THE VANISHING OF μ-INVARIANT OF p-adic HECKE L-FUNCTIONS FOR CM FIELDS

ASHAY BURUNGALE AND MING-LUN HSIEH

Abstract

Let $p>2$ be an ordinary prime for a CM field \mathcal{K}. Katz and Hida-Tilouine constructed the p-adic Hecke L-function attached to a p-ordinary CM type and a branch character. In this note, we prove that the μ-invariant of this p-adic Hecke L-function always vanishes when p is unramified in \mathcal{K}.

1. Introduction

The purpose of this note is to prove the vanishing of the μ-invariant of p-adic Hecke L-functions for CM fields constructed by Katz and Hida-Tilouine. We let \mathcal{F} be a totally real field of degree d over \mathbf{Q} and \mathcal{K} be a totally imaginary quadratic extension of \mathcal{F}. Let $D_{\mathcal{F}}$ (resp. $\mathcal{D}_{\mathcal{F}}$) be the discriminant (resp. different) of \mathcal{F} / \mathbf{Q}. Let $p>2$ be an odd rational prime. Fix two embeddings $\iota_{\infty}: \overline{\mathbf{Q}} \rightarrow \mathbf{C}$ and $\iota_{p}: \overline{\mathbf{Q}} \rightarrow \mathbf{C}_{p}$ once and for all. Let $\overline{\mathbf{Z}}$ be the ring of algebraic integers and let $\overline{\mathbf{Z}}_{p}$ be the p-adic completion of $\iota_{p}(\overline{\mathbf{Z}})$ in \mathbf{C}_{p}. Denote by c the complex conjugation on \mathbf{C} which induces the unique non-trivial element of $\operatorname{Gal}(\mathcal{K} / \mathcal{F})$. We assume the following hypothesis throughout this article:
(ord)
Every prime of \mathcal{F} above p splits in \mathcal{K}.
Fix a p-ordinary CM type Σ, namely Σ is a CM type of \mathcal{K} such that p-adic places induced by elements in Σ via ι_{p} are disjoint from those induced by elements in Σc. The existence of such Σ is assured by our assumption (ord). Let $\mathcal{D}_{\mathcal{K} / \mathcal{F}}$ be the relative different of $\mathcal{K} / \mathcal{F}$. Let \mathfrak{C} be a prime-to- p integral ideal of $\mathcal{O}_{\mathcal{K}}$ and let $\vartheta \in \mathcal{K}$ such that
(d1) $c(\vartheta)=-\vartheta$ and $\operatorname{Im} \sigma(\vartheta)>0$ for all $\sigma \in \Sigma$,
(d2) $\mathfrak{c}\left(\mathcal{O}_{\mathcal{K}}\right):=\mathcal{D}_{\mathcal{F}}^{-1}\left(2 \vartheta \mathcal{D}_{\mathcal{K} / \mathcal{F}}^{-1}\right)$ is prime to $p \mathfrak{C C}^{c} D_{\mathcal{K} / \mathcal{F}}$.
Let \mathcal{K}_{∞}^{+}and \mathcal{K}_{∞}^{-}be the cyclotomic \mathbf{Z}_{p}-extension and anticyclotomic \mathbf{Z}_{p}^{d}-extension of \mathcal{K}. Let $\mathcal{K}_{\infty}=\mathcal{K}_{\infty}^{+} \mathcal{K}_{\infty}^{-}$be a \mathbf{Z}_{p}^{d+1}-extension of \mathcal{K}. If one assumes Leopoldt's conjecture for \mathcal{K}, then \mathcal{K}_{∞} is the maximal \mathbf{Z}_{p}^{d+1}-extension of \mathcal{K}. Let $\Gamma^{ \pm}:=\operatorname{Gal}\left(\mathcal{K}_{\infty}^{ \pm} / \mathcal{K}\right)$ and let $\Gamma=\operatorname{Gal}\left(\mathcal{K}_{\infty} / \mathcal{K}\right) \simeq \Gamma^{+} \times \Gamma^{-}$. Let $Z(\mathfrak{C})$ be the ray class group of \mathcal{K} modulo $\mathfrak{C} p^{\infty}$. In [Kat78] and [HT93], a $\overline{\mathbf{Z}}_{p}$-valued p-adic measure $\mathcal{L}_{\mathfrak{C}, \Sigma}$ on $Z(\mathfrak{C})$ is constructed such that

$$
\begin{aligned}
\frac{1}{\Omega_{p}^{k \Sigma+2 \kappa}} \cdot \int_{Z(\mathfrak{C})} \hat{\lambda} d \mathcal{L}_{\mathfrak{C}, \Sigma}= & L^{(p \mathfrak{C})}(0, \lambda) \cdot \operatorname{Eul}_{p}(\lambda) E u l_{\mathfrak{C}+}(\lambda) \\
& \times \frac{\pi^{\kappa} \Gamma_{\Sigma}(k \Sigma+\kappa)}{\sqrt{\left|D_{\mathcal{F}}\right|_{\mathbf{R}}}(\operatorname{Im} \vartheta)^{\kappa} \cdot \Omega_{\infty}^{k \Sigma+2 \kappa}} \cdot\left[\mathcal{O}_{\mathcal{K}}^{\times}: \mathcal{O}_{\mathcal{F}}^{\times}\right]
\end{aligned}
$$

where (i) λ is a Hecke character modulo $\mathfrak{C} p^{\infty}$ of infinity type $k \Sigma+\kappa(1-c)$ with either $k \geq 1$ and $\kappa \in \mathbf{Z}_{\geq 0}[\Sigma]$ or $k \leq 1$ and $k \Sigma+\kappa \in \mathbf{Z}_{>0}[\Sigma]$, and $\hat{\lambda}$ is the p-adic avatar of λ regarded as a p-adic Galois character via geometrically normalized reciprocity law, (ii) $E u l_{p}(\lambda)$ and $E u l_{\mathfrak{C}^{+}}(\lambda)$ are certain modified Euler factors (For the definitions, see [Hsi12, (4.16)]).

We fix a Hecke character λ of infinity type $k \Sigma, k \geq 1$. Let $\mathcal{L}_{\lambda, \Sigma}$ be the p-adic measure on Γ obtained by the pull-back of $\mathcal{L}_{\mathfrak{C}, \Sigma}$ along λ. In other words, for every locally constant function φ on Γ, we have

$$
\int_{\Gamma} \varphi d \mathcal{L}_{\lambda, \Sigma}=\int_{Z(\mathfrak{C})} \varphi \widehat{\lambda} d \mathcal{L}_{\mathfrak{C}, \Sigma}
$$

Date: December 14, 2011.
2010 Mathematics Subject Classification. 11F67 11R23.
The second author M.-L. Hsieh is partially supported by National Science Council grant 100-2115-M-002-012-.

We call $\mathcal{L}_{\lambda, \Sigma}$ the p-adic L-function of the branch character λ with respect to the p-adic CM-type Σ. It is conjectured by Gillard [Gil91, Conj. (i), p.21] that the μ-invariant $\mu_{\lambda, \Sigma}$ of $\mathcal{L}_{\lambda, \Sigma}$ always vanishes. In this note, we prove this conjecture when $p \nmid D_{\mathcal{F}}$.
Theorem A. Suppose that $p \nmid D_{\mathcal{F}}$. Then $\mu_{\lambda, \Sigma}=0$.
When $\mathcal{F}=\mathbf{Q}$ and λ arises from elliptic curves over \mathbf{Q} with CM by \mathcal{K}, this theorem is an immediate consequence of the vanishing of the μ-invariant of Coates-Wiles p-adic L-functions due to Gillard [Gil87] and Schneps [Sch87] independently. When the conductor of the residual character $\widehat{\lambda}(\bmod p)$ is a product of primes split in $\mathcal{K} / \mathcal{F}$, the above theorem is due to Hida in [Hid11]. Note that since the branch character λ is of infinite order, this p-adic L-function $\mathcal{L}_{\lambda, \Sigma}$ indeed is a suitable twist of the p-adic L-functions considered by Hida.

To explain the idea of Hida, we need to introduce some notation. Let \mathfrak{X}^{+}be the set consisting of finite order characters $\nu: \Gamma^{+} \rightarrow \mu_{p^{\infty}}$. For every $\nu \in \mathfrak{X}^{+}$, we shall regard ν as a Hecke character of \mathcal{K}^{\times}by the geometrically normalized reciprocity law $\operatorname{rec}_{\mathcal{K}}: \mathbf{A}_{\mathcal{K}}^{\times} \rightarrow \operatorname{Gal}(\overline{\mathbf{Q}} / \mathcal{K})^{a b} \rightarrow \Gamma$. Let $\mu_{\lambda \nu, \Sigma}^{-}$denote the μ-invariant of the anticyclotomic projection $\mathcal{L}_{\lambda \nu, \Sigma}^{-}$of Katz p-adic L-function $\mathcal{L}_{\lambda \nu, \Sigma}$ attached to the brach character $\lambda \nu$. When λ has split conductor, Hida in [Hid10] proves a precise formula of $\mu_{\lambda \nu, \Sigma}^{-}$in terms of the p-adic valuation of Fourier coefficients of certain Eisenstein series. Based on this exact formula, Hida concludes the vanishing of $\mu_{\lambda, \Sigma}$ by showing directly that $\lim \inf _{\nu \in \mathfrak{X}+} \mu_{\lambda \nu, \Sigma}^{-}=0$.

Our proof of Theorem A follows the approach of Hida. It is shown in [Hsi12, Thm. 5.5] that $\mu_{\lambda \nu, \Sigma}^{-}$in general can be written to be the p-adic valuation of Fourier coefficients of certain special toric Eisenstein series $\mathbb{E}_{\lambda \nu, u}^{h}$. We are not able to calculate the Fourier coefficients of these toric Eisenstein series in full generality, so we do not obtain a precise formula of $\mu_{\lambda \nu, \Sigma}^{-}$in full generality. However, we can estimate an upper bound of the p-adic valuation of Fourier coefficients of $\mathbb{E}_{\lambda \nu, u}^{h}$, and obtain an upper bound of $\mu_{\lambda \nu, \Sigma}^{-}$. Following Hida, we show this upper bound is as small as possible when $\nu \in \mathfrak{X}^{+}$has sufficiently deep conductor.

In virtue of [HT93, Thm. 8.2], Theorem A provides an alternative proof of the one-sided divisibility between anticyclotomic p-adic L-functions and the congruence ideals of CM forms, which was proved in [Hid09, Cor. 3.8] using the trick of base change. This divisibility result eventually leads to the solution of the anticyclotomic main conjure proved in [Hid09, Theorem, p.914] combined with results of Hida and Tilouine [HT94] and Hida [Hid06]. In addition, we remark that the μ-invariant $\mu_{\lambda, \Sigma}$ considered in this note is referred to as the analytic μ-invariant in Iwasawa theory. Iwasawa main conjecture for CM fields implies that $\mu_{\lambda, \Sigma}$ equals the algebraic μ-invariant attached to λ, i.e. the μ-invariant of characteristic power series of a certain Iwasawa module (cf. [HT94, Main conjecture, p.90]). In particular, we can consider an CM elliptic curve E over the totally real field \mathcal{F} with complex multiplication by the ring of integers of an imaginary quadratic field \mathcal{M}. Assuming the validity of the main conjecture for the CM field $\mathcal{K}=\mathcal{F} \mathcal{M}$, our result would imply the algebraic μ-invariant for E over \mathcal{K}_{∞} vanishes as well. The arithmetic aspect of the vanishing of algebraic μ-invariants of elliptic curves in a more general setting is discussed in [Suj10].

Acknowledgments. The authors would like to thank Prof. Hida for pointing out the application of the vanishing of μ-invariants to the anticyclotomic main conjecture. The authors also thank the referee for the careful reading and suggestion on the improvement of this manuscript.

2. Eisenstein series and anticyclotomic μ-Invariants

In this section, we recall without proofs the construction of certain special Eisenstein series, which are used to compute the anticyclotomic μ-invariant in [Hsi12].
2.1. Eisenstein series on $\mathrm{GL}_{2}\left(\mathbf{A}_{\mathcal{F}}\right)$. Let χ be a Hecke character of infinity type $k \Sigma, k \geq 1$. Suppose that \mathfrak{C} is the prime-to-p conductor of χ. We write $\mathfrak{C}=\mathfrak{C}^{+} \mathfrak{C}^{-}$such that \mathfrak{C}^{+}(resp. \mathfrak{C}^{-}) is a product of prime factors split (resp. non-split) over \mathcal{F}. We further decompose $\mathfrak{C}^{+}=\mathfrak{F} \mathfrak{F}_{c}$ such that $\left(\mathfrak{F}, \mathfrak{F}_{c}\right)=1$ and $\mathfrak{F} \subset \mathfrak{F}_{c}^{c}$. Let $D_{\mathcal{K} / \mathcal{F}}$ be the discriminant of $\mathcal{K} / \mathcal{F}$ and let

$$
\mathfrak{D}=p \mathfrak{C C}^{c} D_{\mathcal{K} / \mathcal{F}}
$$

We will identify the CM-type $\Sigma \subset \operatorname{Hom}(\mathcal{K}, \mathbf{C})$ with the set $\operatorname{Hom}(\mathcal{F}, \mathbf{R})$ of archimedean places of \mathcal{F} by the restriction map. Let $K_{\infty}^{0}:=\prod_{\sigma \in \Sigma} \mathrm{SO}(2, \mathbf{R})$ be a maximal compact subgroup of $\mathrm{GL}_{2}\left(\mathcal{F} \otimes_{\mathbf{Q}} \mathbf{R}\right)$. We put

$$
\chi^{*}=\chi|\cdot|_{\mathbf{A}_{\mathcal{K}}}^{-\frac{1}{2}} \text { and } \chi_{+}=\left.\chi\right|_{\mathbf{A}_{\mathcal{F}}^{\times}} .
$$

For $s \in \mathbf{C}$, we let $I\left(s, \chi_{+}\right)$denote the space consisting of smooth and K_{∞}^{0}-finite functions $\phi: \mathrm{GL}_{2}\left(\mathbf{A}_{\mathcal{F}}\right) \rightarrow \mathbf{C}$ such that

$$
\phi\left(\left[\begin{array}{cc}
a & b \\
0 & d
\end{array}\right] g\right)=\chi_{+}^{-1}(d)\left|\frac{a}{d}\right|_{\mathbf{A}_{\mathcal{F}}}^{s} \phi(g) .
$$

Conventionally, functions in $I\left(s, \chi_{+}\right)$are called sections. Let B be the upper triangular subgroup of GL_{2}. The adelic Eisenstein series associated to a section $\phi \in I\left(s, \chi_{+}\right)$is defined by

$$
E_{\mathbf{A}}(g, \phi)=\sum_{\gamma \in B(\mathcal{F}) \backslash \mathrm{GL}_{2}(\mathcal{F})} \phi(\gamma g) .
$$

It is known that the series $E_{\mathbf{A}}(g, \phi)$ is absolutely convergent for Res $\gg 0$.
2.2. Fourier coefficients of Eisenstein series. Let $\psi=\prod \psi_{v}: \mathbf{A}_{\mathcal{F}} / \mathcal{F} \rightarrow \mathbf{C}^{\times}$be the standard additive character such that $\psi_{\infty}(x)=\exp \left(2 \pi i \mathrm{~T}_{\mathcal{F} / \mathbf{Q}}(x)\right)$ for $x \in \mathcal{F} \otimes_{\mathbf{Q}} \mathbf{R}$. Put $\mathbf{w}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Let v be a place of \mathcal{F} and let $I_{v}\left(s, \chi_{+}\right)$be the local constitute of $I\left(s, \chi_{+}\right)$at v. For $\phi_{v} \in I_{v}\left(s, \chi_{+}\right)$and $\beta \in \mathcal{F}_{v}$, we recall that the β-th local Whittaker integral $W_{\beta}\left(\phi_{v}, g_{v}\right)$ is defined by

$$
W_{\beta}\left(\phi_{v}, g_{v}\right)=\int_{\mathcal{F}_{v}} \phi_{v}\left(\mathbf{w}\left[\begin{array}{cc}
1 & x_{v} \\
0 & 1
\end{array}\right] g_{v}\right) \psi\left(-\beta x_{v}\right) d x_{v}
$$

and the intertwining operator $M_{\mathbf{w}}$ is defined by

$$
M_{\mathbf{w}} \phi_{v}\left(g_{v}\right)=\int_{\mathcal{F}_{v}} \phi_{v}\left(\mathbf{w}\left[\begin{array}{cc}
1 & x_{v} \\
0 & 1
\end{array}\right] g_{v}\right) d x_{v} .
$$

Here $d x_{v}$ is Lebesgue measure if $\mathcal{F}_{v}=\mathbf{R}$ and is the Haar measure on \mathcal{F}_{v} normalized so that $\operatorname{vol}\left(\mathcal{O}_{\mathcal{F}_{v}}, d x_{v}\right)=1$ if \mathcal{F}_{v} is non-archimedean. By definition, $M_{\mathbf{w}} \phi_{v}\left(g_{v}\right)$ is the 0 -th local Whittaker integral. It is well known that local Whittaker integrals converge absolutely for $\operatorname{Re} s \gg 0$, and have meromorphic continuation to all $s \in \mathbf{C}$.

If $\phi=\otimes_{v} \phi_{v}$ is a decomposable section, then $E_{\mathbf{A}}(g, \phi)$ has the following Fourier expansion:

$$
\begin{gather*}
E_{\mathbf{A}}(g, \phi)=\phi(g)+M_{\mathbf{w}} \phi(g)+\sum_{\beta \in \mathcal{F}} W_{\beta}\left(E_{\mathbf{A}}, g\right), \text { where } \\
M_{\mathbf{w}} \phi(g)=\frac{1}{\sqrt{\left|D_{\mathcal{F}}\right|_{\mathbf{R}}}} \cdot \prod_{v} M_{\mathbf{w}} \phi_{v}\left(g_{v}\right) ; W_{\beta}\left(E_{\mathbf{A}}, g\right)=\frac{1}{\sqrt{\left|D_{\mathcal{F}}\right|_{\mathbf{R}}}} \cdot \prod_{v} W_{\beta}\left(\phi_{v}, g_{v}\right) . \tag{2.1}
\end{gather*}
$$

2.3. The choice of the local sections. We briefly recall the choice of local sections in [Hsi12, §4.3]. We begin with some notation. Let v be a place of \mathcal{F}. Let $F=\mathcal{F}_{v}$ (resp. $E=\mathcal{K} \otimes_{\mathcal{F}} \mathcal{F}_{v}$). Denote by $z \mapsto \bar{z}$ the complex conjugation. Let $|\cdot|$ be the standard absolute values on F and let $|\cdot|_{E}$ be the absolute value on E given by $|z|_{E}:=|z \bar{z}|$. Let $d_{F}=d_{\mathcal{F}_{v}}$ be a fixed generator of the different $\mathcal{D}_{\mathcal{F}}$ of \mathcal{F} / \mathbf{Q}. Write χ (resp. χ_{+}) for $\chi_{v}\left(\right.$ resp. $\left.\chi_{+, v}\right)$. If $v \in \mathbf{h}$, denote by ϖ_{v} a uniformizer of \mathcal{F}_{v}. For a set Y, denote by \mathbb{I}_{Y} the characteristic function of Y.

Case I: $v \nmid \mathfrak{C}^{-} D_{\mathcal{K} / \mathcal{F}}$. We first suppose that $v=\sigma \in \Sigma$ is archimedean and $F=\mathbf{R}$. For $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in$ $\mathrm{GL}_{2}(\mathbf{R})$, we put $J(g, i):=c i+d$. Define the sections $\phi_{k, s, \sigma}^{h}$ of weight k in $I_{v}\left(s, \chi_{+}\right)$by

$$
\phi_{k, s, \sigma}(g)=J(g, i)^{-k}|\operatorname{det}(g)|^{s} \cdot|J(g, i) \overline{J(g, i)}|^{-s}
$$

Suppose that v is non-archimedean. Denote by $\mathcal{S}(F)$ and (resp. $\mathcal{S}(F \oplus F)$) the space of Bruhat-Schwartz functions on F (resp. $F \oplus F$). Recall that the Fourier transform $\widehat{\varphi}$ for $\varphi \in \mathcal{S}(F)$ is defined by

$$
\widehat{\varphi}(y)=\int_{F} \varphi(x) \psi(y x) d x
$$

For a character $\mu: F^{\times} \rightarrow \mathbf{C}^{\times}$, we define a function $\varphi_{\mu} \in \mathcal{S}(F)$ by

$$
\varphi_{\mu}(x)=\mathbb{I}_{O_{F}^{\times}}(x) \mu(x) .
$$

If $v \mid p \mathfrak{F F}^{c}$ is split in \mathcal{K}, write $v=w \bar{w}$ with $w \mid \mathfrak{F} \Sigma_{p}$, and set

$$
\varphi_{w}=\varphi_{\chi_{w}} \text { and } \varphi_{\bar{w}}=\varphi_{\chi_{\bar{w}}^{-1}}
$$

To a Bruhat-Schwartz function $\Phi \in \mathcal{S}(F \oplus F)$, we can associate a Godement section $f_{\Phi, s} \in I_{v}\left(s, \chi_{+}\right)$defined by

$$
\begin{equation*}
f_{\Phi, s}(g):=|\operatorname{det} g|^{s} \int_{F^{\times}} \Phi((0, x) g) \chi_{+}(x)|x|^{2 s} d^{\times} x \tag{2.2}
\end{equation*}
$$

where $d^{\times} x$ is the Haar measure on F^{\times}such that $\operatorname{vol}\left(\mathcal{O}_{F}^{\times}, d^{\times} x\right)=1$. Define Godement sections by

$$
\phi_{\chi, s, v}=f_{\Phi_{v}^{0}, s}, \text { where } \Phi_{v}^{0}(x, y)= \begin{cases}\mathbb{I}_{O_{F}}(x) \mathbb{I}_{d_{F}^{-1} O_{F}}(y) & \cdots v \nmid \mathfrak{D} \tag{2.3}\\ \varphi_{\bar{w}}(x) \widehat{\varphi}_{w}(y) & \cdots v \mid \mathfrak{F F}^{c}\end{cases}
$$

Let $u \in \mathcal{O}_{F}^{\times}$. Let $\varphi_{\bar{w}}^{1}$ and $\varphi_{w}^{[u]} \in \mathcal{S}(F)$ be the Bruhat-Schwartz functions defined by

$$
\varphi_{\bar{w}}^{\frac{1}{w}}(x)=\mathbb{I}_{1+\varpi_{v} O_{F}}(x) \chi_{\bar{w}}^{-1}(x) \text { and } \varphi_{w}^{[u]}(x)=\mathbb{I}_{u\left(1+\varpi_{v} O_{F}\right)}(x) \chi_{w}(x) .
$$

Define $\Phi_{v}^{[u]} \in \mathcal{S}(F \oplus F)$ by

$$
\begin{equation*}
\Phi_{v}^{[u]}(x, y)=\frac{1}{\operatorname{vol}\left(1+\varpi_{v} O_{F}, d^{\times} x\right)} \varphi_{\bar{w}}^{1}(x) \widehat{\varphi}_{w}^{[u]}(y)=\left(\left|\varpi_{v}\right|^{-1}-1\right) \varphi_{\bar{w}}^{1}(x) \widehat{\varphi}_{w}^{[u]}(y) . \tag{2.4}
\end{equation*}
$$

Case II: $v \mid D_{\mathcal{K} / \mathcal{F}} \mathfrak{C}^{-}$. In this case, E is a field. We define an embedding $\rho: E \hookrightarrow M_{2}(F)$ by

$$
a+b \vartheta \mapsto \rho(x+b \vartheta)=\left[\begin{array}{cc}
a & b \vartheta^{2} \\
b & a
\end{array}\right] .
$$

Then $\mathrm{GL}_{2}(F)=B(F) \rho\left(E^{\times}\right)$. We fix a O_{F}-basis $\left\{1, \boldsymbol{\theta}_{v}\right\}$ of \mathcal{O}_{E} such that $\boldsymbol{\theta}_{v}$ is a uniformizer if v is ramified and $\overline{\boldsymbol{\theta}_{v}}=-\boldsymbol{\theta}_{v}$ if $v \nmid 2$. Let $t_{v}=\boldsymbol{\theta}_{v}+\overline{\boldsymbol{\theta}_{v}}$ and put

$$
\varsigma_{v}=\left[\begin{array}{cc}
d_{\mathcal{F}_{v}} & -2^{-1} t_{v} \\
0 & d_{\mathcal{F}_{v}}^{-1}
\end{array}\right]
$$

Let $\phi_{\chi, s, v}$ be the smooth section in $I_{v}\left(s, \chi_{+}\right)$defined by

$$
\left.\phi_{\chi, s, v}\left[\begin{array}{cc}
a & b \tag{2.5}\\
0 & d
\end{array}\right] \rho(z) \varsigma_{v}\right)=L\left(s, \chi_{v}\right) \cdot \chi_{+}^{-1}(d)\left|\frac{a}{d}\right|^{s} \cdot \chi^{-1}(z) \quad\left(b \in B(F), z \in E^{\times}\right)
$$

Here $L\left(s, \chi_{v}\right)$ is the local Euler factor of χ_{v}.
2.4. Fourier expansion of normalized Eisenstein series. Let \mathcal{U}_{p} be the torsion subgroup of $\mathcal{O}_{\mathcal{F}_{p}}^{\times}$. For $u=\left(u_{v}\right)_{v \mid p} \in \mathcal{U}_{p}$, let $\Phi_{p}^{[u]}=\otimes_{v \mid p} \Phi_{v}^{\left[u_{v}\right]}$ be the Bruhat-Schwartz function defined in (2.4). Define the section $\phi_{\chi, s}^{h}\left(\Phi_{p}^{[u]}\right) \in I\left(s, \chi_{+}\right)$by

$$
\phi_{\chi, s}^{h}\left(\Phi_{p}^{[u]}\right)=\bigotimes_{\sigma \in \Sigma} \phi_{k, s, \sigma}^{h} \bigotimes_{\substack{v \in \mathbf{h}, v \not p p}} \phi_{\chi, s, v} \bigotimes_{v \mid p} f_{\Phi_{v}^{[u v]}, s}
$$

We put

$$
X^{+}=\left\{\tau=\left(\tau_{\sigma}\right)_{\sigma \in \Sigma} \in \mathbf{C}^{\Sigma} \mid \operatorname{Im} \tau_{\sigma}>0 \text { for all } \sigma \in \Sigma\right\}
$$

The holomorphic Eisenstein series $\mathbb{E}_{\chi, u}^{h}: X^{+} \times \mathrm{GL}_{2}\left(\mathbf{A}_{\mathcal{F}, f}\right) \rightarrow \mathbf{C}$ is defined by

$$
\begin{align*}
& \mathbb{E}_{\chi, u}^{h}\left(\tau, g_{f}\right):=\left.\frac{\Gamma_{\Sigma}(k \Sigma)}{\sqrt{\left|D_{\mathcal{F}}\right|_{\mathbf{R}}}(2 \pi i)^{k \Sigma}} \cdot E_{\mathbf{A}}\left(\left(g_{\infty}, g_{f}\right), \phi_{\chi, s}^{h}\left(\Phi_{p}^{[u]}\right)\right)\right|_{s=0} \cdot \prod_{\sigma \in \Sigma} J\left(g_{\sigma}, i\right)^{k} \tag{2.6}\\
&\left(g_{\infty}=\left(g_{\sigma}\right)_{\sigma} \in \mathrm{GL}_{2}\left(\mathcal{F} \otimes_{\mathbf{Q}} \mathbf{R}\right),\left(g_{\sigma} i\right)_{\sigma \in \Sigma}=\left(\tau_{\sigma}\right)_{\sigma \in \Sigma}\right)
\end{align*}
$$

Let $\mathbf{c}=\left(\mathbf{c}_{v}\right) \in \mathbf{A}_{\mathcal{F}, f}^{\times}$such that $\mathbf{c}_{v}=1$ at $v \mid \mathfrak{D}$ and let $\mathfrak{c}=\mathbf{c}\left(\mathcal{O}_{\mathcal{F}} \otimes_{\mathbf{Z}} \hat{\mathbf{Z}}\right) \cap \mathcal{F}$. Define a function $\left.\mathbb{E}_{\chi, u}^{h}\right|_{\mathbf{c}}: X^{+} \rightarrow \mathbf{C}$ by $\left.\mathbb{E}_{\chi, u}^{h}\right|_{\mathfrak{c}}(\tau):=\mathbb{E}_{\chi, u}^{h}\left(\tau,\left[\begin{array}{cc}1 & 0 \\ 0 & \mathbf{c}^{-1}\end{array}\right]\right)$. Then $\left.\mathbb{E}_{\chi, u}^{h}\right|_{\mathfrak{c}}$ is a \mathfrak{c}-Hlbert modular form of weight $k \Sigma$ defined over \mathbf{C} in the sense of [Kat78, p.211].

Proposition 2.1. The q-expansion of $\mathbb{E}_{\chi, u}^{h}|c| c o l t h e ~ c u s p ~\left(O, \mathfrak{c}^{-1}\right)$ is given by

$$
\left.\mathbb{E}_{\chi, u}^{h}\right|_{\left(O, \mathfrak{c}^{-1}\right)}(q)=\sum_{\beta \in \mathcal{F}_{+}} \mathbf{a}_{\beta}\left(\mathbb{E}_{\chi, u}^{h}, \mathfrak{c}\right) \cdot q^{\beta}
$$

The β-th Fourier coefficient $\mathbf{a}_{\beta}\left(\mathbb{E}_{\chi, u}^{h}, \mathfrak{c}\right)$ is given by

$$
\begin{aligned}
\mathbf{a}_{\beta}\left(\mathbb{E}_{\chi, u}^{h}, \mathfrak{c}\right)= & \beta^{(k-1) \Sigma} \prod_{w \mid \mathfrak{F}} \chi_{w}(\beta) \mathbb{I}_{O_{F}^{\times}}(\beta) \prod_{w \in \Sigma_{p}} \chi_{w}(\beta) \mathbb{I}_{u_{v}\left(1+\varpi_{v} O_{F}\right)}(\beta) \\
& \times \prod_{v \nmid \mathfrak{D}}\left(\sum_{i=0}^{v\left(\mathbf{c}_{v} \beta\right)} \chi^{*}\left(\varpi_{v}^{i}\right)\right) \cdot \prod_{v \mid \mathfrak{C}^{-} D_{\mathcal{K} / \mathcal{F}}} L\left(0, \chi_{v}\right) \widetilde{A}_{\beta}\left(\chi_{v}\right),
\end{aligned}
$$

where

$$
\begin{align*}
\widetilde{A}_{\beta}\left(\chi_{v}\right) & :=\left.\int_{\mathcal{F}_{v}} \chi_{v}^{-1}|\cdot|_{E}^{s}\left(x_{v}+\boldsymbol{\theta}_{v}\right) \psi\left(-d_{\mathcal{F}_{v}}^{-1} \beta x_{v}\right) d x_{v}\right|_{s=0} \\
& =\lim _{n \rightarrow \infty} \int_{\varpi_{v}^{-n} \mathcal{O}_{\mathcal{F}_{v}}} \chi_{v}^{-1}\left(x_{v}+\boldsymbol{\theta}_{v}\right) \psi\left(-d_{\mathcal{F}_{v}}^{-1} \beta x_{v}\right) d x_{v} \tag{2.7}
\end{align*}
$$

Proof. This follows from (2.1) and the calculations of local Whittaker integerals of special local sections in [Hsi11, §4.3] (cf. [Hsi12, Prop. 4.1 and Prop. 4.4]).
2.5. The μ-invariants of anticyclotomic p-adic L-functions. Let $Z(\mathfrak{C})^{-}$be the anticyclotomic quotient of $Z(\mathfrak{C})$. Let $\widehat{\mathcal{O}}_{\mathcal{K}}=\mathcal{O}_{\mathcal{K}} \otimes_{\mathbf{Z}} \hat{\mathbf{Z}}$ and $U\left(\mathfrak{C} p^{n}\right):=\left\{u \in \widehat{\mathcal{O}}_{\mathcal{K}}^{\times} \mid u \equiv 1\left(\bmod \mathfrak{C} p^{n}\right)\right\}$. The reciprocity law $\operatorname{rec}_{\mathcal{K}}: \mathbf{A}_{\mathcal{K}, f}^{\times} \rightarrow$ $Z(\mathfrak{C})^{-}$induces the isomorphism:

$$
\operatorname{rec}_{\mathcal{K}}:{\underset{\hbar}{n}}_{\lim _{n}} \mathcal{K}^{\times} \mathbf{A}_{\mathcal{F}, f}^{\times} \backslash \mathbf{A}_{\mathcal{K}, f}^{\times} / U\left(\mathfrak{C} p^{n}\right) \xrightarrow{\sim} Z(\mathfrak{C})^{-}
$$

Let Γ^{-}be the maximal \mathbf{Z}_{p}-free quotient of $Z(\mathfrak{C})^{-}$. Each function ϕ on Γ^{-}will be regarded as a function on $Z(\mathfrak{C})$ by the natural projection $\pi_{-}: Z(\mathfrak{C}) \rightarrow Z(\mathfrak{C})^{-} \rightarrow \Gamma^{-}$. The anticyclotomic projection $\mathcal{L}_{\chi, \Sigma}^{-}$of the measure $\mathcal{L}_{\mathfrak{C}, \Sigma}$ is defined by

$$
\int_{\Gamma^{-}} \phi d \mathcal{L}_{\chi, \Sigma}^{-}:=\int_{Z(\mathfrak{c})} \widehat{\chi} \phi d \mathcal{L}_{\mathfrak{C}, \Sigma} .
$$

Recall that the μ-invariant $\mu(\varphi)$ of a $\overline{\mathbf{Z}}_{p}$-valued p-adic measure φ on a p-adic group H is defined to be

$$
\mu(\varphi)=\inf _{U \subset H \text { open }} v_{p}(\varphi(U))
$$

We shall give a formula of the μ-invariant $\mu_{\chi, \Sigma}^{-}$of $\mathcal{L}_{\chi, \Sigma}^{-}$in terms of p-adic valuation of Fourier coefficients of $\mathbb{E}_{\chi, u}^{h}$. To state the formula precisely, we introduce some notation.

Let $C l_{-}:=\mathcal{K}^{\times} \mathbf{A}_{\mathcal{F}, f}^{\times} \backslash \mathbf{A}_{\mathcal{K}, f} / \widehat{\mathcal{O}}_{\mathcal{K}}^{\times}$and let $C l_{-}^{\text {alg }}$ be the subgroup of $C l_{-}$generated by ramified primes. Let $O_{p}:=\mathcal{O}_{\mathcal{F}} \otimes \mathbf{Z}_{p}$. Let Γ^{\prime} be the open subgroup of Γ^{-}generated by the image of $O_{p}^{\times} \times \prod_{v \mid D_{\mathcal{K} / \mathcal{F}}} \mathcal{K}_{v}^{\times}$via rec \mathcal{K}. The reciprocity law $\operatorname{rec}_{\mathcal{K}}$ at Σ_{p} induces an injective map $\operatorname{rec}_{\Sigma_{p}}: 1+p O_{p} \hookrightarrow O_{p}^{\times}=\oplus_{w \in \Sigma_{p}} \mathcal{O}_{\mathcal{K}_{w}} \xrightarrow{\text { rec }} Z Z(\mathfrak{C})^{-}$ with finite cokernel as $p \nmid D_{\mathcal{F}}$, and it is easy to see that rec Σ_{p} induces an isomorphism $\operatorname{rec}_{\Sigma_{p}}: 1+p O_{p} \xrightarrow{\sim} \Gamma^{\prime}$. We thus identify Γ^{\prime} with the subgroup $\operatorname{rec}_{\Sigma_{p}}\left(1+p O_{p}\right)$ of $Z(\mathfrak{C})^{-}$. Let $Z^{\prime}:=\pi_{-}^{-1}\left(\Gamma^{\prime}\right)$ be the subgroup of $Z(\mathfrak{C})$ and let $C l_{-}^{\prime} \supset C l_{-}^{\text {alg }}$ be the image of Z^{\prime} in $C l_{-}$and let \mathcal{D}_{1}^{\prime} (resp. $\mathcal{D}_{1}^{\prime \prime}$) be a set of representatives of $C l_{-}^{\prime} / C l_{-}^{\text {alg }}$ (resp. $C l_{-} / C l_{-}^{\prime}$) in $\left(\mathbf{A}_{\mathcal{K}, f}^{(\mathcal{D})}\right)^{\times}$. Let $\mathcal{D}_{1}:=\mathcal{D}_{1}^{\prime \prime} \mathcal{D}_{1}^{\prime}$ be a set of representatives of $C l_{-} / C l_{-}^{\text {alg }}$. Let \mathcal{U}_{p} be the torsion subgroup of $\left(\mathcal{O}_{\mathcal{F}} \otimes_{\mathbf{Z}} \mathbf{Z}_{p}\right)^{\times}$and let $\mathcal{U}^{\text {alg }}:=\widehat{\mathcal{O}}_{\mathcal{K}}^{\times} \cap\left(\mathcal{K}^{\times}\right)^{1-c}$. Let \mathcal{D}_{0} be a set of representatives of $\mathcal{U}_{p} / \mathcal{U}^{\text {alg }}$ in \mathcal{U}_{p}. For $a \in \mathbf{A}_{\mathcal{K}, f}^{\times}$, let $\mathfrak{c}(a):=\mathfrak{c}\left(\mathcal{O}_{\mathcal{K}}\right) \mathrm{N}_{\mathcal{K} / \mathcal{F}}(\mathfrak{a})$, where $\mathfrak{a}=a\left(\mathcal{O}_{\mathcal{K}} \otimes \mathbf{Z} \mathbf{Z}\right) \cap \mathcal{K}$. The following theorem is proved by the ideas of Hida in [Hid10].

Theorem 2.2 (Thm. $5.5[\mathrm{Hsi12]})$. Suppose that $p \nmid D_{\mathcal{F}}$. Then we have

$$
\mu_{\chi, \Sigma}^{-}=\inf _{\substack{(u, a) \in \mathcal{D}_{0} \times \mathcal{D}_{1} \\ \beta \in \mathcal{F}_{+}}} v_{p}\left(\mathbf{a}_{\beta}\left(\mathbb{E}_{\chi, u}^{h}, \mathfrak{c}(a)\right)\right) .
$$

Proof. For the convenience of the readers, we sketch the proof here. For each $b \in \mathcal{D}_{1}^{\prime \prime}$, we denote by $\mathcal{L}_{\chi, \Sigma}^{b}$ the p-adic measure on $1+p O_{p} \simeq \Gamma^{\prime}$ obtained by the restriction of $\mathcal{L}_{\chi, \Sigma}^{-}$to $b \cdot \Gamma^{\prime}:=\pi_{-}\left(\operatorname{rec}_{\mathcal{K}}(b)\right) \Gamma^{-}$. To be precise, we have

$$
\int_{\Gamma^{\prime}} \phi d \mathcal{L}_{\chi, \Sigma}^{b}:=\int_{\Gamma^{-}} \mathbb{I}_{b, \Gamma^{\prime}} \cdot \phi \mid\left[b^{-1}\right] d \mathcal{L}_{\chi, \Sigma}^{-}
$$

where $\mathbb{I}_{b . \Gamma^{\prime}}$ is the characteristic functions of $b . \Gamma^{\prime}$. Let $\mu_{\chi, \Sigma}^{b}$ be the μ-invariant of the p-adic measures $\mathcal{L}_{\chi, \Sigma}^{b}$. Note that $\Gamma^{-}=\bigsqcup_{b \in \mathcal{D}_{1}^{\prime \prime}} b . \Gamma^{\prime}$, so it is clear that

$$
\begin{equation*}
\mu_{\chi, \Sigma}^{-}=\inf _{b \in \mathcal{D}_{1}^{\prime \prime}} \mu_{\chi, \Sigma}^{b} \tag{2.8}
\end{equation*}
$$

For $(u, a) \in \mathcal{D}_{0} \times \mathcal{D}_{1}$, we let $\mathcal{E}_{u, a}$ be the p-adic avatar of $\left.\mathbb{E}_{\chi, u}^{h}\right|_{\mathfrak{c}(a)}([H s i 12, \S 2.5 .5])$. Let t be the Serre-Tate coordinate of the CM point \mathbf{x} with the polarization ideal $\mathfrak{c}\left(\mathcal{O}_{\mathcal{K}}\right)$ defined in [Hsi12, §5.2]. For $a \in \mathcal{D}_{1}^{\prime}$, let $\langle a\rangle_{\Sigma}$ be the unique element in $1+p O_{p}$ such that $\operatorname{rec}_{\Sigma_{p}}\left(\langle a\rangle_{\Sigma}\right)=\pi_{-}\left(\operatorname{rec}_{\mathcal{K}}(a)\right) \in \Gamma^{\prime}$. For each $b \in \mathcal{D}_{1}^{\prime \prime}$, we define a t-expansion $\mathcal{E}^{b}(t)$ by

$$
\mathcal{E}^{b}(t):=\# \mathcal{U}^{\text {alg }} . \sum_{(u, a) \in \mathcal{D}_{0} \times b \mathcal{D}_{1}^{\prime}} \chi\left(a b^{-1}\right) \mathcal{E}_{u, a} \mid[a]\left(t^{\left.\left\langle a b^{-1}\right\rangle_{\Sigma} u^{-1}\right), ~, ~, ~}\right.
$$

where $\mid[a]$ is the Hecke action induced by a (See [Hsi12, Remark 4.5]). With the help of an an explicit formula of toric period integral of Eisenstein series ([Hsi11, Prop. 5.1] and [Hsi12, Prop.4.9]), it is shown in [Hsi12, Prop. 5.2] that $\mathcal{E}^{b}(t)$ essentially gives rise to the t-expansion of the measure $\mathcal{L}_{\chi, \Sigma}^{b}$, and hence we find that

$$
\begin{equation*}
\mu_{\chi, \Sigma}^{b}=\inf \left\{r \in \mathbf{Q}_{\geq 0} \mid p^{-r} \mathcal{E}^{b}(t) \not \equiv 0\left(\bmod \mathfrak{m}_{\overline{\mathbf{z}}_{p}}\right)\right\} \tag{2.9}
\end{equation*}
$$

where $\mathfrak{m}_{\overline{\mathbf{Z}}_{p}}$ is the maximal ideal of $\overline{\mathbf{Z}}_{p}$. By the linear independence of p-adic modular forms modulo p [Hid10, Cor.3.2], the q-expansion principle of p-adic modular forms combined with [Hsi12, Lemma 5.3], we can conclude from (2.8) and (2.9) that

$$
\mu_{\chi, \Sigma}^{-}=\inf _{b \in \mathcal{D}_{1}^{\prime \prime}} \mu_{\chi, \Sigma}^{b}=\inf _{\substack{(u, a) \in \mathcal{D}_{0} \times \mathcal{D}_{1}, \beta \in \mathcal{F}_{+},}} v_{p}\left(\mathbf{a}_{\beta}\left(\mathbb{E}_{\chi, u}^{h}, \mathfrak{c}(a)\right)\right)
$$

3. Proof of Theorem A

We go back to our setting in the introduction. Let λ be a Hecke character of infinity type $k \Sigma$ with $k \geq 1$ and let $\lambda^{*}:=\lambda|\cdot|_{\mathbf{A}_{\mathcal{K}}}^{-\frac{1}{2}}$. We may further assume that

$$
\mathfrak{C} \text { is the prime-to- } p \text { conductor of } \lambda \text {. }
$$

To prove Theorem A, we prepare two lemmas. The first lemma is taken from [Hid11].
Lemma 3.1. Let $w \nmid p$ be a place of \mathcal{K} and let ϖ_{w} be a uniformizer of \mathcal{K}_{w}. Let $a \in \overline{\mathbf{Z}}_{p}$. Given $e>0$, we have

$$
v_{p}\left(a+\nu\left(\varpi_{w}\right)\right)<e \text { for all but finitely many } \nu \in \mathfrak{X}^{+} .
$$

Proof. We note that $\nu\left(\varpi_{w}\right)$ is a primitive p^{n}-th root of unity for some $n \in \mathbf{Z}_{\geq 0}$, and for sufficiently large n, we have

$$
v_{p}\left(a+\nu\left(\varpi_{w}\right)\right) \leq v_{p}\left(\nu\left(\varpi_{w}\right)-1\right)=\frac{1}{p^{n}-p^{n-1}}<e .
$$

The first equality holds precisely when $v_{p}(a+1)>0$. Therefore, it is not difficult to deduce the lemma from the fact that the image of ϖ_{w} in Γ^{+}under $\operatorname{rec}_{\mathcal{K}}: \mathbf{A}_{\mathcal{K}}^{\times} \rightarrow \Gamma^{+}$generates a subgroup of Γ^{+}with finite index.

Lemma 3.2. Let $v \mid \mathfrak{C}^{-} D_{\mathcal{K} / \mathcal{F}}$ and let $e_{1}>0$ be a positive number. Then there exists $\beta_{v} \in \mathcal{F}_{v}^{\times}$such that for almost all $\nu \in \mathfrak{X}^{+}$, we have

$$
v_{p}\left(L\left(0, \lambda_{v} \nu_{v}\right) \widetilde{A}_{\beta_{v}}\left(\lambda_{v} \nu_{v}\right)\right) \leq e_{1}
$$

Here "for almost all" means "for all but finitely many".

Proof. Let $E=\mathcal{K}_{v}$ and $F=\mathcal{F}_{v}$. Let \mathfrak{m}_{E} be the maximal ideal of \mathcal{O}_{E}. For brevity, we drop the subscript v and simply write $\lambda=\lambda_{v}, \nu=\nu_{v}$. Let $a(\lambda):=\inf \left\{n \in \mathbf{Z}_{\geq 0} \mid \lambda\left(1+\mathfrak{m}_{E}^{n}\right)=1\right\}$ be the conductor of λ. Suppose that $a(\lambda)>1$. Then $\lambda(1+\mathfrak{m}) \neq 1$, and the invariant $\mu_{p}(\lambda):=\inf _{x \in E \times} v_{p}(\lambda(x)-1)=0$ as $v \nmid p$. It follows from [Hsi11, Lemma 6.4] that there exists β such that $v_{p}\left(\widetilde{A}_{\beta}(\lambda)\right)=0$. Moreover, since $\widetilde{A}_{\beta}(\lambda \nu) \equiv \widetilde{A}_{\beta}(\lambda)\left(\bmod \mathfrak{m}_{\overline{\mathbf{z}}_{p}}\right)$, we find that $v_{p}\left(\widetilde{A}_{\beta}(\lambda \nu)\right)=0$ for all $\nu \in \mathfrak{X}^{+}$. To prove the remaining part, we assume the conductor $a(\lambda)=a(\lambda \nu) \leq 1$. In virtue of Lemma 3.1, it suffices to show that there exists β such that

$$
\begin{equation*}
v_{p}\left(\widetilde{A}_{\beta}(\lambda \nu)\right)=v_{p}\left(a+b \cdot \nu\left(\varpi_{w}\right)\right) \tag{3.1}
\end{equation*}
$$

for some $a \in \overline{\mathbf{Z}}_{p}, b \in \overline{\mathbf{Z}}_{p}^{\times}$independent of ν and a uniformizer ϖ_{w} of E.
Let ϖ be a uniformizer of F. Suppose that v is ramified. Recall that $\boldsymbol{\theta}=\boldsymbol{\theta}_{v}$ is chosen to be a uniformizer of E. Let $\beta \in \varpi^{-1} O_{F}^{\times}$, so $v(\beta)=-1$. If $v \nmid \mathfrak{C}^{-}$, then by [Hsi11, Lemma 4.1], we have

$$
\widetilde{A}_{\beta}(\lambda \nu)=\left|\mathcal{D}_{F}\right|^{-1} \lambda^{-1} \nu^{-1}(\boldsymbol{\theta})|\varpi| .
$$

If $v \mid \mathfrak{C}^{-}$, then it follows from [Hsi11, Prop. 4.4 (1)] that

$$
\begin{aligned}
\widetilde{A}_{\beta}(\lambda \nu) & =\lambda^{*}\left(\boldsymbol{\theta}^{-1}\right)|\varpi|^{\frac{1}{2}} \nu\left(\boldsymbol{\theta}^{-1}\right)+\lambda^{*}\left(-\beta d_{F}^{-1}\right) \nu(-\beta \varpi) \epsilon\left(1, \lambda_{+}|\cdot|^{-1}, \psi\right) \quad\left(\lambda_{+}:=\left.\lambda\right|_{F \times}\right) \\
& =\lambda^{*}\left(\boldsymbol{\theta}^{-1}\right)|\varpi|^{\frac{1}{2}} \cdot \nu\left(\boldsymbol{\theta}^{-1}\right)+\lambda^{*}\left(-\beta d_{F}^{-1}\right) \epsilon\left(1, \lambda_{+}|\cdot|^{-1}, \psi\right) .
\end{aligned}
$$

Here $\epsilon\left(s, \lambda_{+}|\cdot|^{-1}, \psi\right)$ is the Tate's local epsilon factor attached to the additive character $\psi_{v}: F \rightarrow \mathbf{C}^{\times}$. In any case, it is clear that (3.1) holds for $\beta \in \varpi^{-1} \mathcal{O}_{F}^{\times}$when v is ramified.

Suppose that v is inert. Then $a(\lambda \nu)=1$. Let $\beta \in O_{F}^{\times}($so $v(\beta)=0)$. By [Hsi11, Prop.4.5], if $\left.\lambda\right|_{O_{v}^{\times}}=1$, then

$$
\widetilde{A}_{\beta}(\lambda \nu)=-|\varpi|\left(1+\lambda^{*} \nu(\varpi)\right),
$$

and if $\left.\lambda\right|_{O_{F}^{\times}}$is non-trivial, then

$$
\widetilde{A}_{\beta}(\lambda \nu)=\mathcal{I}_{\lambda \nu}(0)+\lambda^{*}\left(-\beta d_{F}^{-1}\right) \nu(\varpi) \epsilon\left(1, \lambda_{+}|\cdot|^{-1}, \psi\right),
$$

where

$$
\mathcal{I}_{\lambda \nu}(0)=\int_{O_{F}} \lambda^{-1} \nu^{-1}(x+\boldsymbol{\theta}) d x .
$$

Recall that $\boldsymbol{\theta}$ is chosen such that $\mathcal{O}_{E}=\mathcal{O}_{F}+\mathcal{O}_{F} \boldsymbol{\theta}$. We have $x+\boldsymbol{\theta} \in \mathcal{O}_{E}^{\times}$for $x \in \mathcal{O}_{F}$. As ν is unramified at v, we find that

$$
\mathcal{I}_{\lambda \nu}(0)=\int_{O_{F}} \lambda^{-1}(x+\boldsymbol{\theta}) d x
$$

is independent of ν. Therefore, in either cases, (3.1) holds for $\beta \in \mathcal{O}_{F}^{\times}$.
Theorem 3.3. Suppose that $p \nmid D_{\mathcal{F}}$. Then

$$
\mu_{\lambda, \Sigma}=0
$$

Proof. Let S^{-}be the set of prime factors of $\mathfrak{C}^{-} D_{\mathcal{K} / \mathcal{F}}$. By Lemma 3.2, for $e_{1}>0$, we choose $\left(\beta_{v}\right) \in$ $\prod_{v \mid \mathfrak{C}^{-} D_{\mathcal{K} / \mathcal{F}}} \mathcal{F}_{v}^{\times}$such that

$$
\begin{equation*}
\sum_{v \mid \mathfrak{C}^{-} D_{\mathcal{K} / \mathcal{F}}} v_{p}\left(L\left(0, \lambda_{v} \nu_{v}\right) \widetilde{A}_{\beta_{v}}\left(\lambda_{v} \nu_{v}\right)\right) \leq \#\left(S^{-}\right) \cdot e_{1} \tag{3.2}
\end{equation*}
$$

for almost $\nu \in \mathfrak{X}^{-}$. Let $\mathbf{c} \in \mathbf{A}_{\mathcal{F}, f}^{\times}$and \mathfrak{c} be the associated ideal as in Prop. 2.1. We define an idele $\eta \in \mathbf{A}_{\mathcal{K}, f}^{\times}$ such that

- $\eta_{v}=\beta_{v}^{-1}$ for all $v \mid \mathfrak{C}^{-} D_{\mathcal{K} / \mathcal{F}}$,
- $\eta_{v}=\mathbf{c}_{v}$ for all finite $v \nmid \mathfrak{D}$,
- $\eta_{v}=1$ for the remaining places v.

Let $U=\prod U_{v}$ be an open subgroup of $\mathbf{A}_{\mathcal{F}}^{\times}$such that $U_{v}=\mathcal{O}_{\mathcal{F}_{v}}^{\times}$at all $v \nmid \mathfrak{C}^{-} D_{\mathcal{K} / \mathcal{F}}$ and $U_{\infty}=(\mathcal{F} \otimes \mathbf{R})_{+}$. Moreover, it is not difficult to see from [Hsi11, (4.17)] that for $v \mid \mathfrak{C}^{-} D_{\mathcal{K} / \mathcal{F}}, U_{v}$ can be chosen small enough, depending on λ_{v} and β_{v}, so that

$$
\widetilde{A}_{\beta_{v} u}\left(\lambda_{v} \nu_{v}\right)=\widetilde{A}_{\beta_{v}}\left(\lambda_{v} \nu_{v}\right) \text { for all } u \in U_{v} \text { and } \nu \in \mathfrak{X}^{+} .
$$

Consider the idele class $\mathcal{F}^{\times} \eta U$ in $\mathbf{A}_{\mathcal{F}}^{\times}$. We may choose a uniformizer $\varpi_{v_{0}} \in \mathcal{K}_{v_{0}}$ with a finite place $v_{0} \nmid \mathfrak{D}$ such that $\varpi_{v_{0}}$ lies in the class $\mathcal{F}^{\times} \eta U$. We can write

$$
\varpi_{v_{0}} \in \beta \eta U \text { for some } \beta \in \mathcal{F}^{\times}
$$

Since $\eta_{v}=1$ when v is archimedean or $v \mid p$, we find that $\beta \in \mathcal{F}_{+} \cap \mathcal{O}_{\mathcal{F},(p)}^{\times}$by the choice of U. Let $u \in \mathcal{U}_{p}$ such that $\beta \equiv u(\bmod p)$. By Prop. 2.1 we have

$$
\begin{aligned}
v_{p}\left(\mathbf{a}_{\beta}\left(\mathbb{E}_{\lambda \nu, u}^{h}, \mathfrak{c}\right)\right)= & \sum_{v \mid \mathbb{C}^{-} D_{\mathcal{K} / \mathcal{F}}} v_{p}\left(L\left(0, \lambda_{v} \nu_{v}\right) \widetilde{A}_{\beta}\left(\lambda_{v} \nu_{v}\right)\right)+\sum_{v \nmid \mathfrak{D}} v_{p}\left(\sum_{i=0}^{v\left(\beta \mathbf{c}_{v}\right)} \lambda^{*} \nu\left(\varpi_{v}^{i}\right)\right) \\
& =\sum_{v \mid \mathbb{C}^{-} D_{\mathcal{K} / \mathcal{F}}} v_{p}\left(L\left(0, \lambda_{v} \nu_{v}\right) \widetilde{A}_{\beta_{v}}\left(\lambda_{v} \nu_{v}\right)\right)+v_{p}\left(\lambda^{*} \nu\left(\varpi_{v_{0}}\right)+1\right)
\end{aligned}
$$

It follows that for almost all $\nu \in \mathfrak{X}^{+}$, we have

$$
v_{p}\left(\mathbf{a}_{\beta}\left(\mathbb{E}_{\lambda \nu, u}^{h}, \mathfrak{c}\right)\right) \leq \#\left(S^{-}\right) \cdot e_{1}+v_{p}\left(\lambda^{*}\left(\varpi_{v_{0}}\right) \cdot \nu\left(\varpi_{v_{0}}\right)+1\right) .
$$

Hence, from Theorem 2.2 and Lemma 3.1 we deduce that

$$
0 \leq \mu_{\lambda, \Sigma} \leq \lim \inf _{\nu} \mu_{\lambda \nu, \Sigma}^{-} \leq \lim \inf _{\nu} v_{p}\left(\mathbf{a}_{\beta}\left(\mathbb{E}_{\lambda \nu, u}^{h}, \mathfrak{c}\right)\right) \leq \#\left(S^{-}\right) \cdot e_{1}
$$

This inequality holds for all $e_{1}>0$, so $\mu_{\lambda, \Sigma}=0$.

References

[Gil87] R. Gillard, Transformation de Mellin-Leopoldt des fonctions elliptiques, J. Number Theory 25 (1987), no. 3, $379-393$.
[Gil91] , Remarques sur l'invariant mu d'Iwasawa dans le cas CM, Sém. Théor. Nombres Bordeaux (2) 3 (1991), no. 1, 13-26.
[Hid06] H. Hida, Anticyclotomic main conjectures, Doc. Math. (2006), no. Extra Vol., 465-532 (electronic).
[Hid09] , Quadratic exercises in Iwasawa theory, Int. Math. Res. Not. IMRN (2009), no. 5, 912-952.
[Hid10] , The Iwasawa μ-invariant of p-adic Hecke L-functions, Ann. of Math. (2) $\mathbf{1 7 2}$ (2010), no. 1, 41-137.
[Hid11] , Vanishing of the μ-invariant of p-adic Hecke L-functions, Compos. Math. 147 (2011), no. 4, 1151-1178.
[Hsi11] M.-L. Hsieh, On the non-vanishing of Hecke L-values modulo p, to appear in American Journal of Mathematics. Preprint is available at "http://www.math.ntu.edu.tw/ mlhsieh/research.htm", 2011.
[Hsi12] , On the μ-invariant of anticyclotomic p-adic L-functions for CM fields, to appear in J. Reine Angew. Math. DOI:10.1515/crelle-2012-0056, 2012.
[HT93] H. Hida and J. Tilouine, Anti-cyclotomic Katz p-adic L-functions and congruence modules, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 2, 189-259.
[HT94] , On the anticyclotomic main conjecture for CM fields, Invent. Math. 117 (1994), no. 1, 89-147.
[Kat78] N. Katz, p-adic L-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199-297.
[Sch87] L. Schneps, On the μ-invariant of p-adic L-functions attached to elliptic curves with complex multiplication, J. Number Theory 25 (1987), no. 1, 20-33.
[Suj10] R. Sujatha, Elliptic curves and Iwasawa's $\mu=0$ conjecture, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., vol. 18, Springer, New York, 2010, pp. 125-135.

Department of Mathematics, UCLA, CA 90095-1555, U.S.A.
E-mail address: ashayburungale@gmail.com
Department of Mathematics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
E-mail address: mlhsieh@math.ntu.edu.tw

