbf{Z}}_p$. Given e > 0, we have

$$v_p(a + \nu(\varpi_w)) < e \text{ for all but finitely many } \nu \in \mathfrak{X}^+$$

PROOF. We note that $\nu(\varpi_w)$ is a primitive p^n -th root of unity for some $n \in \mathbb{Z}_{\geq 0}$, and for sufficiently large n, we have

$$v_p(a + \nu(\varpi_w)) \le v_p(\nu(\varpi_w) - 1) = \frac{1}{p^n - p^{n-1}} < e.$$

The first equality holds precisely when $v_p(a+1) > 0$. Therefore, it is not difficult to deduce the lemma from the fact that the image of ϖ_w in Γ^+ under $\operatorname{rec}_{\mathcal{K}} : \mathbf{A}_{\mathcal{K}}^{\times} \to \Gamma^+$ generates a subgroup of Γ^+ with finite index. \Box

Lemma 3.2. Let $v | \mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}$ and let $e_1 > 0$ be a positive number. Then there exists $\beta_v \in \mathcal{F}_v^{\times}$ such that for almost all $v \in \mathfrak{X}^+$, we have

$$v_p(L(0,\lambda_v\nu_v)A_{\beta_v}(\lambda_v\nu_v)) \le e_1.$$

Here "for almost all" means "for all but finitely many".

PROOF. Let $E = \mathcal{K}_v$ and $F = \mathcal{F}_v$. Let \mathfrak{m}_E be the maximal ideal of \mathcal{O}_E . For brevity, we drop the subscript v and simply write $\lambda = \lambda_v$, $\nu = \nu_v$. Let $a(\lambda) := \inf \{n \in \mathbb{Z}_{\geq 0} \mid \lambda(1 + \mathfrak{m}_E^n) = 1\}$ be the conductor of λ . Suppose that $a(\lambda) > 1$. Then $\lambda(1 + \mathfrak{m}) \neq 1$, and the invariant $\mu_p(\lambda) := \inf_{x \in E^{\times}} v_p(\lambda(x) - 1) = 0$ as $v \nmid p$. It follows from [Hsi11, Lemma 6.4] that there exists β such that $v_p(\tilde{A}_\beta(\lambda)) = 0$. Moreover, since $\tilde{A}_\beta(\lambda\nu) \equiv \tilde{A}_\beta(\lambda) \pmod{\mathfrak{m}_{\mathbb{Z}_p}}$, we find that $v_p(\tilde{A}_\beta(\lambda\nu)) = 0$ for all $\nu \in \mathfrak{X}^+$. To prove the remaining part, we assume the conductor $a(\lambda) = a(\lambda\nu) \leq 1$. In virtue of Lemma 3.1, it suffices to show that there exists β such that

(3.1)
$$v_p(\widetilde{A}_\beta(\lambda\nu)) = v_p(a+b\cdot\nu(\varpi_w))$$

for some $a \in \bar{\mathbf{Z}}_p, b \in \bar{\mathbf{Z}}_p^{\times}$ independent of ν and a uniformizer ϖ_w of E.

Let ϖ be a uniformizer of F. Suppose that v is ramified. Recall that $\theta = \theta_v$ is chosen to be a uniformizer of E. Let $\beta \in \varpi^{-1}O_F^{\times}$, so $v(\beta) = -1$. If $v \nmid \mathfrak{C}^-$, then by [Hsi11, Lemma 4.1], we have

$$\widetilde{A}_{\beta}(\lambda\nu) = \left|\mathcal{D}_{F}\right|^{-1}\lambda^{-1}\nu^{-1}(\boldsymbol{\theta})\left|\boldsymbol{\varpi}\right|.$$

If $v \mid \mathfrak{C}^-$, then it follows from [Hsi11, Prop. 4.4 (1)] that

$$\widetilde{A}_{\beta}(\lambda\nu) = \lambda^{*}(\boldsymbol{\theta}^{-1}) |\varpi|^{\frac{1}{2}} \nu(\boldsymbol{\theta}^{-1}) + \lambda^{*}(-\beta d_{F}^{-1})\nu(-\beta\varpi)\epsilon(1,\lambda_{+}|\cdot|^{-1},\psi) \quad (\lambda_{+} := \lambda|_{F^{\times}})$$
$$= \lambda^{*}(\boldsymbol{\theta}^{-1}) |\varpi|^{\frac{1}{2}} \cdot \nu(\boldsymbol{\theta}^{-1}) + \lambda^{*}(-\beta d_{F}^{-1})\epsilon(1,\lambda_{+}|\cdot|^{-1},\psi).$$

Here $\epsilon(s, \lambda_+ |\cdot|^{-1}, \psi)$ is the Tate's local epsilon factor attached to the additive character $\psi_v : F \to \mathbf{C}^{\times}$. In any case, it is clear that (3.1) holds for $\beta \in \varpi^{-1}\mathcal{O}_F^{\times}$ when v is ramified.

Suppose that v is inert. Then $a(\lambda \nu) = 1$. Let $\beta \in O_F^{\times}$ (so $v(\beta) = 0$). By [Hsi11, Prop. 4.5], if $\lambda|_{O_v^{\times}} = 1$, then

$$\widetilde{A}_{\beta}(\lambda\nu) = -|\varpi| \left(1 + \lambda^* \nu(\varpi)\right),$$

and if $\lambda|_{O_E^{\times}}$ is non-trivial, then

$$\widetilde{A}_{\beta}(\lambda\nu) = \mathcal{I}_{\lambda\nu}(0) + \lambda^*(-\beta d_F^{-1})\nu(\varpi)\epsilon(1,\lambda_+|\cdot|^{-1},\psi),$$

where

$$\mathcal{I}_{\lambda\nu}(0) = \int_{O_F} \lambda^{-1} \nu^{-1}(x + \boldsymbol{\theta}) dx.$$

Recall that $\boldsymbol{\theta}$ is chosen such that $\mathcal{O}_E = \mathcal{O}_F + \mathcal{O}_F \boldsymbol{\theta}$. We have $x + \boldsymbol{\theta} \in \mathcal{O}_E^{\times}$ for $x \in \mathcal{O}_F$. As ν is unramified at v, we find that

$$\mathcal{I}_{\lambda\nu}(0) = \int_{O_F} \lambda^{-1}(x+\theta) dx$$

is independent of ν . Therefore, in either cases, (3.1) holds for $\beta \in \mathcal{O}_F^{\times}$.

Theorem 3.3. Suppose that $p \nmid D_{\mathcal{F}}$. Then

$$\mu_{\lambda,\Sigma} = 0.$$

PROOF. Let S^- be the set of prime factors of $\mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}$. By Lemma 3.2, for $e_1 > 0$, we choose $(\beta_v) \in \prod_{v \mid \mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}} \mathcal{F}_v^{\times}$ such that

(3.2)
$$\sum_{v \mid \mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}} v_p(L(0, \lambda_v \nu_v) \widetilde{A}_{\beta_v}(\lambda_v \nu_v)) \le \#(S^-) \cdot e_1$$

for almost $\nu \in \mathfrak{X}^-$. Let $\mathbf{c} \in \mathbf{A}_{\mathcal{F},f}^{\times}$ and \mathfrak{c} be the associated ideal as in Prop. 2.1. We define an idele $\eta \in \mathbf{A}_{\mathcal{K},f}^{\times}$ such that

- $\eta_v = \beta_v^{-1}$ for all $v \mid \mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}$,
- $\eta_v = \mathbf{c}_v$ for all finite $v \nmid \mathfrak{D}$,
- $\eta_v = 1$ for the remaining places v.

Let $U = \prod U_v$ be an open subgroup of $\mathbf{A}_{\mathcal{F}}^{\times}$ such that $U_v = \mathcal{O}_{\mathcal{F}_v}^{\times}$ at all $v \nmid \mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}$ and $U_{\infty} = (\mathcal{F} \otimes \mathbf{R})_+$. Moreover, it is not difficult to see from [Hsi11, (4.17)] that for $v \mid \mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}$, U_v can be chosen small enough, depending on λ_v and β_v , so that

$$\widetilde{A}_{\beta_v u}(\lambda_v \nu_v) = \widetilde{A}_{\beta_v}(\lambda_v \nu_v)$$
 for all $u \in U_v$ and $\nu \in \mathfrak{X}^+$

Consider the idele class $\mathcal{F}^{\times} \eta U$ in $\mathbf{A}_{\mathcal{F}}^{\times}$. We may choose a uniformizer $\varpi_{v_0} \in \mathcal{K}_{v_0}$ with a finite place $v_0 \nmid \mathfrak{D}$ such that ϖ_{v_0} lies in the class $\mathcal{F}^{\times} \eta U$. We can write

$$\varpi_{v_0} \in \beta \eta U$$
 for some $\beta \in \mathcal{F}^{\times}$.

Since $\eta_v = 1$ when v is archimedean or v|p, we find that $\beta \in \mathcal{F}_+ \cap \mathcal{O}_{\mathcal{F},(p)}^{\times}$ by the choice of U. Let $u \in \mathcal{U}_p$ such that $\beta \equiv u \pmod{p}$. By Prop. 2.1 we have

$$v_p(\mathbf{a}_{\beta}(\mathbb{E}^h_{\lambda\nu,u},\mathfrak{c})) = \sum_{v|\mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}} v_p(L(0,\lambda_v\nu_v)\widetilde{A}_{\beta}(\lambda_v\nu_v)) + \sum_{v\nmid\mathfrak{D}} v_p(\sum_{i=0}^{v(\beta\mathfrak{C}_v)}\lambda^*\nu(\varpi_v^i))$$
$$= \sum_{v|\mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}} v_p(L(0,\lambda_v\nu_v)\widetilde{A}_{\beta_v}(\lambda_v\nu_v)) + v_p(\lambda^*\nu(\varpi_{v_0})+1).$$

It follows that for almost all $\nu \in \mathfrak{X}^+$, we have

$$\nu_p(\mathbf{a}_{\beta}(\mathbb{E}^h_{\lambda\nu,u},\mathfrak{c})) \le \#(S^-) \cdot e_1 + \nu_p(\lambda^*(\varpi_{v_0}) \cdot \nu(\varpi_{v_0}) + 1).$$

Hence, from Theorem 2.2 and Lemma 3.1 we deduce that

1

$$0 \le \mu_{\lambda,\Sigma} \le \liminf_{\nu} \mu_{\lambda\nu,\Sigma}^{-} \le \liminf_{\nu} v_p(\mathbf{a}_{\beta}(\mathbb{E}^n_{\lambda\nu,u},\mathfrak{c})) \le \#(S^-) \cdot e_1.$$

This inequality holds for all $e_1 > 0$, so $\mu_{\lambda, \Sigma} = 0$.

References

- [Gil87] R. Gillard, Transformation de Mellin-Leopoldt des fonctions elliptiques, J. Number Theory 25 (1987), no. 3, 379–393.
 [Gil91] , Remarques sur l'invariant mu d'Iwasawa dans le cas CM, Sém. Théor. Nombres Bordeaux (2) 3 (1991), no. 1,
- [GH91] _____, *Remarques sur l'invariant mu a roasawa aans le cas CM*, Seni. Theor. Nombres Bordeaux (2) **5** (1991), no. 1, 13–26.
- [Hid06] H. Hida, Anticyclotomic main conjectures, Doc. Math. (2006), no. Extra Vol., 465–532 (electronic).
- [Hid09] _____, Quadratic exercises in Iwasawa theory, Int. Math. Res. Not. IMRN (2009), no. 5, 912–952.
- [Hid10] _____, The Iwasawa μ-invariant of p-adic Hecke L-functions, Ann. of Math. (2) **172** (2010), no. 1, 41–137.
- $[\text{Hid11}] ___, Vanishing of the μ-invariant of p-adic Hecke L-functions, Compos. Math. 147 (2011), no. 4, 1151–1178.$
- [Hsi11] M.-L. Hsieh, On the non-vanishing of Hecke L-values modulo p, to appear in American Journal of Mathematics. Preprint is available at "http://www.math.ntu.edu.tw/ mlhsieh/research.htm", 2011.
- [Hsi12] _____, On the μ-invariant of anticyclotomic p-adic L-functions for CM fields, to appear in J. Reine Angew. Math. DOI:10.1515/crelle-2012-0056, 2012.
- [HT93] H. Hida and J. Tilouine, Anti-cyclotomic Katz p-adic L-functions and congruence modules, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 2, 189–259.
- [HT94] _____, On the anticyclotomic main conjecture for CM fields, Invent. Math. 117 (1994), no. 1, 89–147.
- [Kat78] N. Katz, p-adic L-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199–297.
- [Sch87] L. Schneps, On the μ-invariant of p-adic L-functions attached to elliptic curves with complex multiplication, J. Number Theory 25 (1987), no. 1, 20–33.
- [Suj10] R. Sujatha, Elliptic curves and Iwasawa's µ = 0 conjecture, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., vol. 18, Springer, New York, 2010, pp. 125–135.

DEPARTMENT OF MATHEMATICS, UCLA, CA 90095-1555, U.S.A. *E-mail address:* ashayburungale@gmail.com

DEPARTMENT OF MATHEMATICS, NATIONAL TAIWAN UNIVERSITY, NO. 1, SEC. 4, ROOSEVELT ROAD, TAIPEI 10617, TAIWAN *E-mail address*: mlhsieh@math.ntu.edu.tw