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Abstract. Let p > 2 be an ordinary prime for a CM field K. Katz and Hida-Tilouine constructed the
p-adic Hecke L-function attached to a p-ordinary CM type and a branch character. In this note, we prove
that the µ-invariant of this p-adic Hecke L-function always vanishes when p is unramified in K.

1. Introduction

The purpose of this note is to prove the vanishing of the µ-invariant of p-adic Hecke L-functions for CM
fields constructed by Katz and Hida-Tilouine. We let F be a totally real field of degree d over Q and K be
a totally imaginary quadratic extension of F . Let DF (resp. DF ) be the discriminant (resp. different) of
F/Q. Let p > 2 be an odd rational prime. Fix two embeddings ι∞ : Q̄ → C and ιp : Q̄ → Cp once and for
all. Let Z̄ be the ring of algebraic integers and let Z̄p be the p-adic completion of ιp(Z̄) in Cp. Denote by
c the complex conjugation on C which induces the unique non-trivial element of Gal(K/F). We assume the
following hypothesis throughout this article:

(ord) Every prime of F above p splits in K.

Fix a p-ordinary CM type Σ, namely Σ is a CM type of K such that p-adic places induced by elements in Σ
via ιp are disjoint from those induced by elements in Σc. The existence of such Σ is assured by our assumption
(ord). Let DK/F be the relative different of K/F . Let C be a prime-to-p integral ideal of OK and let ϑ ∈ K
such that

(d1) c(ϑ) = −ϑ and Imσ(ϑ) > 0 for all σ ∈ Σ,
(d2) c(OK) := D−1

F (2ϑD−1
K/F ) is prime to pCCcDK/F .

Let K+
∞ and K−∞ be the cyclotomic Zp-extension and anticyclotomic Zdp-extension of K. Let K∞ = K+

∞K−∞ be
a Zd+1

p -extension of K. If one assumes Leopoldt’s conjecture for K, then K∞ is the maximal Zd+1
p -extension of

K. Let Γ± := Gal(K±∞/K) and let Γ = Gal(K∞/K) ' Γ+×Γ−. Let Z(C) be the ray class group of K modulo
Cp∞. In [Kat78] and [HT93], a Z̄p-valued p-adic measure LC,Σ on Z(C) is constructed such that

1

ΩkΣ+2κ
p

·
∫
Z(C)

λ̂dLC,Σ =L(pC)(0, λ) · Eulp(λ)EulC+(λ)

× πκΓΣ(kΣ + κ)√
|DF |R(Imϑ)κ · ΩkΣ+2κ

∞
· [O×K : O×F ],

where (i) λ is a Hecke character modulo Cp∞ of infinity type kΣ + κ(1− c) with either k ≥ 1 and κ ∈ Z≥0[Σ]

or k ≤ 1 and kΣ + κ ∈ Z>0[Σ], and λ̂ is the p-adic avatar of λ regarded as a p-adic Galois character via
geometrically normalized reciprocity law, (ii) Eulp(λ) and EulC+(λ) are certain modified Euler factors (For
the definitions, see [Hsi12, (4.16)]).

We fix a Hecke character λ of infinity type kΣ, k ≥ 1. Let Lλ,Σ be the p-adic measure on Γ obtained by
the pull-back of LC,Σ along λ. In other words, for every locally constant function ϕ on Γ, we have∫

Γ

ϕdLλ,Σ =

∫
Z(C)

ϕλ̂dLC,Σ .
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We call Lλ,Σ the p-adic L-function of the branch character λ with respect to the p-adic CM-type Σ. It is
conjectured by Gillard [Gil91, Conj. (i), p.21] that the µ-invariant µλ,Σ of Lλ,Σ always vanishes. In this note,
we prove this conjecture when p - DF .

Theorem A. Suppose that p - DF . Then µλ,Σ = 0.

When F = Q and λ arises from elliptic curves over Q with CM by K, this theorem is an immediate
consequence of the vanishing of the µ-invariant of Coates-Wiles p-adic L-functions due to Gillard [Gil87] and
Schneps [Sch87] independently. When the conductor of the residual character λ̂ (mod p) is a product of primes
split in K/F , the above theorem is due to Hida in [Hid11]. Note that since the branch character λ is of infinite
order, this p-adic L-function Lλ,Σ indeed is a suitable twist of the p-adic L-functions considered by Hida.

To explain the idea of Hida, we need to introduce some notation. Let X+ be the set consisting of finite
order characters ν : Γ+ → µp∞ . For every ν ∈ X+, we shall regard ν as a Hecke character of K× by the
geometrically normalized reciprocity law recK : A×K → Gal(Q̄/K)ab → Γ. Let µ−λν,Σ denote the µ-invariant
of the anticyclotomic projection L−λν,Σ of Katz p-adic L-function Lλν,Σ attached to the brach character λν.
When λ has split conductor, Hida in [Hid10] proves a precise formula of µ−λν,Σ in terms of the p-adic valuation
of Fourier coefficients of certain Eisenstein series. Based on this exact formula, Hida concludes the vanishing
of µλ,Σ by showing directly that lim infν∈X+ µ−λν,Σ = 0.

Our proof of Theorem A follows the approach of Hida. It is shown in [Hsi12, Thm. 5.5] that µ−λν,Σ in general
can be written to be the p-adic valuation of Fourier coefficients of certain special toric Eisenstein series Ehλν,u.
We are not able to calculate the Fourier coefficients of these toric Eisenstein series in full generality, so we
do not obtain a precise formula of µ−λν,Σ in full generality. However, we can estimate an upper bound of the
p-adic valuation of Fourier coefficients of Ehλν,u, and obtain an upper bound of µ−λν,Σ . Following Hida, we show
this upper bound is as small as possible when ν ∈ X+ has sufficiently deep conductor.

In virtue of [HT93, Thm. 8.2], Theorem A provides an alternative proof of the one-sided divisibility between
anticyclotomic p-adic L-functions and the congruence ideals of CM forms, which was proved in [Hid09, Cor. 3.8]
using the trick of base change. This divisibility result eventually leads to the solution of the anticyclotomic
main conjure proved in [Hid09, Theorem, p.914] combined with results of Hida and Tilouine [HT94] and Hida
[Hid06]. In addition, we remark that the µ-invariant µλ,Σ considered in this note is referred to as the analytic
µ-invariant in Iwasawa theory. Iwasawa main conjecture for CM fields implies that µλ,Σ equals the algebraic
µ-invariant attached to λ, i.e. the µ-invariant of characteristic power series of a certain Iwasawa module
(cf. [HT94, Main conjecture, p.90]). In particular, we can consider an CM elliptic curve E over the totally
real field F with complex multiplication by the ring of integers of an imaginary quadratic fieldM. Assuming
the validity of the main conjecture for the CM field K = FM, our result would imply the algebraic µ-invariant
for E over K∞ vanishes as well. The arithmetic aspect of the vanishing of algebraic µ-invariants of elliptic
curves in a more general setting is discussed in [Suj10].

Acknowledgments. The authors would like to thank Prof. Hida for pointing out the application of the vanishing
of µ-invariants to the anticyclotomic main conjecture. The authors also thank the referee for the careful reading
and suggestion on the improvement of this manuscript.

2. Eisenstein series and anticyclotomic µ-invariants

In this section, we recall without proofs the construction of certain special Eisenstein series, which are used
to compute the anticyclotomic µ-invariant in [Hsi12].

2.1. Eisenstein series on GL2(AF ). Let χ be a Hecke character of infinity type kΣ, k ≥ 1. Suppose that C
is the prime-to-p conductor of χ. We write C = C+C− such that C+ (resp. C−) is a product of prime factors
split (resp. non-split) over F . We further decompose C+ = FFc such that (F,Fc) = 1 and F ⊂ Fcc. Let DK/F
be the discriminant of K/F and let

D = pCCcDK/F .

We will identify the CM-type Σ ⊂ Hom(K,C) with the set Hom(F ,R) of archimedean places of F by the
restriction map. Let K0

∞ :=
∏
σ∈Σ SO(2,R) be a maximal compact subgroup of GL2(F ⊗Q R). We put

χ∗ = χ|·|−
1
2

AK
and χ+ = χ|A×F .
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For s ∈ C, we let I(s, χ+) denote the space consisting of smooth and K0
∞-finite functions φ : GL2(AF )→ C

such that

φ(

[
a b
0 d

]
g) = χ−1

+ (d)
∣∣∣a
d

∣∣∣s
AF

φ(g).

Conventionally, functions in I(s, χ+) are called sections. Let B be the upper triangular subgroup of GL2. The
adelic Eisenstein series associated to a section φ ∈ I(s, χ+) is defined by

EA(g, φ) =
∑

γ∈B(F)\GL2(F)

φ(γg).

It is known that the series EA(g, φ) is absolutely convergent for Res� 0.

2.2. Fourier coefficients of Eisenstein series. Let ψ =
∏
ψv : AF/F → C× be the standard additive

character such that ψ∞(x) = exp(2πiTF/Q(x)) for x ∈ F ⊗Q R. Put w =

[
0 −1
1 0

]
. Let v be a place of F

and let Iv(s, χ+) be the local constitute of I(s, χ+) at v. For φv ∈ Iv(s, χ+) and β ∈ Fv, we recall that the
β-th local Whittaker integral Wβ(φv, gv) is defined by

Wβ(φv, gv) =

∫
Fv
φv(w

[
1 xv
0 1

]
gv)ψ(−βxv)dxv,

and the intertwining operator Mw is defined by

Mwφv(gv) =

∫
Fv
φv(w

[
1 xv
0 1

]
gv)dxv.

Here dxv is Lebesgue measure if Fv = R and is the Haar measure on Fv normalized so that vol(OFv , dxv) = 1
if Fv is non-archimedean. By definition, Mwφv(gv) is the 0-th local Whittaker integral. It is well known that
local Whittaker integrals converge absolutely for Res� 0, and have meromorphic continuation to all s ∈ C.

If φ = ⊗vφv is a decomposable section, then EA(g, φ) has the following Fourier expansion:

(2.1)

EA(g, φ) = φ(g) +Mwφ(g) +
∑
β∈F

Wβ(EA, g), where

Mwφ(g) =
1√
|DF |R

·
∏
v

Mwφv(gv) ; Wβ(EA, g) =
1√
|DF |R

·
∏
v

Wβ(φv, gv).

2.3. The choice of the local sections. We briefly recall the choice of local sections in [Hsi12, §4.3]. We
begin with some notation. Let v be a place of F . Let F = Fv (resp. E = K ⊗F Fv). Denote by z 7→ z̄ the
complex conjugation. Let |·| be the standard absolute values on F and let |·|E be the absolute value on E
given by |z|E := |zz̄|. Let dF = dFv be a fixed generator of the different DF of F/Q. Write χ (resp. χ+) for
χv (resp. χ+,v). If v ∈ h, denote by $v a uniformizer of Fv. For a set Y , denote by IY the characteristic
function of Y .

Case I : v - C−DK/F . We first suppose that v = σ ∈ Σ is archimedean and F = R. For g =

[
a b
c d

]
∈

GL2(R), we put J(g, i) := ci+ d. Define the sections φhk,s,σ of weight k in Iv(s, χ+) by

φk,s,σ(g) =J(g, i)−k |det(g)|s ·
∣∣∣J(g, i)J(g, i)

∣∣∣−s .
Suppose that v is non-archimedean. Denote by S(F ) and (resp. S(F ⊕ F )) the space of Bruhat-Schwartz

functions on F (resp. F ⊕ F ). Recall that the Fourier transform ϕ̂ for ϕ ∈ S(F ) is defined by

ϕ̂(y) =

∫
F

ϕ(x)ψ(yx)dx.

For a character µ : F× → C×, we define a function ϕµ ∈ S(F ) by

ϕµ(x) = IO×F (x)µ(x).

If v | pFFc is split in K, write v = ww with w|FΣp, and set

ϕw = ϕχw and ϕw = ϕχ−1
w
.
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To a Bruhat-Schwartz function Φ ∈ S(F ⊕ F ), we can associate a Godement section fΦ,s ∈ Iv(s, χ+) defined
by

(2.2) fΦ,s(g) := |det g|s
∫
F×

Φ((0, x)g)χ+(x) |x|2s d×x,

where d×x is the Haar measure on F× such that vol(O×F , d×x) = 1. Define Godement sections by

(2.3) φχ,s,v = fΦ0
v,s
, where Φ0

v(x, y) =

{
IOF (x)Id−1

F OF
(y) · · · v - D,

ϕw(x)ϕ̂w(y) · · · v | FFc.

Let u ∈ O×F . Let ϕ1
w and ϕ[u]

w ∈ S(F ) be the Bruhat-Schwartz functions defined by

ϕ1
w(x) = I1+$vOF (x)χ−1

w (x) and ϕ[u]
w (x) = Iu(1+$vOF )(x)χw(x).

Define Φ
[u]
v ∈ S(F ⊕ F ) by

(2.4) Φ[u]
v (x, y) =

1

vol(1 +$vOF , d×x)
ϕ1
w(x)ϕ̂[u]

w (y) = (|$v|−1 − 1)ϕ1
w(x)ϕ̂[u]

w (y).

Case II : v | DK/FC−. In this case, E is a field. We define an embedding ρ : E ↪→M2(F ) by

a+ bϑ 7→ ρ(x+ bϑ) =

[
a bϑ2

b a

]
.

Then GL2(F ) = B(F )ρ(E×). We fix a OF -basis {1,θv} of OE such that θv is a uniformizer if v is ramified
and θv = −θv if v - 2. Let tv = θv + θv and put

ςv =

[
dFv −2−1tv
0 d−1

Fv

]
.

Let φχ,s,v be the smooth section in Iv(s, χ+) defined by

(2.5) φχ,s,v(

[
a b
0 d

]
ρ(z)ςv) = L(s, χv) · χ−1

+ (d)
∣∣∣a
d

∣∣∣s · χ−1(z) (b ∈ B(F ), z ∈ E×).

Here L(s, χv) is the local Euler factor of χv.

2.4. Fourier expansion of normalized Eisenstein series. Let Up be the torsion subgroup of O×Fp . For

u = (uv)v|p ∈ Up, let Φ
[u]
p = ⊗v|pΦ

[uv]
v be the Bruhat-Schwartz function defined in (2.4). Define the section

φhχ,s(Φ
[u]
p ) ∈ I(s, χ+) by

φhχ,s(Φ
[u]
p ) =

⊗
σ∈Σ

φhk,s,σ
⊗
v∈h,
v-p

φχ,s,v
⊗
v|p

f
Φ

[uv ]
v ,s

.

We put
X+ =

{
τ = (τσ)σ∈Σ ∈ CΣ | Im τσ > 0 for all σ ∈ Σ

}
.

The holomorphic Eisenstein series Ehχ,u : X+×GL2(AF,f )→ C is defined by

(2.6)
Ehχ,u(τ, gf ) :=

ΓΣ(kΣ)√
|DF |R(2πi)kΣ

· EA

(
(g∞, gf ), φhχ,s(Φ

[u]
p )
)
|s=0 ·

∏
σ∈Σ

J(gσ, i)
k,

(g∞ = (gσ)σ ∈ GL2(F ⊗Q R), (gσi)σ∈Σ = (τσ)σ∈Σ).

Let c = (cv) ∈ A×F,f such that cv = 1 at v | D and let c = c(OF⊗Z Ẑ)∩F . Define a function Ehχ,u|c : X+ → C

by Ehχ,u|c(τ) := Ehχ,u(τ,

[
1 0
0 c−1

]
). Then Ehχ,u|c is a c-Hlbert modular form of weight kΣ defined over C in

the sense of [Kat78, p.211].
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Proposition 2.1. The q-expansion of Ehχ,u|c at the cusp (O, c−1) is given by

Ehχ,u|(O,c−1)(q) =
∑
β∈F+

aβ(Ehχ,u, c) · qβ .

The β-th Fourier coefficient aβ(Ehχ,u, c) is given by

aβ(Ehχ,u, c) =β(k−1)Σ
∏
w|F

χw(β)IO×F (β)
∏
w∈Σp

χw(β)Iuv(1+$vOF )(β)

×
∏
v-D

v(cvβ)∑
i=0

χ∗($i
v)

 · ∏
v|C−DK/F

L(0, χv)Ãβ(χv),

where

(2.7)
Ãβ(χv) :=

∫
Fv
χ−1
v |·|

s
E(xv + θv)ψ(−d−1

Fvβxv)dxv|s=0

= lim
n→∞

∫
$−nv OFv

χ−1
v (xv + θv)ψ(−d−1

Fvβxv)dxv.

Proof. This follows from (2.1) and the calculations of local Whittaker integerals of special local sections in
[Hsi11, §4.3] (cf. [Hsi12, Prop. 4.1 and Prop. 4.4]). �

2.5. The µ-invariants of anticyclotomic p-adic L-functions. Let Z(C)− be the anticyclotomic quotient
of Z(C). Let ÔK = OK⊗Z Ẑ and U(Cpn) :=

{
u ∈ Ô×K | u ≡ 1 (mod Cpn)

}
. The reciprocity law recK : A×K,f →

Z(C)− induces the isomorphism:

recK : lim←−
n

K×A×F,f\A
×
K,f/U(Cpn)

∼→ Z(C)−.

Let Γ− be the maximal Zp-free quotient of Z(C)−. Each function φ on Γ− will be regarded as a function on
Z(C) by the natural projection π− : Z(C)→ Z(C)− → Γ−. The anticyclotomic projection L−χ,Σ of the measure
LC,Σ is defined by ∫

Γ−
φdL−χ,Σ :=

∫
Z(C)

χ̂φdLC,Σ .

Recall that the µ-invariant µ(ϕ) of a Z̄p-valued p-adic measure ϕ on a p-adic group H is defined to be

µ(ϕ) = inf
U⊂H open

vp(ϕ(U)).

We shall give a formula of the µ-invariant µ−χ,Σ of L−χ,Σ in terms of p-adic valuation of Fourier coefficients of
Ehχ,u. To state the formula precisely, we introduce some notation.

Let Cl− := K×A×F,f\AK,f/Ô
×
K and let Clalg

− be the subgroup of Cl− generated by ramified primes. Let
Op := OF ⊗ Zp. Let Γ′ be the open subgroup of Γ− generated by the image of O×p ×

∏
v|DK/F K

×
v via recK.

The reciprocity law recK at Σp induces an injective map recΣp : 1 + pOp ↪→ O×p = ⊕w∈ΣpO×Kw
recK−→ Z(C)−

with finite cokernel as p - DF , and it is easy to see that recΣp induces an isomorphism recΣp : 1 + pOp
∼→ Γ′.

We thus identify Γ′ with the subgroup recΣp(1 + pOp) of Z(C)−. Let Z ′ := π−1
− (Γ′) be the subgroup of Z(C)

and let Cl′− ⊃ Cl
alg
− be the image of Z ′ in Cl− and let D′1 (resp. D′′1 ) be a set of representatives of Cl′−/Cl

alg
−

(resp. Cl−/Cl′−) in (A
(D)
K,f )×. Let D1 := D′′1D′1 be a set of representatives of Cl−/Cl

alg
− . Let Up be the torsion

subgroup of (OF ⊗Z Zp)
× and let Ualg := Ô×K ∩ (K×)1−c. Let D0 be a set of representatives of Up/Ualg in Up.

For a ∈ A×K,f , let c(a) := c(OK)NK/F (a), where a = a(OK ⊗Z Ẑ)∩K. The following theorem is proved by the
ideas of Hida in [Hid10].

Theorem 2.2 (Thm. 5.5 [Hsi12]). Suppose that p - DF . Then we have

µ−χ,Σ = inf
(u,a)∈D0×D1

β∈F+

vp(aβ(Ehχ,u, c(a))).
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Proof. For the convenience of the readers, we sketch the proof here. For each b ∈ D′′1 , we denote by Lbχ,Σ
the p-adic measure on 1 + pOp ' Γ′ obtained by the restriction of L−χ,Σ to b.Γ′ := π−(recK(b))Γ−. To be
precise, we have ∫

Γ′
φdLbχ,Σ :=

∫
Γ−

Ib.Γ′ · φ|[b−1]dL−χ,Σ

where Ib.Γ′ is the characteristic functions of b.Γ′. Let µbχ,Σ be the µ-invariant of the p-adic measures Lbχ,Σ .
Note that Γ− =

⊔
b∈D′′1

b.Γ′, so it is clear that

(2.8) µ−χ,Σ = inf
b∈D′′1

µbχ,Σ .

For (u, a) ∈ D0×D1, we let Eu,a be the p-adic avatar of Ehχ,u|c(a) ([Hsi12, §2.5.5]). Let t be the Serre-Tate
coordinate of the CM point x with the polarization ideal c(OK) defined in [Hsi12, §5.2]. For a ∈ D′1, let 〈a〉Σ
be the unique element in 1 + pOp such that recΣp(〈a〉Σ) = π−(recK(a)) ∈ Γ′. For each b ∈ D′′1 , we define a
t-expansion Eb(t) by

Eb(t) := #Ualg ·
∑

(u,a)∈D0×bD′1

χ(ab−1)Eu,a|[a](t〈ab
−1〉

Σ
u−1

),

where |[a] is the Hecke action induced by a (See [Hsi12, Remark 4.5]). With the help of an an explicit formula
of toric period integral of Eisenstein series ([Hsi11, Prop. 5.1] and [Hsi12, Prop. 4.9]), it is shown in [Hsi12,
Prop. 5.2] that Eb(t) essentially gives rise to the t-expansion of the measure Lbχ,Σ , and hence we find that

(2.9) µbχ,Σ = inf
{
r ∈ Q≥0 | p−rEb(t) 6≡ 0 (mod mZ̄p)

}
,

where mZ̄p is the maximal ideal of Z̄p. By the linear independence of p-adic modular forms modulo p [Hid10,
Cor. 3.2], the q-expansion principle of p-adic modular forms combined with [Hsi12, Lemma 5.3], we can con-
clude from (2.8) and (2.9) that

µ−χ,Σ = inf
b∈D′′1

µbχ,Σ = inf
(u,a)∈D0×D1,

β∈F+

vp(aβ(Ehχ,u, c(a))). �

3. Proof of Theorem A

We go back to our setting in the introduction. Let λ be a Hecke character of infinity type kΣ with k ≥ 1

and let λ∗ := λ|·|−
1
2

AK
. We may further assume that

C is the prime-to-p conductor of λ.

To prove Theorem A, we prepare two lemmas. The first lemma is taken from [Hid11].

Lemma 3.1. Let w - p be a place of K and let $w be a uniformizer of Kw. Let a ∈ Z̄p. Given e > 0, we have

vp(a+ ν($w)) < e for all but finitely many ν ∈ X+.

Proof. We note that ν($w) is a primitive pn-th root of unity for some n ∈ Z≥0, and for sufficiently large
n, we have

vp(a+ ν($w)) ≤ vp(ν($w)− 1) =
1

pn − pn−1
< e.

The first equality holds precisely when vp(a+ 1) > 0. Therefore, it is not difficult to deduce the lemma from
the fact that the image of $w in Γ+ under recK : A×K → Γ+ generates a subgroup of Γ+ with finite index. �

Lemma 3.2. Let v | C−DK/F and let e1 > 0 be a positive number. Then there exists βv ∈ F×v such that for
almost all ν ∈ X+, we have

vp(L(0, λvνv)Ãβv (λvνv)) ≤ e1.

Here "for almost all" means "for all but finitely many".
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Proof. Let E = Kv and F = Fv. Let mE be the maximal ideal of OE . For brevity, we drop the subscript
v and simply write λ = λv, ν = νv. Let a(λ) := inf {n ∈ Z≥0 | λ(1 + mnE) = 1} be the conductor of λ.
Suppose that a(λ) > 1. Then λ(1 + m) 6= 1, and the invariant µp(λ) := infx∈E× vp(λ(x) − 1) = 0 as
v - p. It follows from [Hsi11, Lemma 6.4] that there exists β such that vp(Ãβ(λ)) = 0. Moreover, since
Ãβ(λν) ≡ Ãβ(λ) (mod mZ̄p), we find that vp(Ãβ(λν)) = 0 for all ν ∈ X+. To prove the remaining part, we
assume the conductor a(λ) = a(λν) ≤ 1. In virtue of Lemma 3.1, it suffices to show that there exists β such
that

(3.1) vp(Ãβ(λν)) = vp(a+ b · ν($w))

for some a ∈ Z̄p, b ∈ Z̄×p independent of ν and a uniformizer $w of E.
Let $ be a uniformizer of F . Suppose that v is ramified. Recall that θ = θv is chosen to be a uniformizer

of E. Let β ∈ $−1O×F , so v(β) = −1. If v - C−, then by [Hsi11, Lemma 4.1], we have

Ãβ(λν) = |DF |−1
λ−1ν−1(θ) |$| .

If v | C−, then it follows from [Hsi11, Prop. 4.4 (1)] that

Ãβ(λν) =λ∗(θ−1) |$|
1
2 ν(θ−1) + λ∗(−βd−1

F )ν(−β$)ε(1, λ+|·|−1
, ψ) (λ+ := λ|F×)

=λ∗(θ−1) |$|
1
2 · ν(θ−1) + λ∗(−βd−1

F )ε(1, λ+|·|−1
, ψ).

Here ε(s, λ+|·|−1
, ψ) is the Tate’s local epsilon factor attached to the additive character ψv : F → C×. In any

case, it is clear that (3.1) holds for β ∈ $−1O×F when v is ramified.
Suppose that v is inert. Then a(λν) = 1. Let β ∈ O×F (so v(β) = 0). By [Hsi11, Prop. 4.5], if λ|O×v = 1,

then

Ãβ(λν) =− |$| (1 + λ∗ν($)),

and if λ|O×F is non-trivial, then

Ãβ(λν) =Iλν(0) + λ∗(−βd−1
F )ν($)ε(1, λ+|·|−1

, ψ),

where

Iλν(0) =

∫
OF

λ−1ν−1(x+ θ)dx.

Recall that θ is chosen such that OE = OF +OFθ. We have x+ θ ∈ O×E for x ∈ OF . As ν is unramified at
v, we find that

Iλν(0) =

∫
OF

λ−1(x+ θ)dx

is independent of ν. Therefore, in either cases, (3.1) holds for β ∈ O×F . �

Theorem 3.3. Suppose that p - DF . Then
µλ,Σ = 0.

Proof. Let S− be the set of prime factors of C−DK/F . By Lemma 3.2, for e1 > 0, we choose (βv) ∈∏
v|C−DK/F F

×
v such that

(3.2)
∑

v|C−DK/F

vp(L(0, λvνv)Ãβv (λvνv)) ≤ #(S−) · e1

for almost ν ∈ X−. Let c ∈ A×F,f and c be the associated ideal as in Prop. 2.1. We define an idele η ∈ A×K,f
such that

• ηv = β−1
v for all v | C−DK/F ,

• ηv = cv for all finite v - D,
• ηv = 1 for the remaining places v.
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Let U =
∏
Uv be an open subgroup of A×F such that Uv = O×Fv at all v - C−DK/F and U∞ = (F ⊗ R)+.

Moreover, it is not difficult to see from [Hsi11, (4.17)] that for v | C−DK/F , Uv can be chosen small enough,
depending on λv and βv, so that

Ãβvu(λvνv) = Ãβv (λvνv) for all u ∈ Uv and ν ∈ X+.

Consider the idele class F×ηU in A×F . We may choose a uniformizer $v0 ∈ Kv0 with a finite place v0 - D such
that $v0 lies in the class F×ηU . We can write

$v0 ∈ βηU for some β ∈ F×.
Since ηv = 1 when v is archimedean or v|p, we find that β ∈ F+ ∩O×F,(p) by the choice of U . Let u ∈ Up such
that β ≡ u (mod p). By Prop. 2.1 we have

vp(aβ(Ehλν,u, c)) =
∑

v|C−DK/F

vp(L(0, λvνv)Ãβ(λvνv)) +
∑
v-D

vp(

v(βcv)∑
i=0

λ∗ν($i
v))

=
∑

v|C−DK/F

vp(L(0, λvνv)Ãβv (λvνv)) + vp(λ
∗ν($v0) + 1).

It follows that for almost all ν ∈ X+, we have

vp(aβ(Ehλν,u, c)) ≤ #(S−) · e1 + vp(λ
∗($v0) · ν($v0) + 1).

Hence, from Theorem 2.2 and Lemma 3.1 we deduce that

0 ≤ µλ,Σ ≤ lim inf
ν
µ−λν,Σ ≤ lim inf

ν
vp(aβ(Ehλν,u, c)) ≤ #(S−) · e1.

This inequality holds for all e1 > 0, so µλ,Σ = 0. �
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