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1. Introduction

Let F be a number field with adèle ring A, K a quadratic extension of F
with adèle ring K and D a quaternion algebra over F . Let DK = D ⊗F K
be a quaternion algebra over K. Let εK be the character of F×\A× of order
2 corresponding to K via class field theory. Let πi be an irreducible unitary
cuspidal automorphic representation of GL2(A) with central character ωi.
We denote the base change lift of πi to GL2(K) by πi,K . We impose on πi
and D the following conditions:

(Cent) ω1ω2ω3 = εK ;
(Cusp) πi,K is cuspidal;

(JL) there exists an irreducible automorphic representation πDi,K ofD×K(A)
associated to πi,K by the Jacquet-Langlands correspondence;

(Per) the period integral

Bi(φi) =

∫
A×D×(F )\D×(A)

φi(h)(ω−1
i εK)(ND/F (h)) dh

does not vanish for some φi ∈ πDi,K , where ND/F denotes the re-

duced norm on D and dh =
∏
v dhv is the Tamagawa measure on

A×\D×(A).
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(Arc) K is split at all the archimedean places of F .

The assumption (JL) is automatic if DK ' M2(K). The assumption (Per)
is automatic if D ' M2(F ) (see Proposition 2.13(1)). The assumption (Arc)
is made for convenience to simplify the local calculations in §4.

Put Π = π1⊗ π2⊗ π3 and ΠD
K = πD1,K ⊗ πD2,K ⊗ πD3,K . One of the purposes

of this article is to establish an explicit formula relating the period integral

I(φ1 ⊗ φ2 ⊗ φ3) =

∫
K×D×K(F )\D×K(A)

φ1(Ξ)φ2(Ξ)φ3(Ξ) dΞ

on ΠD
K to the central value L

(
1
2 ,Π

)
= L

(
1
2 , π1 × π2 × π3

)
of the triple prod-

uct L-series associated to the Langlands parameters of πi and the eight-
dimensional representation of the L-group of GL2 × GL2 × GL2. Here
dΞ =

∏
v dΞv is the Tamagawa measure on K×\D×K(A).

For each place v of F we let Fv be the completion of F at v and put

Dv = D ⊗ Fv, DKv = D ⊗Kv.

We will explicitly factorize Bi into local functionals in §2.5. Choose a local
invariant form Bi,v ∈ HomD×v

(πDvi,Kv , ωi,vεKv) so that

Bi(φi) =
∏
v

Bi,v(φi,v)

for φi = ⊗φi,v ∈ πDi,K , and Bi,v(φi,v) = 1 for almost all v. Put

Bv = B1,v ⊗B2,v ⊗B3,v, L(s,Ad(Π)⊗ εK) =

3∏
i=1

L(s,Ad(πi)⊗ εK).

We define an element of the space

(1.1) HomD×Kv
(ΠDv

Kv
,C)

by the convergent integral

Iv(φv) =

∫
K×v D

×
v \D×Kv

Bv(Π
Dv
Kv

(ξv)φv) dξv

for φv ∈ ΠDv
Kv

= πDv1,Kv
⊗ πDv2,Kv

⊗ πDv3,Kv
, where dξv is the measure defined by

the quotient of dΞv by dhv. Let ε(Dv) be either 1 or −1 according as D is
split at v or not. Fix a non-trivial additive character ψ =

∏
v ψv of F\A.

We write

γ(Πv) = γ

(
1

2
, π1,v × π2,v × π3,v, ψv

)
for the central value of the triple product gamma factor. Note that γ(Πv)
is independent of the choice of ψv by Remark 1.4(2).

Theorem 1.1. Assume that Kv ' Fv × Fv if v is archimedean. The func-
tional Iv is non-vanishing if and only if

γ(Πv) 6= −εK(−1)ε(Dv).
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If Kv ' Fv × Fv, then γ(Πv) = ε
(

1
2 , π1,v × π2,v × π3,v, ψv

)
is the local

root number, and Theorem 1.1 is known as the epsilon dichotomy, proved
by Prasad in [Pra90]. On the other hand, if Kv is not split at v, then
DKv ' M2(Kv), and (1.1) is one-dimensional (see Remark 3.4(1)). Two
functionals thus constructed satisfy the relation stated in Proposition 4.7.
Note that γ(Πv) may not be a sign.

Theorem 1.2. Assume the following conditions:

• v is non-archimedean,
• εKv is unramified,
• ε(Dv) = 1,

• Bv(φv) = 1 and ΠDv
Kv

(k)φv = φv for k ∈ GL2(oKv × oKv × oKv),

• dξv is the right invariant measure on K×v GL2(Fv)\GL2(Kv) which
gives o×KvGL2(oFv)\GL2(oKv) volume 1.

Then

Iv(φv) =
ζFv(2)2L

(
1
2 ,Πv

)
L(1,Ad(Πv)⊗ εKv)

· 1 + γ(Πv)

2
.

When γ(Πv) 6= −εK(−1)ε(Dv), we normalize the functional Iv by setting

Iv =
L(1,Ad(Πv)⊗ εKv)
ζFv(2)2L

(
1
2 ,Πv

) · 2

ε(Dv) + εK(−1)γ(Πv)
· Iv.

Theorem 1.3. Assume the conditions (Arc), (Cent) and (Cusp). If there
exists a quaternion algebra D over F which satisfies ε(Dv) 6= −εK(−1)γ(Πv)
for all v, then such D satisfies the conditions (JL) and (Per), and we have

I = 2−3 ·
ζF (2)2L

(
1
2 ,Π

)
L(1,Ad(Π)⊗ εK)

·
∏
v

Iv

as elements of HomD×K(A)(Π
D
K ,C).

Remark 1.4. (1) We define the L-series L(s,Ad(πi)⊗ εK) as the ratio

L(s,Ad(πi)⊗ εK) = L(s, πi × π∨i ⊗ εK)/L(s, εK).

Since πi 6' πi ⊗ εK by (Cusp), the L-series L(s,Ad(πi) ⊗ εK) has
neither zero nor pole at s = 1.

(2) Fix a ∈ F×v and define the character ψav of Fv by ψav(x) = ψv(ax) for
x ∈ Fv. Then

γ

(
1

2
, π1,v × π2,v × π3,v, ψ

a
v

)
= (ω1ω2ω3)4(a)γ

(
1

2
, π1,v × π2,v × π3,v, ψv

)
.

Therefore γ(Πv) is independent of the choice of ψv.
(3) If γ(Πv)

2 6= 1 for some v, then there exists a quaternion algebra D
such that ε(Dv) 6= −εK(−1)γ(Πv) for all v (see Proposition 5.3).

When K = F × F , Theorem 1.3 is nothing but Ichino’s formula proved
in [Ich08]. Ichino considers an étale cubic algebra over F . It should not be
difficult to extend Theorem 1.3 to this case. The proof follows the same line
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as in the proof of [Ich08]. The global ingredient is the vanishing of incoherent
Eisenstein series (see Proposition 5.1), which is combined with the seesaw
identity. The assumption (Cusp) will be used to apply Proposition 2.11 at
the last stage of the proof of Theorem 1.1. The local ingredient is the local
functional equation of Garrett’s zeta integral. Corollary 4.3 will relate the
zeta integral to the sum of the two invariant trilinear forms. Then the local
functional equation gives the relation stated in Proposition 4.7, from which
Theorem 1.1 follows. Theorem 1.2 can be deduced from the unramified
computation of the zeta integral.

Here is a short summary of the content of this paper. Section 2 de-
scribes the quaternary quadratic space VD and studies theta lifts from GL2

to GO(VD). Section 3 constructs the local invariant trilinear forms. Section
4 relates those trilinear forms to (partial) zeta integrals and proves Theorems
1.1 and 1.2. Section 5 applies the seesaw machinery, following [HK91].

2. Twisted Shimizu correspondence

2.1. Quaternary quadratic spaces. LetD andK be a quaternion algebra
and a quadratic extension over an arbitrary field F of characteristic zero.
Fix an element δ ∈ F× \ F×2 so that K = F (

√
δ). The main involution ι

of D is uniquely determined by the conditions x + xι ∈ F and xxι ∈ F for
every x ∈ D. The norm map NK/F : K× → F× is defined by NK/F (k) = kk̄,
where ·̄ denotes the non-trivial automorphism of K over F .

Given a central simple algebraA overK, by an involution (anti-involution)
ofA, we mean an arbitrary F -linear automorphism (resp. anti-automorphism)
of A of order 2. It is said to be of the second kind if its restriction to K
coincides with ·̄. Let DK = D ⊗F K be a quaternion algebra over K. We
K-linearly extend ι to an anti-involution of DK , which is the main involu-
tion of DK . An involution σ of DK of the second kind can be defined by
σ(x⊗ k) = x⊗ k̄ for x ∈ D and k ∈ K.

Involutions of Mn(K) of the first and second kind are defined by x 7→ tx
and %(x)ij = x̄ij for x = (xij) ∈ Mn(K), where tx is the transpose of x. Put

Symn(F ) = {b ∈ Mn(F ) | tb = b}, D◦ = {x ∈ D | xι = −x},

Hern(F ) = {ξ ∈ Mn(K) | t%(ξ) = ξ}, Jn =

(
0 −1n
1n 0

)
.

We define the symplectic similitude group by

GSp2n = {g ∈ GL2n | gJn tg = νn(g)Jn, νn(g) ∈ Gm}

and the similitude unitary group of a Hermitian matrix ξ ∈ Hern(F ) with
det ξ 6= 0 by

GU(ξ) = {g ∈ ResK/FGLn | gξ t%(g) = νξ(g)ξ, νξ(g) ∈ Gm}.

The action ρ1 of the group D×K on the subspace

VD = {x ∈ DK | σ(x) = xι} = F ⊕
√
δD◦
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is given by ρ1(ξ)x = ξxσ(ξ)ι. Define a quadratic form ( , )D on VD by
(x, x)D = xxι for x ∈ VD. The discriminant algebra of VD is K.

The triplet (D×K , ρ1, VD) forms a prehomogeneous vector space. Note that

(ρ1(ξ)x, ρ1(ξ)x)D = NK/F (ξξι)(x, x)D

for x ∈ VD and ξ ∈ D×K . Put

YD = {y ∈ VD | (y, y)D 6= 0}.

Given y ∈ YD, we can define an involution σy of DK of the second kind by

σy(x) = σ(y−1xy).

Lemma 2.1. Let τ be an involution of DK of the second kind. Then there
exists y ∈ YD such that τ = σy.

Proof. The Skolem-Noether theorem implies that τ(x)ι = τ(xι) for all x ∈
DK . Thus we can define two anti-involutions σ0 and τ0 of DK of the second
kind by σ0(x) = σ(xι) and τ0(x) = τ(xι) for x ∈ DK . Lemma 2.10 of [PR94]
gives an element y ∈ D×K such that τ0(x) = y−1σ0(x)y and σ0(y) = y. �

Let Dy := {x ∈ DK | σy(x) = x} be an F -subalgebra of DK .

Lemma 2.2. Dy is a quaternion algebra over F such that Dy ⊗K = DK .

Proof. It is evident that Dy has dimension 4 over F and Dy ⊗ K = DK .
Thus Dy is central over F . If Dy has a non-trivial two-sided ideal, then so
does DK . �

Let GO(VD) denote the orthogonal similitude group of VD defined by

GO(VD) = {h ∈ GL(VD) | (hx, hy)D = ν(h)(x, y)D, ν(h) ∈ Gm}.

The subgroup GSO(VD) of GO(VD) consists of the elements h such that
deth = ν(h)2. We view D×K as a subgroup of GSO(VD) via ρ1. There is an
exact sequence

(2.1) 1→ K×
ρ0→ (F× ×D×K) o 〈t〉 ρ→ GO(VD)→ 1,

where

ρ0(c) = (NK/F (c), c−1), ρ(a, ξ)v = aρ1(ξ)v, ρ(t)v = vι

for v ∈ VD, and t acts on D×K by x 7→ σ(x). Observe that

ν(ρ(a, ξ)) = a2NK/F (ξξι).

Given a ∈ F× and a quadratic space (V, ( , )), we write V a for the space
V quipped with the quadratic form a( , ). Put

VDy = {x ∈ DK | σy(x) = xι}, Vy = {ξ ∈ D×K | ξσy(ξ)
ι ∈ F×}.

Equip VDy with a quadratic form defined by (x, x)Dy = xxι for x ∈ VDy .
The following lemma is straightforward to prove.
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Lemma 2.3. Notation being as above, we have VDy = VDy
−1. Put a =

(y, y)D. Then the map x 7→ xy for x ∈ VDy gives an isomorphism of V a
Dy

onto VD.

When D = M2(F ), we write V+ = VD and ( , )+ = ( , )D. In this case

xι = J1
txJ−1

1 , σ = %, V+ =
√
δJ1 ·Her2(F )

for x ∈ DK . Note that (
√
δJ1ξ,

√
δJ1ξ)+ = δ det ξ for ξ ∈ Her2(F ).

2.2. Quaternary quadratic spaces over local fields. Let F be a local
field of characteristic zero. Then DK ' M2(K). We denote by ε(D) the
Hasse invariant of D and by εK the quadratic character of F× whose kernel
is NK/F (K×). If ε(D) = −1, then V+ and VD have opposite Hasse invariants.

Remark 2.4. The quadratic space V+ is isomorphic to the orthogonal sum
of the norm form on K with a split binary quadratic space as a quadratic
space. Take α ∈ F× so that εK(α) = ε(D). Then VD ' V α

+ .

Proposition 2.5. Let y ∈ YD.

(1) Fix an element y− ∈ YD with εK(det y−) = −1. Then

YD = ρ1(GL2(K))12 t ρ1(GL2(K))y−.

(2) ε(Dy) = εK((y, y)D)ε(D).
(3) Vy = K×D×y .

Proof. If y′ ∈ YDy , then

y′y ∈ YD, σy′y = (σy)y′ , Dy′y = (Dy)y′ .

Thanks to Lemma 2.1, we may assume that D = M2(F ) and σ = %. Put

Y := YM2(F ) = {
√
δJ1 · ξ | ξ ∈ Her2(F ), det ξ 6= 0}.

The group GL2(K) acts on Y by ρ1(g)y = gy%(g)ι = gyJ1
t%(g)J−1

1 for

g ∈ GL2(K) and y ∈ Y. Note that ρ1(g)(ξ ·
√
δJ1) = gξ t%(g) ·

√
δJ1. Since

there are two equivalence classes of non-degenerate Hermitian matrices ξ of
size 2 classified by the sign εK(−det ξ), one can deduce (1).

We write y =
√
δJ1 · tξ−1 with ξ ∈ Her2(F ). Let x ∈ M2(F )y. Then

x = %(y−1xy) = ξJ−1
1 %(x)J1ξ

−1 = ξ t%(x)ιξ−1, xξ t%(x) = detx · ξ.
It is well-known that

GU(ξ) ' (D×ξ ×K
×)/F×,

where Dξ is a quaternion algebra with ε(Dξ) = εK(−det ξ) = εK(det y).
Now (2) follows from the observation

M2(F )y ∩GL2(K) = {g ∈ GU(ξ) | λξ(g) = det g} ' D×ξ .

Clearly, K×D×y ⊂ Vy. We shall prove the reverse inclusion. Let ξ ∈ Vy.
Put a := ξσy(ξ)

ι ∈ F×. Since σy has order 2 and acts on K non-trivially,
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we get a = σy(a) = σy(ξ)ξ
ι and a2 = NK/F (det ξ). We can therefore take

k ∈ K× so that det ξ = ak̄k−1. Then since

ξξι = ak̄k−1 = ξσy(ξ)
ιk̄k−1,

we have ξk = σy(ξk), which proves (3). �

2.3. The Weil representation for similitudes. Given a ∈ GLn, b ∈
Symn and a scalar t ∈ Gm, we put

m(a) =

(
a

ta−1

)
, n(b) =

(
1n b

1n

)
, d(t) =

(
1n

t · 1n

)
.

Let Pn = MN be the Siegel parabolic subgroup of GSp2n given by

M = {m(a)d(t) | a ∈ GLn, t ∈ Gm}, N = {n(b) | b ∈ Symn}.
We denote the kernels of the similitude characters νn : GSp2n → Gm and
ν : GO(VD) → Gm by Sp2n and O(VD), and the centers of GSp2n and
GO(VD) by Zn and ZD. Note that Zn and ZD are isomorphic to Gm.

Let F be a number field with adèle ring A and εK the quadratic Hecke
character corresponding to a quadratic extension K/F via class field the-
ory. Fix a non-trivial additive character ψ =

∏
v ψv of A/F . Let Ωn

D,ψ =

⊗vΩn
Dv ,ψv

denote the Weil representation of Sp2n(A)×O(VD,A) with respect

to ψ on the Schwartz space S(V n
D(A)) with

Ωn
D,ψ(m(a))Φ(x) = εK(det a)|det a|2Φ(xa), a ∈ GLn(A),(2.2)

Ωn
D,ψ(n(b))Φ(x) = ψ(tr(b(x, x)D))Φ(x), b ∈ Symn(A),

Ωn
D,ψ(h)Φ(x) = Φ(h−1x), h ∈ O(VD,A),

where (x, x)D = ((xi, xj)D) ∈ Symn(A).
On the orthogonal similitude group GO(VD,A) we can extend Ωn

D,ψ by

L(h)Φ(x) = |ν(h)|−nΦ(h−1x).

We use it to extend Ωn
D,ψ to a representation of the group

Rn = {(h, g) ∈ GO(VD)×GSp2n | νn(g) = ν(h)}.
Since L(h)Ωn

D,ψ(g)L(h)−1 = Ωn
D,ψ(d(t)gd(t)−1) with t = ν(h) for g ∈

Sp2n(A) and h ∈ GO(VD,A), one obtains a representation of the semidi-
rect product GO(VD,A) n Sp2n(A) on S(V n

D(A)). By composition with the
isomorphism (h, g)→ (h,d(ν(h))−1g) from Rn onto GO(VD)nSp2n, we get
the representation of Rn(A) on S(V n

D(A)), which we denote also by Ωn
D,ψ.

Remark 2.6. Note that for z ∈ A× and Φ ∈ S(V n
D(A))

Ωn
D,ψ(z, z)Φ = εK(z)nΦ.

We can form the theta series as a function on Rn(F )\Rn(A) defined by

Θ(h, g; Φ) =
∑

x∈V nD (F )

Ωn
D,ψ(h, g)Φ(x).
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Definition 2.7. Let B be the open subgroup of A× which consists of idèles
ν(h) with h ∈ GO(VD,A). Let SKD be the set of real places of F at which
either K or D is not split. When v ∈ SKD , the subgroup Bv consists of
positive real numbers in F×v . If v /∈ SKD , then we set Bv = NKv/Fv(K

×
v ). Put

GSp2n(A)? = {g ∈ GSp2n(A) | νn(g) ∈ B},
GSp2n(F )? = GSp2n(F ) ∩GSp2n(A)?,

GSp2n(Fv)
? = {g ∈ GSp2n(Fv) | νn(g) ∈ Bv}.

2.4. The quadratic base change as a theta lift. Let n = 1. Then
GSp2 ' GL2. We start with a quadratic extension K/F of non-archimedean
local fields of characteristic zero. Fix a non-trivial additive character ψ on

F and a quaternion algebra D over F . We will abbreviate Ω1
D,ψ = Ω

ε(D)
ψ to

denote the local Weil representation.
Recall the subgroup

GL2(F )? = GSp2(F )? = {g ∈ GL2(F ) | εK(det g) = 1}.
Let π? be an infinite-dimensional irreducible admissible representation of

GL2(F )?. The maximal (π?)∨-isotypic quotient of c-ind
GO(V )×GL2(F )?

R1
Ω
ε(D)
ψ

is of the form (π?)∨ � ΘD
K(π?), where (π?)∨ is the contragredient repre-

sentation of π? and ΘD
K(π?) is a (possibly zero) smooth representation of

GO(VD).
Let π be a generic irreducible admissible representation of GL2(F ) of

central character ω. We write πK for the base change of π to GL2(K).

Definition 2.8. When π|GL2(F )? is reducible, Lemma 4.1 of [GI11] allows

us to write π|GL2(F )? = π+ ⊕ π−, where π± are irreducible representations
of GL2(F )? such that

ΘD
K(π+) 6= 0, ΘD

K(π−) = 0.

We set

ΘD
K(π) =

{
ΘD
K(π+) if π|GL2(F )? is reducible,

ΘD
K(π|GL2(F )?) if π|GL2(F )? is irreducible.

Proposition 2.9 ([Lu17]). ΘD
K(π) is nonzero, irreducible and

ΘD
K(π)|D×K×F× ' πK � ωεK .

Proof. See Section 3 of [Lu17] (cf. (2.1)). �

We switch to the global setting. Thus F is a number field and π an ir-
reducible cuspidal automorphic representation of GL2(A) with central char-
acter ω. For a technical reason we assume that all the archimedean places
of F are split in K. Given a cusp form f ∈ π and ϕ ∈ S(VD(A)), we define
an automorphic form on GO(VD,A) by

θ(ξ; f, ϕ) =

∫
SL2(F )\SL2(A)

f(gg′)Θ(ξ, gg′;ϕ) dg,
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where we choose g′ ∈ GL2(A)? so that det g′ = ν(ξ). Here, dg =
∏
v dgv

is the Tamagawa measure on SL2(A). Let θDK(π) denote the automorphic
representation of GO(VD,A) generated by θ(ξ; f, ϕ), as ϕ ∈ S(VD(A)) and
f ∈ π vary.

We denote the base change of π to GL2(K) by πK . We denote the Jacquet-
Langlands lift of πK to D×K(A) by πDK if it exists. By the following result

πDK can be extended to a representation of GO(VD,A).

Proposition 2.10. Assume that πK is cuspidal. The space θDK(π) is not
zero precisely when πDK exists. In this case

θDK(π)|D×K(A)×A× ' π
D
K � ωεK .

Proof. This is due, in essence, to [Shi72]. The standard L-function of
π|SL2(A) twisted by εK is L(s,Ad(π)⊗ εK) and is holomorphic and not zero
at s = 1 by assumption (cf. Remark 1.4(1)). Theorem 11.6 of [GQT14]
applied to the restriction of θ(ξ; f, ϕ) to SO(VD,A) implies that the global
theta lift θDK(π) is not zero if the local theta lift of πv to GO(VDv) is not
zero for all v. �

2.5. Factorization of the Flicker-Rallis period. Let π be an irreducible
cuspidal automorphic representation of GL2(A) whose base change πK is
cuspidal. We define an element

B ∈ HomD×(A)(π
D
K , (ωεK) ◦ND/F )

by the period integral

B(φ) =

∫
A×D×(F )\D×(A)

φ(h)(ω−1εK)(hhι) dh,

where dh is the Tamagawa measure on A×\D×(A).
Define the Whittaker function of f ∈ π with respect to ψ̄ by

Wf (g) =

∫
F\A

f(n(b)g)ψ(b) db,

where db =
∏
v dbv is the Tamagawa measure on A. Assume that Wf (g) =∏

vWv(gv), where Wv(12) = 1 for almost all v. Define a map B̃v : πv ⊗
S(VDv)→ C by

B̃v(Wv, ϕv) =

∫
U(Fv)\SL2(Fv)

Wv(ġv)Ω
ε(Dv)
ψv

(ġv)ϕv(1) dġv

for each place v of F , where U = {n(b) | b ∈ Ga} and dġv is the quotient
measure of dgv by dbv. Since there exists ϕ0 ∈ S(Fv) and for ε > 0 there
exists ϕε ∈ S(Fv) such that

|Ωε(Dv)
ψv

(m(a)k)ϕv(1)| ≤ |a|2ϕ0(a), |Wv(m(a)k)| ≤ |a|εϕε(a2)

for a ∈ F×v and k ∈ SL2(oFv) (cf. p. 298 of [Ich08]), the integral converges
absolutely.
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Let Sf,ϕ be a finite set of places of F including all archimedean places so
that for v /∈ Sf,ϕ,

• εKv is unramified,
• ψv is trivial on oFv but non-trivial on p−1

v ,
• Wv(GL2(oFv)) = 1,
• ε(Dv) = 1 and ϕv is the characteristic function of VDv ∩M2(oKv),
• vol(SL2(ov), dgv) = 1.

Here oFv and oKv are the maximal compact subrings of Fv and Kv, and pv
is the maximal ideal of oFv .

Proposition 2.11. (1) If v /∈ Sf,ϕ, then B̃v(Wv, ϕv) =
L(1,Ad(πv)⊗εKv )

ζFv (2) .

(2) If πK is cuspidal, then

B(θ(f, ϕ)) = 2ζSF (2)−1LS(1,Ad(π)⊗ εK)
∏

v∈Sf,ϕ

B̃v(Wv, ϕv).

Remark 2.12. Proposition 5 of [Wal85] deals with the case K = F × F .

Let v /∈ Sf,ϕ. Fix a prime element $v of oFv . Then

B̃v(Wv, ϕv) =
∞∑
i=0

Wv(m($i
v))εKv($

i
v).

Since the Shintani formula (cf. [Wal85, p. 190]) gives

Wv(m($i
v)) = (αvβv)

−iWv

((
$2i
v

1

))
= (αvβv)

−iq−iv
α2i+1
v − β2i+1

v

αv − βv
,

where {αv, βv} is the Satake parameter of πv and qv is the cardinality of the
residue field of oFv , we get (1) by a simple calculation.

When D is not split, one can use the Siegel-Weil formula to prove the
formula (2) as in the proof of Proposition 2.3 of [YZZ13]. The rest of this
section is devoted to proving Proposition 2.11(2) for D = M2(F ) and σ = %.

Recall that K = F (
√
δ). Define an additive character ψδK on K, which is

trivial on K +A, by ψδK(k) = ψ
(

TK/F

(
k√
δ

))
for k ∈ K, where TK/F is the

trace map from K to A. We define the Whittaker function of φ ∈ πK with
respect to ψδK by

Wφ(g) =

∫
K\K

φ(n(k)g)ψδK(k) dk,

where dk is the Tamagawa measure on K. Let dav and dcv be the self-
dual Haar measures of Fv with respect to ψv. Put d×av = ζFv(1)dav

|av | . For

av ∈ F×v we put t(av) =

(
av 0
0 1

)
∈ GL2(Fv).

Proposition 2.13. (1) There exists φ ∈ πK such that B(φ) 6= 0.
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(2) Let φ ∈ πK be factorizable, i.e., Wφ = ⊗vWφv . Then

B(φ) = 2L(1,Ad(π)⊗ εK)
∏
v

βv(Wφv)

ζFv(1)L(1,Ad(πv)⊗ εKv)
,

where

βv(Wφv) =

∫
F×v

Wφv(t(av))(ω
−1
v εKv)(av) d×av.

Proof. We extend ω−1εK to a character γ of K×/K×. Put σ = πK⊗γ. The
Asai L-function of σ is ζF (s)L(s,Ad(π)⊗εK) and so by Remark 1.4(1), it has
a pole at s = 1, which proves (1) (see [FZ95]). Put A1 = {a ∈ A× | |a| = 1}.
Since the volume of F×\A1 with respect to

∏
v d×av is the residue of ζF (s)

at s = 1, Proposition 3.2 of [Zha14] includes (2). �

Once we establish the identity

βv(Wφv) = ζFv(1)B̃v(Wv, ϕv),

Proposition 2.11(2) follows from Proposition 2.13(2). The mixed model of
Ω+
ψv

is realized on S(Kv ⊕ F 2
v ). The intertwining map I : S(V +(Fv)) →

S(Kv ⊕ F 2
v ) is given by a partial Fourier transform

I(ϕv)(k; a, b) =

∫
Fv

ψv(cva)ϕv

((
k
√
δcv

b√
δ

k̄

))
dcv

(see §5.2 of [KR94]). Let t ∈ F×v . Since ν(d(t)) = det(t · 12) = t2, Remark
2.6 gives

Ω+
ψv

(d(t), t · 12)ϕv = εKv(t)Ω
+
ψv

(t−1 · d(t),12)ϕv,

from which it follows that

I(Ω+
ψv

(d(t), t · 12)ϕv)(k; a, b)

=εKv(t)

∫
Fv

ψv(cva)ϕv

(
td(t−1)

(
k
√
δcv

b√
δ

k̄

)
d(t−1)ι

)
dcv

=εKv(t)|t|−1I(ϕv)(k; t−1a, t−1b).

Let f ∈ π and ϕ ∈ S(V +(A)) be factorizable. Put φ = θ(f, ϕ). The
Whittaker function of φ with respect to ψδK is given by

Wφ(ξ) =

∫
U(A)\SL2(A)

Wf (ġ)I(Ω+
ψ (ξ, ġg′)ϕ)(1; 1, 0) dġ =

∏
v

Wφv(ξv)

for ξ ∈ GL2(K), where det g′ = NK/F (det ξ) (see §5.1 of [Lu17]). We have

Wφv(t(t)) = ωv(t)Wφv(d(t−1))

= (ωvεKv)(t)|t|
∫
U(Fv)\SL2(Fv)

Wv(ġv)I(Ω+
ψv

(ġv)ϕv)(1; t, 0) dġv.
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By the Fourier inversion formula we get

βv(Wφv) =

∫
F×v

Wφv(t(tv))(ω
−1
v εKv)(tv) d×tv

= ζFv(1)

∫
U(Fv)\SL2(Fv)

Wv(ġv)Ω
+
ψv

(ġv)ϕv(12) dġv

as claimed.

3. Local trilinear forms

3.1. Flicker-Rallis functionals. In this and the next section we fix an
inert place v of F and suppress it from the notation. Thus F = Fv is a
non-archimedean local field of characteristic zero, K a quadratic extension
of F , D a quaternion algebra over F , ψ a fixed non-trivial additive character
of F , and εK the quadratic character of F× whose kernel is NK/F (K×). We

denote by ND/F : D× → F× the reduced norm and by τD/F : D → F the
reduced trace. Let αF (z) = |z| denote the normalized absolute value of
z ∈ F×.

Recall that DK = D ⊗K ' M2(K). The main involution of D induces
an anti-involution ι of DK of the first kind. Let σ be the involution of DK

of the second kind such that D = {x ∈ DK | σ(x) = x}. Equip VD =
{x ∈ DK | σ(x) = xι} with a quadratic form defined by (x, x)D = xxι. The
discriminant character of VD is εK . The morphisms ρ1 : D×K → GSO(VD)

and ν : D×K → F× are given by ρ1(ξ)x = ξxσ(ξ)ι (see (2.1)) and ν(ξ) =

NK/F (ξξι) for x ∈ VD and ξ ∈ D×K .
Let π be an irreducible unitary admissible infinite-dimensional represen-

tation of GL2(F ) whose central character is ω. Given a ∈ F×, we define an
additive character ψa on F by setting ψa(b) = ψ(ab) for b ∈ F . We denote

by πK the base change lift of π to GL2(K), by W ψ̄a(π) the Whittaker model
of π with respect to ψ̄a, and by λ(π) the real number defined by

λ(π) =

{
0 if π is tempered,

|λ| if π = Ind
GL2(F )
P1(F ) (χαλ

F � ωχ
−1α−λF ),

where λ ∈ R and χ is a unitary character of F×.

Given W ∈W ψ̄(π), we define Wα ∈W ψ̄α(π) by

Wα(g) = W (d(α)−1g).

Fix y ∈ YD. Put α = (y, y)D. For ϕ ∈ S(VD) and ξ ∈ GO(VD) we put

B̃y(ξ;W,ϕ) =

∫
U\SL2(F )

Wα(ġd(ν(ξ)))Ω
ε(D)
ψ (ξ, ġd(ν(ξ)))ϕ(y) dġ.

One can see that this integral converges absolutely, likewise for B̃.



BASE CHANGE AND TRIPLE PRODUCT L-SERIES 13

Remark 3.1. Taking Lemma 2.3 into account, we define ϕy ∈ S(VDy) by
ϕy(x) = ϕ(xy) for x ∈ VDy . It is easy to see that for x ∈ VDy

Ω
ε(D)
ψ (h, g)ϕ(xy) = Ω

ε(Dy)
ψα (h, g)ϕy(x).

Lemma 3.2. For k ∈ K×, h ∈ D×y and ξ ∈ GO(VD) we have

B̃y(khξ;W,ϕ) = (ωεK)(kk̄hhι)B̃y(ξ;W,ϕ).

Moreover, if ξ ∈ D×K , then

B̃y(ξ;W,ϕ) =

∫
U\SL2(F )

Wα(d(ν(ξ))ġ)Ω
ε(Dy)
ψα (ġ)ϕy(ξ

−1σy(ξ
−1)ι) dġ.

Proof. The first part can be derived from (2.2) or Proposition 2.9. Changing
the variable g 7→ d(ν(ξ))gd(ν(ξ)−1), we get

B̃y(ξ;W,ϕ) =

∫
U\SL2(F )

Wα(d(ν(ξ))ġ)Ω
ε(D)
ψ (ρ1(ξ),d(ν(ξ))ġ)ϕ(y)|ν(ξ)| dġ.

For g ∈ SL2(F ) and ξ ∈ D×K we have

Ω
ε(D)
ψ (ρ1(ξ),d(ν(ξ))g)ϕ(y) = |ν(ξ)|−1Ω

ε(D)
ψ (g)ϕ(ξ−1yσ(ξ−1)ι).

Since yσ(x)ι = σ(xσ(yι))ι = σ(xy)ι = (σ(y)σy(x))ι = σy(x)ιy for x ∈ DK ,
we get the stated expression. �

By Proposition 2.9 there exists an equivariant surjective map

θy : W ψ̄(π)|SL2(F ) ⊗ S(VD)→ Θ
Dy
K (π).

Lemma 3.2 gives rise to the following functional By.

Proposition 3.3. There is By ∈ HomD×y
(Θ

Dy
K (π), (ωεK)◦NDy/F ) such that

B̃y = By ◦ θy.

3.2. Construction of trilinear forms. Let πi be an irreducible unitary
admissible infinite-dimensional representation of GL2(F ) with central char-
acter ωi on which we impose the following condition:

(Cent) ω1ω2ω3 = εK .

Recall that Θ
Dy
K (πi)|GL2(K) ' πi,K . We associate to y ∈ YD a functional

By ∈ HomD×y
(Θ

Dy
K (πi), (ωiεK) ◦ NDy/F ) by Proposition 3.3. Fix a right

GL2(K)-invariant measure dyξ on K×D×y \GL2(K). Define an element of

HomGL2(K)(Θ
Dy
K (π1)⊗Θ

Dy
K (π2)⊗Θ

Dy
K (π3),C)

by the integral

(3.1)

∫
K×D×y \GL2(K)

By(π1,K(ξ)φ1)By(π2,K(ξ)φ2)By(π3,K(ξ)φ3) dyξ
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for φi ∈ πi,K . We will prove the convergence under the following condition:

(F) λ(π1) + λ(π2) + λ(π3) <
1

2
.

Remark 3.4. (1) Since ω1ω2ω3 = εK , we have

ε(1/2, π1,K × π2,K × π3,K) = ε(1/2, π1 × π2 × π3)ε(1/2, π∨1 × π∨2 × π∨3 ) = 1.

Theorem 1.4 of [Pra90] gives

dim HomGL2(K)(π1,K ⊗ π2,K ⊗ π3,K ,C) = 1.

(2) If π1, π2, π3 are local components of cuspidal automorphic represen-
tations, then (F) is fulfilled by the result [KS02] on the Ramanujan
estimate for πi and hence L(s, π1×π2×π3) is holomorphic at s = 1

2 .

3.3. Convergence.

Lemma 3.5. If (F) holds, then the integral (3.1) is absolutely convergent.

Remark 3.6. When K = F × F , the convergence is proved in Lemma 2.1 of
[Ich08].

Lemma 3.7 below is stronger than Lemma 3.5. Put

E = F × F × F, Π = π1 ⊗ π2 ⊗ π3, U = {n(b) ∈ GL2(E) | b ∈ E}.
Define TE/F : E → F by TE/F (x, y, z) = x + y + z and algebraic groups

U0 ⊂ G by

G = {g ∈ RE/FGL2 | det g ∈ Gm},
U0 = {n(x) | x ∈ RE/FGa, TE/F (x) = 0}.

We embed G diagonally in GSp6 via the map

ι

((
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

)
,

(
a3 b3
c3 d3

))
=


a1 b1

a2 b2
a3 b3

c1 d1

c2 d2

c3 d3

 .

Once and for all we fix a Haar measure dg on SL2(F ) and use it to define a
Haar measure dg′ on SL2(E). Let dz and dν be the self-dual Haar measures
of F with respect to ψ. We use them to define Haar measures du0 on U0

and du on U. We denote by dg̈ and d
...
g the quotient measures of dg′ by

du0 and du, respectively.
Put α = (y, y)D and ε = εK(α). Let

W ψ̄(Π) = W ψ̄(π1)⊗W ψ̄(π2)⊗W ψ̄(π3)

be the Whittaker model of Π with respect to ψ̄ ◦ TE/F . Given

W = W1 ⊗W2 ⊗W3 ∈W ψ̄(Π), Φ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 ∈ S(V 3
D),
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we consider the integral

I ε
D(W,Φ) =

∫
K×D×y \GL2(K)

B̃y(ξ;W1, ϕ1)B̃y(ξ;W2, ϕ2)B̃y(ξ;W3, ϕ3) dyξ.

Lemma 3.2 gives the expression∫
GL2(K)/K×D×y

∫
U\SL2(E)

Wα(d(ν(ξ))−1...
g )Ω3

D,ψ(ι(
...
g ))Φ(ξyσ(ξ)ι) d

...
gdyξ

of I ε
D(W,Φ), where Wα = Wα

1 ⊗Wα
2 ⊗Wα

3 ∈ W ψ̄α(Π). The measure dyξ
is defined in §4.1. If y′ ∈ YD satisfies εK((y′, y′)D) = ε, then Proposition
2.5(1) gives ξ′ ∈ GL2(K) such that y′ = ξ′yσ(ξ′)ι. Since (y′, y′)D = αν(ξ′),
it turns out that the integral is independent of the choice of y (cf. Remark
4.1).

Lemma 3.7. The integral above converges absolutely. Moreover, it defines
an element of

HomGO(VD)(Θ
Dy
K (π1)⊗Θ

Dy
K (π2)⊗Θ

Dy
K (π3),C).

Proof. To prove the invariance, it suffices to show that

I ε
D(W,Ω3

D,ψ(ρ(a, t))Φ) = I ε
D(W,Φ)

for a ∈ F× in view of (2.1). Since εK((ρ(a, t)y, ρ(a, t)y)D) = ε, it follows
from the expression above.

Without loss of generality we may assume that y = 1 ∈ VD in view of
Lemma 2.3. Recall the decomposition VD = F ⊕

√
δD◦ and

GSO(VD) = ρ(F× ×D×K), SO(
√
δD◦) ' D×/F×

(see (2.1)). It therefore suffices to show that the integral∫
SO(VD)/SO(

√
δD◦)

∫
U\SL2(E)

W(g)Ω3
D,ψ(ι(g))Φ(h · 1) dgdh

is absolutely convergent.
Let oF and oK denote the maximal compact subring of F and K, respec-

tively. For simplicity we assume that 2δ ∈ o×F . Let L = VD ∩M2(oK) be a
maximal integral lattice of VD. Put

C = {h ∈ SO(VD) | hL = L}, L[a] = {x ∈ VD | (x, x)D = 1, (x, L)D = a}

for each fractional ideal a of oF . Note that L[a] = ∅ unless a ⊃ oF as L is
maximal. Fix a generator $ of the maximal ideal p of oF . For each non-
negative integer j we choose elements xj ∈ L[p−j ] and hj ∈ SO(VD) such
that xj = hj · 1. Then L[p−j ] = C · xj by Theorem 10.5 of [Shi04]. This
combined with Witt’s theorem gives the relative Cartan decomposition

(3.2) SO(VD) =
∞⊔
j=0

C · hjSO(
√
δD◦).
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Let

xj =

(
0 −

√
δ$j

1√
δ$j

0

)
, hj = ρ

(
$−j ,

(
$j 0
0 1

))
h0.

It is enough to prove that the integral

∞∑
j=0

q2j

∫
C

∫
U\SL2(E)

W(g)Ω3
D,ψ(ι(g))Φ(c · xj) dgdc

is absolutely convergent in view of Proposition 2.6 of [KT10]. Equivalently,
we will show that the triple integral

∞∑
j=0

q2j

∫
C

∫
E×

∫
SL2(oE)

W(m(a)k)Ω3
D,ψ(ι(m(a)k))Φ(c · xj)|a|−2 dkd×adc

converges absolutely, where |a| = |a1a2a3| for a = (a1, a2, a3) ∈ E× and
oE = oF × oF × oF . There exists Φ0 ∈ S(E2) and for ε > 0 there exists
Φε ∈ S(E) such that

|Ω3
D,ψ(ι(m(a)k))Φ(c · xj)| ≤ |a|2Φ0($ja, $−ja),

|W(m(a)k)| ≤ |a|1−ε|a1|−2λ(π1)|a2|−2λ(π2)|a3|−2λ(π3)Φε(a
2)

for a ∈ E×, k ∈ SL2(oE) and c ∈ C. We take ε so that

1− 3ε− 2λ(π1)− 2λ(π2)− 2λ(π3) > 0.

Then the double integral∫
F×

∫
E×

|a|1−εΦ0(ta, t−1a)ϕ(t)

|a1|2λ(π1)|a2|2λ(π2)|a3|2λ(π3)
|t|−2d×ad×t

=

∫
F×

∫
E×

|a|1−εΦ0(t2a,a)ϕ(t)

|ta1|2λ(π1)|ta2|2λ(π2)|ta3|2λ(π3)
|t|1−3εd×ad×t

converges absolutely for ϕ ∈ S(F ). We have thus completed our proof. �

4. The trilinear forms and local zeta integrals

4.1. Garrett’s integral representation. Recall that Z3 denotes the cen-
ter of GSp6 and E = F × F × F . Put

η =


0 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 1 0 0 0
0 0 0 −1 1 0
0 0 0 −1 0 1

 , w0 =


0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 .(4.1)
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We take Haar measures d×z = ζF (1)dz
|z| and d×ν = ζF (1)dν

|ν| of F×. Let

d×ν̇ be the Haar measure on F×/F×2 so that∫
F×

f(ν) d×ν =

∫
F×/F×2

∫
F×

f(z2ν̇) dzd×ν̇

for f ∈ L1(F×). We define a Haar measure dg on Z3U
0\G by

(4.2)

∫
Z3U0\G

f(g) dg =

∫
F×/F×2

∫
U0\SL2(E)

|ν̇|2f(d(ν̇)g̈) dg̈dν̇

for f ∈ L1(Z3U
0\G). Let dx be the self-dual Haar measure on VD with re-

spect to ψ((x, y)D). We take the measure d×x = ζF (1)L(2, εK)|(x, x)D|−2dx
on YD, which is invariant under the action ρ1 of D×K . For each y ∈ YD we

define a map ℘y : D×K → YD by ℘y(ξ) = ρ1(ξ)y = ξyσ(ξ)ι for ξ ∈ D×K . Put

Uy = {ξ ∈ D×K | ℘y(ξ) = y}.

We obtain a D×K-invariant measure dyξ
′ on D×K/Uy by the pull-back dyξ

′ =

℘∗yd
×x. In view of Proposition 2.5(3) we obtain a measure dyξ onD×K/K

×D×y
as the quotient of dyξ

′ by d×z.

Remark 4.1. Given h ∈ D×K , we define ιh : D×K → D×K by ιh(ξ) = hξh−1 for

ξ ∈ D×K . Since ι∗h ◦ ℘∗ρ1(h)y = ℘∗y ◦ ρ1(h)∗, we have

ι∗hdρ1(h)yξ = dyξ.

When ε = εK((y, y)D), we have

(4.3)

∫
YεD

f(x) dx =

∫
D×K/K

×D×y

∫
F×

f(z℘y(ξ))
|z2ν(ξ)(y, y)D|2

ζF (1)L(2, εK)
d×zdyξ

for any Schwartz function f on VD.
Let π1, π2, π3 be irreducible unitary generic admissible representations

of GL2(F ) which satisfy (Cent) and (F). Put G? = G ∩ GSp6(F )? (see

Definition 2.7). Given α ∈ F× and a Whittaker function W ∈W ψ̄(Π) with

respect to ψ̄ ◦ TE , we define Wα ∈W ψ̄α(Π) by

Wα(g) =W(d(α)−1g).

Let K be the standard maximal compact subgroup of GSp6(F ). Let
I3(s, εK) be the normalized induced representation of GSp6(F ), consisting

of all smooth right K-finite functions f (s) : GSp6(F )→ C such that

f (s)(d(t)n(z)m(a)g) = εK(det a)|t−3(det a)2|s+1f (s)(g).

We associate to Φ ∈ S(V 3
D) a function fΦ on GSp6(F )? defined by

fΦ(g) = Ω3
D,ψ(h, g)Φ(0),

where h ∈ GO(VD) is chosen so that ν(h) = ν3(g). The right hand side is
independent of the choice of h. Since it satisfies

fΦ(d(t)n(b)m(a)g) = εK(det a)|t−3(det a)2|fΦ(g)
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for a ∈ GL3(F ), b ∈ Sym3(F ) and t ∈ NK/F (K×), it is uniquely extended

to an element f
(0)
Φ of I3(0, εK).

The local integral

Z(W, f
(0)
Φ ) =

∫
Z3U0\G

W(g)f
(0)
Φ (ηι(g)) dg

converges absolutely by (F) and [Ike92, Lemma 2.1]. If ψ is of order
zero, εK is unramified, Φ is the characteristic function of VD ∩ M2(oK),
W(GL2(oE)) = 1 and vol(o×FU

0(oF )\G(oF ), dg) = 1, then by Theorem 3.1
of [PSR87]

(4.4) Z(W, f
(0)
Φ ) =

L
(

1
2 ,Π

)
ζF (2)L(2, εK)

.

4.2. Partial zeta integrals and trilinear forms. If K ' F × F , then
γ(Π) = ε(Π) is a sign, and hence γ(Π) 6= −ε(D) if and only if ε(Π) = ε(D)
if and only if I +

D is non-vanishing by epsilon dichotomy. Therefore we will
assume that K is a quadratic extension of a non-archimedean local field F .
Let α ∈ F×. We introduce the partial zeta integral

Z?(Wα,Φ) =

∫
Z3U0\G?

Wα(g)fΦ(ηι(g)) dg.

Observe that

f
(0)
Φ (ηι(d(α)g1,d(α)g2,d(α)g3)) = εK(α)|α|−1f

(0)
Φ (ηι(g1, g2, g3))

and hence by the change of variables g 7→ d(α)gd(α)−1

Z?(Wα,Φ) = |α|2
∫
Z3U0\G?

W(gd(α)−1)f
(0)
Φ (ηι(d(α)gd(α)−1)) dg

= εK(α)|α|
∫
Z3U0\G?

W(gd(α)−1)f
(0)
Φ (ηι(gd(α)−1)) dg.(4.5)

When εK(α) = −1, we get

Z(W, f
(0)
Φ ) = Z?(W,Φ)− |α|−1Z?(Wα,Φ).

Proposition 4.2. Let α ∈ F×, Φ ∈ S(V 3
D) and W ∈W ψ̄(Π). Then

Z?(Wα,Φ) = |α|ε(D)L(2, εK)−1I
εK(α)
D (W,Φ).

Corollary 4.3. Let Φ ∈ S(V 3
D) and W ∈W ψ̄(Π). Then

Z(W, f
(0)
Φ ) = ε(D)L(2, εK)−1(I +

D (W,Φ)−I −D (W,Φ)).

We will prove Proposition 4.2 in §4.5. Granted Proposition 4.2, we can
easily prove Theorems 1.1 and 1.2.
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4.3. The proof of Theorem 1.1. Let π1, π2, π3 be irreducible unitary
generic admissible representations of GL2(F ) which satisfy (Cent) and (F).
Define the intertwining operator M(s) : I3(s, εK)→ I3(−s, εK)⊗ εK ◦ ν3 by

M(s)f (s)(g) = |2|−3/2

∫
Sym3(F )

f (s)(w−1
0 n(b)g) db,

where w0 is defined in (4.1) and db is the self-dual Haar measure of Sym3(F )
with respect to (b, b′) 7→ ψ(tr(bb′)). This integral is absolutely convergent
for <(s) � 0 and can be meromorphically continued to the whole complex
plane. We normalize the operator M(s) by setting

M∗(s) = γ(2s− 1, εK , ψ)γ(4s− 1, 1, ψ)M(s).

The gamma factor γ(s,Π, ψ) is defined as the proportionality constant of
the functional equation

Z(W,M∗(s)f (s)) = γ

(
s+

1

2
,Π, ψ

)
Z(W, f (s))

for f (s) ∈ I3(s, εK). This gamma factor coincides with γ(s, σ1 ⊗ σ2 ⊗ σ3, ψ)
by Proposition 3.3.7 of [Ram00] (cf. [CCI20]), where σi be the 2-dimensional
representation of the Weil-Deligne group of F associated to πi by the local
Langlands correspondence for GL2. The central value γ(Π) = γ

(
1
2 ,Π, ψ

)
is

independent of the choice of ψ (see Remark 1.4(2)).

Theorem 4.4. The following conditions are equivalent:

• I ε
D ∈ HomGL2(K)(π1,K ⊗ π2,K ⊗ π3,K ,C) is zero;

• γ(Π) = −ε · ε(D).

Theorem 4.4 can be deduced from Lemma 4.5 and Proposition 4.7 below.

Lemma 4.5. There are W ∈ W ψ̄(Π) and Φ ∈ S(V 3
D) such that not both

I +
D (W,Φ) and I −D (W,Φ) are zero.

Proof. Given α ∈ F×, we define an element fαΦ ∈ I3(0, εK) by fαΦ(g) =

f
(0)
Φ (gd(α)) for g ∈ GSp6(F ). Put R3(VD) := {fΦ | Φ ∈ S(V 3

D)}. Fix
α0 ∈ F× with εK(α0) = −1. Theorem 2.1 of [KR94] tells us that

I3(0, εK) = R3(VD)⊕R3(V α0
D ).

Since R3(V α0
D ) = {fα0

Φ | Φ ∈ S(V 3
D)}, the space I3(0, εK) is a C-linear span

of elements of the form fαΦ .

If I +
D (W,Φ) = I −D (W,Φ) = 0 for all W ∈W ψ̄(Π) and Φ ∈ S(V 3

D), then
Z?(Wα,Φ) = 0 for all α ∈ F× by Proposition 4.2, and hence Z(W, fαΦ) = 0
for all α ∈ F× by (4.5). This is a contradiction as the zeta integral defines
a non-zero functional on Π⊗ I3(0, εK) by Proposition 3.3 of [PSR87]. �

Let S ∈ Sym3(F ) with detS 6= 0. For a section f (s) of I3(s, εK) we put

WS(f (s)) =

∫
Sym3(F )

f (s)(w0n(b))ψ(−tr(Sb)) db.
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The integral can be continued to an entire function in s. Let ε(S) be either 1
or −1 according to whether S is split or anisotropic. Theorem 2.1 combined
with Lemma 3.1 of [Ike17] gives

WS(M∗(s)f (s)) = ε(S)εK(4 detS)|4 detS|−2sWS(f (s)).

Lemma 4.6. Let Φ ∈ S(V 3
D). Then

M∗(0)f
(0)
Φ = εK(−1)ε(D)f

(0)
Φ · εK ◦ ν3.

Proof. It suffices to determine M∗(0)f
(0)
Φ |Sp6(F ). The operator M∗(0) pre-

serves the space R3(VD) by Proposition 5.5 of [KR92]. Since this space is
irreducible as an Sp6(F )-module by Corollary 3.7 of [KR92], the operator
M∗(0) acts on it by scalar multiplication. Take S such that ε(S) = 1 and
εK(−4 detS) = ε(D). Then WS(M∗(0)fΦ) = εK(−1)ε(D)WS(fΦ). Since
such an S is represented by VD (cf. Remark 2.4), Proposition 2.7 of [KR94]
gives Φ ∈ S(V 3

D) with WS(fΦ) 6= 0. �

Proposition 4.7. For all W ∈W ψ̄(Π) and Φ ∈ S(V 3
D) we have

(1− εK(−1)ε(D)γ(Π))I +
D (W,Φ) = −(1 + εK(−1)ε(D)γ(Π))I −D (W,Φ).

Proof. Take α ∈ F× with εK(α) = −1. Then we have

Z(W,M∗(0)f
(0)
Φ ) = εK(−1)ε(D)Z(W, f

(0)
Φ · εK ◦ ν3)

= εK(−1)ε(D)(Z?(W,Φ) + |α|−1Z?(Wα,Φ))

= εK(−1)L(2, εK)−1(I +
D (W,Φ) + I −D (W,Φ))

by Lemma 4.6, (4.5) and Proposition 4.2.
We combine Corollary 4.3 with the functional equation

Z(W,M∗(0)f
(0)
Φ ) = γ(Π)Z(W, f

(0)
Φ )

to verify the relation. �

Corollary 4.3 and Proposition 4.7 give the following result:

Corollary 4.8. Let Φ ∈ S(V 3
D) and W ∈ W ψ̄(Π). If γ(Π) 6= −εK(−1)ε(D),

then

Z(W, f
(0)
Φ ) =

2

ε(D) + εK(−1)γ(Π)
· L(2, εK)−1I +

D (W,Φ).

4.4. The proof of Theorem 1.2. Letting y = 1 ∈ VD, we put

B\
i = ζF (2)L(1,Ad(πi)⊗ εK)−1By ∈ HomD×(πDi,K , (ωiεK) ◦ND/F ),

where By is as in Proposition 3.3, and define θ : Π⊗ S(V 3
D)→ ΠD

K by

θ(W,Φ) = θy(W1, ϕ1)⊗ θy(W2, ϕ2)⊗ θy(W3, ϕ3)

for W = W1 ⊗W2 ⊗W3 and Φ = ϕ1 ⊗ ϕ2 ⊗ ϕ3. We define an element

I\ ∈ HomD×K
(πD1,K ⊗ πD2,K ⊗ πD3,K ,C)
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by the convergent integral

I\(φ1⊗φ2⊗φ3) =

∫
K×D×\D×K

B\
1(πD1,K(ξ)φ1)B\

2(πD2,K(ξ)φ2)B\
3(πD3,K(ξ)φ3) dξ,

where dξ = d1ξ. Assuming that γ(Π) 6= −εK(−1)ε(D), we normalize I\ by

I\ =
L(1,Ad(Π)⊗ εK)

ζF (2)2L
(

1
2 ,Π

) · 2

ε(D) + εK(−1)γ(Π)
· I\.

By the definition of B\
i the functionals I\ and I +

D are related as follows:

I +
D (W,Φ) =

L(1,Ad(Π)⊗ εK)

ζF (2)3
I\(θ(W,Φ)) =

L
(

1
2 ,Π

)
ζF (2)

·ε(D) + εK(−1)γ(Π)

2
I\.

Corollary 4.8 gives

(4.6) Z(W, f
(0)
Φ ) =

L
(

1
2 ,Π

)
ζF (2)L(2, εK)

I\(θ(W,Φ)).

Now we assume that εK , π1, π2, π3 are unramified, ψ has order 0 and

ε(D) = 1, vol(o×FU
0(oF )\G(oF ),dg̈) = 1,

Wi(GL2(oF )) = 1, vol(o×KGL2(oF )\GL2(oK),dξ) = 1.

Let ϕi be the characteristic function of V + ∩M2(oK). Then

B\
i (θy(Wi, ϕi)) = 1, I\(θ(W,Φ)) = 1

by Proposition 2.11(1) and (4.4).

4.5. The proof of Proposition 4.2. The rest of this section is devoted to
the proof of Proposition 4.2. The proof is similar to that of Proposition 5.1
of [Ich08] but more complicated as Proposition 2.5(1) says that the action
of GL2(K) divides YD into two orbits YD = Y+

D t Y
−
D , where

Y±D = {y ∈ YD | εK((y, y)D) = ±1}.
Recall that ν(ξ) = NK/F (det ξ) for ξ ∈ GL2(K). We associate to Φ ∈ S(V 3

D)

a function HD
ψ (Φ) : GL2(K)× SL2(E)→ C by

HD
ψ (ξ, g; Φ) = L(2, εK)−1(Ω3

D,ψ(ι(g))Φ)(ξσ(ξ)ι).

Take y ∈ YD. Define Φy ∈ S(V 3
Dy

) by Φy(x) = Φ(xy) for x ∈ V 3
Dy

. Put

γ = (y, y)D, ε = εK(γ), ν3 = ν3 ◦ ι,
J εΦ(g) = JyΦ(g)

= |γ|2
∫

GL2(K)/K×D×y

∫
F×

H
Dy
ψγ (ξ,m(z)g; Φy)εK(z)

∣∣∣∣ν(ξ)

z

∣∣∣∣2 d×z

ζF (1)
dyξ

for g ∈ SL2(E). The integral makes sense by Proposition 2.5(3).

Lemma 4.9. Let Φ ∈ S(V 3
D). Then for g ∈ G?

f
(0)
Φ (ηg) = ε(D)|ν3(g)|−1(J+

Φ (d(ν3(g)−1)g) + J−Φ (d(ν3(g)−1)g)).



22 MING-LUN HSIEH AND SHUNSUKE YAMANA

Proof. Since f
(0)
Φ (ηd(ν)g) = εK(ν)

|ν| f
(0)
Φ (ηg) for all ν ∈ F× and g ∈ Sp6(F ),

we may assume that g ∈ SL2(E). Put

w1 =


0 0 −1 0
0 12 0 0
1 0 0 0
0 0 0 12

 , A =

1 1 1
0 1 0
0 0 1

 .

Then η = w1m(A). Recall that

ε(D)Ω1
D,ψ(J1)ϕ(y) =

∫
VD

ϕ(x)ψ((x, y)D) dx =

∫
YD

ϕ(x)ψ((x, y)D) dx

for ϕ ∈ S(VD). We see therefore that for g ∈ Sp6(F )

ε(D)f
(0)
Φ (ηg) = ε(D)Ω3

D,ψ(w1m(A)g)Φ(0)

=

∫
YD

Ω3
D,ψ(m(A)g)Φ(x, 0, 0) dx =

∫
YD

Ω3
D,ψ(g)Φ(x, x, x) dx.

Take y ∈ YD. Employing (4.3), we rewrite the right hand side as a sum of∫
GL2(K)/K×D×y

∫
F×

Ω3
D,ψ(ι(g))Φ(z℘y(ξ))

|z2ν(ξ)γ|2

ζF (1)L(2, εK)
d×zdyξ.

It is equal to JyΦ(g) by (2.2) and Remark 3.1. �

To simplify notation, we put

B = NK/F (K×), Bc = F× \ B, BE = B × B × B.

Let R≥0 be the set of non-negative real numbers. Fix a R≥0-valued function
β ∈ C∞c (E×) whose support is contained in BE and such that β(au) = β(a)
for a ∈ BE and u ∈ o×E ∩BE . Let C = oF . We choose a R≥0-valued function
φ ∈ C∞c (F ) so that

φ(1) = 0, supp(φ) · C ⊂ supp(φ),

φ̂α(0) = 1, supp(φ) ∩ (1− Bc) = ∅

and such that φ̂α(x + v) = φ̂α(x) for x ∈ F and v ∈ TE/F (supp(β) · oE).

Here φ̂α ∈ S(F ) is the Fourier transform of φ defined by

φ̂α(b) =

∫
F
φ(z)ψα(zb) dαz

for b ∈ F , where dαz = |α|1/2dz is the self-dual Haar measure of F with
respect to ψα. We can define a function ταβ,φ on Z3U

0\G? by

ταβ,φ

((
1 b
0 1

)(
a 0
0 d

)
k

)
= φ̂α(TE/F (b))β(ad−1)

for b ∈ E, a, d ∈ E× with ad ∈ B and k ∈ GL2(oE) ∩G?. One can easily
verify that ταβ,φ is well-defined.
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We define a modified truncated partial zeta integral by

Z?β,φ(Wα,Φ) =

∫
Z3U0\G?

Wα(g)fΦ(ηι(g))ταβ,φ(g) dg.

Since Z?(Wα,Φ) is absolutely convergent and ταβ,φ is bounded, this integral
is absolutely convergent. Put

Iα,εβ,φ = Iα,yβ,φ =

∫
Z3U0\G?

Wα(g)ταβ,φ(g)|ν3(g)|−1JyΦ(d(ν3(g)−1)g) dg,

where ε = εK((y, y)D). Then Lemma 4.9 gives

Z?β,φ(Wα,Φ) = ε(D)(Iα,+β,φ + Iα,−β,φ ).

Following [Ich08], for given g ∈ G?, we put

Wα
β,φ(g) =

∫
F

∫
F×
Wα(d(ν)g)ταβ,φ(n(z/3)d(ν)g)ψα(νz − z)|ν|2 d×α ν

ζF (1)
dαz.

Then Wα
β,φ(n(x)g) = ψα(−TE/F (x))Wα

β,φ(g) for x ∈ E and g ∈ G?.

Lemma 4.10. (1) If εK(α) 6= ε, then Iα,εβ,φ = 0.

(2) If α = (y, y)D, then

Iα,yβ,φ = |α|
∫

GL2(K)/K×D×y

∫
U\SL2(E)

H
Dy
ψα (ξ,

...
g ; Φy)Wα

β,φ(d(ν(ξ)−1)
...
g ) d

...
gdyξ.

Proof. To simplify notation, we write Xy = GL2(K)/K×D×y . Changing the

variables g 7→m(z−1)g, we get

Iα,yβ,φ =|γ|2
∫
Z3U0\G?

∫
Xy

∫
F×
Wα(m(z−1)g)ταβ,φ(m(z−1)g)|ν3(g)|−1

× εK(z)H
Dy
ψγ (ξ,d(ν3(g)−1)g; Φy)|zν(ξ)|2 d×z

ζF (1)
dyξdg

=|γ|2
∫
F×2\B

∫
U0\SL2(E)

∫
Xy

∫
F×
Wα(d(z2ν̇)g̈)ταβ,φ(d(z2ν̇)g̈)

×HDy
ψγ (ξ, g̈; Φy)|z2ν̇ν(ξ)2| d×z

ζF (1)
dyξdg̈d×ν̇

by (4.2). Combining the integrals over F×2\B and F× into an integral over
B and integrating over U0\U, we obtain

Iα,yβ,φ

|γ|2
=

∫
U0\SL2(E)

∫
Xy

∫
B
Wα(d(ν)g̈)ταβ,φ(d(ν)g̈)H

Dy
ψγ (ξ, g̈; Φy)|νν(ξ)2| d×ν

ζF (1)
dyξdg̈

=

∫
Xy

∫
U\SL2(E)

H
Dy
ψγ (ξ,

...
g ; Φy)|ν(ξ)|2

∫
B
Wα(d(ν)

...
g )Lα,yβ,φ(

...
g , ξ, ν)

d×α ν

ζF (1)
d

...
gdyξ,

where

Lα,yβ,φ(g, ξ, ν) = |α−1ν|
∫
F
ψα(z/ν)ταβ,φ(d(ν)n(z/3)g)ψγ(ν(ξ)z) dαz.
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Changing the variables z 7→ νz, we get

Lα,yβ,φ(g, ξ, ν) = |α−1ν2|
∫
F
ψα((α−1γν(ξ)ν − 1)z)ταβ,φ(n(z/3)d(ν)g) dαz.

When g = diag(a,a−1)k with a ∈ E× and k ∈ SL2(oE), we get

Lα,yβ,φ(g, ξ, ν) =|α−1ν2|φ(1− α−1γν(ξ)ν)β(a2ν−1).

If α−1γ ∈ Bc, then Lα,yβ,φ(g, ξ, ν) = 0 for ν ∈ B due to our choice of φ, which

proves (1).
From now on we assume that α = γ. Recall that supp(β) ⊂ BE . Thus

Lα,yβ,φ(g, ξ, ν) = 0 unless ν ∈ B, so that the integral over B can be replaced

by the integral over F×. Changing the variables ν 7→ ν(ξ)−1ν, we get

|ν(ξ)|2
∫
B
Wα(d(ν)g)Lα,yβ,φ(g, ξ, ν)

d×ν

ζF (1)
=|α|−1Wα

β,φ(d(ν(ξ)−1)g).

Finally, we justify the manipulations above. Our task is to check that∫
Xy

∫
U\SL2(E)

∫
B

∫
F
Wα(d(ν)

...
g )Ω3

D,ψ(ι(
...
g ))Φ(ξyσ(ξ)ι)

× |νν(ξ)|2ταβ,φ(n(z/3)d(ν)
...
g ) dz

d×ν

ζF (1)
d

...
gdyξ

is absolutely convergent. We have only to show that the integral
∞∑
j=0

q2j

∫
C

∫
E×

∫
SL2(oE)

∫
F×
Wα(d(ν)m(a)k)Ω3

D,ψ(ι(m(a)k))Φ(cxjyσ(c)ι)

× |ν|2β(a2ν−1)|a|−2 d×νdkd×adc

is absolutely convergent in view of the relative Cartan decomposition (3.2).
Since the integral∫
F×

∫
E×

∫
F×

|ν−1a2|(1−ε)/2Φ0(ta, t−1a)ϕ(t)

|ν−1a2
1|λ(π1)|ν−1a2

2|λ(π2)|ν−1a2
3|λ(π3)

|ν|2β(a2ν−1)d×νd×a
d×t

|t|2

is convergent for Φ0 ∈ S(E2) and ϕ ∈ S(F ), the proof is complete. �

For each n ∈ N we define φn ∈ C∞c (F ) by

φn(z) = |$|−nφ($−nz).

Then
(̂φn)α(b) = φ̂α($nb).

The functions φn satisfy the condition on φ.
Take y ∈ YD with (y, y)D = α. Lemma 4.10(1) gives

Z?β,φn(Wα,Φ) = ε(D)Iα,yβ,φn
.

A function τβ on Z3U\G? is defined by

τβ

((
1 b
0 1

)(
a 0
0 d

)
k

)
= β(ad−1)
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for b ∈ E, a, d ∈ E× and k ∈ GL2(oE)∩G?. We consider a truncated partial
zeta integral defined by

Z?β(Wα,Φ) =

∫
Z3U0\G?

Wα(g)fΦ(ηι(g))τβ(g) dg.

Since lim
n→∞

ταβ,φn(g) = τβ(g) for g ∈ G?, we have

lim
n→∞

Z?β,φn(Wα,Φ) = Z?β(Wα,Φ)

by the dominated convergence theorem. Put

Wα
β (g) =Wα(g)τβ(g), φαβ,g(ν) =Wα

β (d(ν)g)|ν|.

By the proof of Lemma 5.5 of [Ich08]

Wα
β,φn(g) =

∫
F
φαβ,g(1− z)φn(z) dαz

for g ∈ G?. Since (̂φn)α(0) = φ̂α(0) = 1, we arrive at

lim
n→∞

Wα
β,φn(g) = φαβ,g(1) =Wα

β (g).

As in the proof of Lemma 5.6 of [Ich08] one can interchange the integrals
with the limit as n→∞ in Lemma 4.10(2), so that

lim
n→∞

Iα,yβ,φn
= |α|

∫
GL2(K)/K×D×y

∫
U\SL2(E)

H
Dy
ψα (ξ,

...
g ; Φy)Wα

β (d(ν(ξ)−1)
...
g ) d

...
gdyξ.

For each m ∈ N we choose βm ∈ C∞c (E×), which satisfies the condition
on ξ, so that 0 ≤ βm(a) ≤ 1 and lim

m→∞
βm(a) = 1 for a ∈ BE . Then

0 ≤ τβm(g) ≤ 1 and lim
m→∞

τβm(g) = 1 for g ∈ G?. Since Z?(Wα,Φ) is

absolutely convergent, we can use the dominated convergence theorem to
interchange the integrals with the limit as m→∞ to obtain

Z?(Wα,Φ) = lim
m→∞

Z?βm(Wα,Φ)

= ε(D) lim
m→∞

lim
n→∞

Iα,yβm,φn
= ε(D)|α|L(2, εK)−1I ε

D(W,Φ)

(cf. Remark 3.1).

5. The basic identity

5.1. Measures. We first choose Haar measures on various groups as follows.
Once and for all we fix a non-trivial additive character ψ =

∏
v ψv of A/F .

For each place v of F we take Haar measures d×zv = ζFv(1)dzv
|zv | of F×v and

d×kv = ζKv(1) dkv
αKv (kv) , where dzv and dkv are the self-dual measures on Fv

and Kv with respect to ψv and ψv ◦ TKv/Fv , and αKv(kv) = |kv|Kv denotes

the normalized absolute value. We define the Tamagawa measure of A×
by d×z = c−1

F

∏
v d×zv, where cF denotes the residue of the complete zeta

function ζF (s) =
∏
v ζFv(s) at s = 1. Let Ξ′ be a gauge form on D×K defined
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over F . Let dΞ′v be the measure on D×Kv associated to Ξ′. On D×K(A) we
take the Tamagawa measure

dΞ′ = c−1
K ζK(2)−1D−4

F

∏
v

ζKv(1)ζKv(2)dΞ′v.

Let dΞ be the quotient measure of dΞ′ by d×k.
Let d×x = dx

(x,x)2D
be aD×K-invariant gauge form on YD, where dx is the dif-

ferential form dx1dx2dx3dx4 on VD for a system of coordinates x1, x2, x3, x4

of VD over F . Recall the map ℘ = ℘1 : D×K → YD defined by ℘(ξ) = ξσ(ξ)ι

for ξ ∈ D×K , and the subgroup U = U1 = {ξ ∈ D×K | ℘(ξ) = 1}. Let
µ = Ξ′/℘∗d×x be the gauge form on U determined by Ξ′ and ℘∗d×x (see
p. 12 of [Wei65]). We define the Tamagawa measure on U(A) by

dµ = ζF (2)−1D−2
F

∏
v

ζFv(2)dµv.

Let dg′′, dg′ and dh be the Tamagawa measures on Z3(A)\G(A), SL2(E)
and O(VD,A), respectively.

5.2. Siegel Eisenstein series. Fix a maximal compact subgroup K of
GSp6(A). Let I3(s, εK) = ⊗vI3(s, εKv) consist of all right K-finite functions

f (s) : GSp6(A)→ C such that

f (s)(d(t)n(z)m(a)g) = εK(det a)|t−3(det a)2|s+1f (s)(g)

for t ∈ A×, z ∈ Sym3(A), a ∈ GL3(A) and g ∈ GSp6(A). The Eisenstein

series associated to f (s) ∈ I3(s, εK) is defined by

E(g; f (s)) =
∑

γ∈P3(F )\GSp6(F )

f (s)(γg)

for <s > 2. The series has meromorphic continuation to the whole s-plane
and has no poles on the unitary axis <s = 0.

Define the character δP3 of P3(A) by δP3(d(t)n(z)m(a)) = |t|−3| det a|2.
We extend δP3 to the right K-invariant function on GSp6(A) by the Iwasawa
decomposition. Let Φ = ⊗vΦv ∈ S(V 3

D(A)). Set fΦ(g) =
∏
v fΦv(gv) for

g = (gv) ∈ GSp6(A)?. Recall that fΦ is extended to a section f
(s)
Φ of I3(s, εK)

by f
(s)
Φ (g) = δP3(g)sf

(0)
Φ (g) for g ∈ GSp6(A).

We associated to Φ the series defined for <s > 2 and g ∈ GSp6(A)? by

E(s, g; Φ) =
∑

γ∈P3(F )?\GSp6(F )?

δP3(γg)sfΦ(γg).

We extend E(s, g; Φ) to a left GSp6(F )-invariant function on

GK = GSp6(F )GSp6(A)? = {g ∈ GSp6(A) | ν3(g) ∈ F×B}.
The subgroup B of A× is defined in Definition 2.7. The set GK is a subgroup
of GSp6(A) of index 2 as F×B = F×NK/F (K×). The series E(s, g; Φ) is

related to E(g; f
(s)
Φ ) in the following way:
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Proposition 5.1. (1) If g ∈ GK , then E(g; f
(s)
Φ ) = E(s, g; Φ).

(2) If g /∈ GK , then lim
s→0

E(g; f
(s)
Φ ) = 0.

Proof. The first statement is clear from GSp6(F ) = P3(F )GSp6(F )?. Sup-
pose that Φ = ⊗vΦv is factorizable. Take an idèle a /∈ F×B. Note that

f
(0)
Φ (gd(a)) = |a|−3Ω3

D,ψ(d(a)−1gd(a))Φ(0)

for g ∈ Sp6(A). Then

Ω3
Dv ,ψv(d(av)

−1gvd(av)) = Ω3
Dv ,ψ

av
v

(gv)

is the local Weil representation associated to the dual pair Sp6(Fv)×O(V av
Dv

).
By Remark 2.4 there exists no global quadratic space with V av

Dv
as its com-

pletions. In other words, the series E(gd(a); f
(s)
Φ ) is incoherent and vanishes

at s = 0 by Theorem 3.1(ii) of [KR94]. �

5.3. The Siegel-Weil formula. When DK is not split, the theta integral
is defined, for g ∈ GSp6(A)? and Φ ∈ S(V 3

D(A)), by

θ(g; Φ) =

∫
O(VD,F )\O(VD,A)

Θ(hh′, g; Φ) dh,

where h′ ∈ GO(VD,A) with ν(h′) = ν3(g). It does not depend on the choice
of h′. Here the Haar measure dh gives O(VD, F )\O(VD,A) volume 1. In the
case DK ' M2(K) the theta integral can be defined by regularization (see
[KR94]). The group B = B∩F× consists of idèles ν(h) with h ∈ GO(VD, F )
by Eichler’s norm theorem. It follows from Remark 2.6 that

θ(zγg; Φ) = εK(z)θ(g; Φ)

for z ∈ Z3(A), γ ∈ GSp6(F )? and g ∈ GSp6(A)?.
The Siegel-Weil formula is now stated as follows:

E(0, g; Φ) = 2θ(g; Φ).

The reader who has interested in this formula can consult [HK91, Theorem
4.1] or [KR94, Theorem 6.12].

5.4. The seesaw identity. Put E = A × A × A. Let Π be an irreducible
cuspidal automorphic representation of GL2(E) whose central character has
the restriction εK to A×. For a cusp form F = f1 ⊗ f2 ⊗ f3 ∈ Π and
Φ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 ∈ S(V 3

D(A)) the global zeta integral is defined by

Z(F , f (s)) =

∫
Z3(A)G(F )\G(A)

F(g′′)E(ι(g′′); f (s)) dg′′,

where dg′′ is the Tamagawa measure of Z3(A)\G(A).
We consider the period integral I, which is an element of

HomD×K(A)(π
D
1,K ⊗ πD2,K ⊗ πD3,K ,C),
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defined by

I(φ1 ⊗ φ2 ⊗ φ3) =

∫
K×D×K(F )\D×K(A)

φ1(ξ)φ2(ξ)φ3(ξ) dξ,

where dξ is the Tamagawa measure on K×\D×K(A). Put

H = {(h1, h2, h3) ∈ GO(VD)3 | ν(h1) = ν(h2) = ν(h3)},
G(A)? = G(A) ∩GSp6(A)?.

Let F = f1 ⊗ f2 ⊗ f3 ∈ Π and Φ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 ∈ S(V 3
D(A)). We write

θ(h;F ,Φ) =

3∏
i=1

θ(hi; fi, ϕi) =

∫
SL2(E)\SL2(E)

F(g′)Θ(h; ι(g′gh),Φ) dg′

for h = (h1, h2, h3) ∈ H(A), where gh ∈ G(A) with det(gh) = ν(h) and dg′

denotes the Tamagawa measure of SL2(E).

Proposition 5.2 (The seesaw identity).

lim
s→0

Z(F , f (s)
Φ ) = I(θ(F ,Φ)).

Proof. Let GK = G(F )G(A)? = G(A)∩GK be a subgroup of G(A) of index

2. Since the function g 7→ E(ι(g); f (s)) is the extension of E(0, ι(g); Φ) by
zero from GK to G(A) by Proposition 5.1,

lim
s→0

Z(F , f (s)
Φ ) =

∫
Z3(A)G(F )\GK

F(g′′)E(0, ι(g′′); Φ) dg′′.

The Siegel-Weil formula gives

lim
s→0

Z(F , f (s)
Φ ) = 2

∫
Z3(A)G(F )?\G(A)?

F(g′′)θ(ι(g′′); Φ) dg′′,

where G(F )? = G(F ) ∩G(A)?. Since Z3\G ' PGL2 n (SL2 × SL2), the
Tamagawa measure dg′′ gives the domain Z3(A)G(F )?\G(A)? volume 1.

Now we apply the seesaw pair:

GSp?6 θ(g; Φ)

G? F

θ(h;F ,Φ) H

GO(VD)1l

b
b
b
b
b
bb�

�
�
�
��

Set C := BA×2\B. Note that

Z3(A)G(F )?SL2(E)\G(A)? ' ZD(A)GO(VD, F )O(VD,A)\GO(VD,A) ' C
is compact. Fix a Haar measure dc giving C volume 1. We have∫

Z3(A)G(F )?\G(A)?
F(g′′)θ(ι(g′′); Φ) dg′′

=

∫
C

∫
SL2(E)\SL2(E)

F(g′gc)

∫
O(VD,F )\O(VD,A)

Θ(hhc, ι(g
′gc); Φ) dhdg′dc
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=

∫
C

∫
O(VD,F )\O(VD,A)

θ(hhc;F ,Φ) dhdc

=

∫
ZD(A)GO(VD,F )\GO(VD,A)

θ(h;F ,Φ) dh.

This integral factorizes into the product of local invariant trilinear forms
constructed in Section 3 by Prasad’s uniqueness theorem. Put

H̃ = (Gm ×D×K) o 〈t〉, H̃0 = Gm ×D×K , ZH̃0 = Gm × RK/FGm.

Recall the homomorphism ρ : H̃ → GO(VD) defined in (2.1). Since dh gives

ZD(A)GO(VD, F )\GO(VD,A)

volume 1, we have

2

∫
ZH̃0 (A)H̃(F )\H̃(A)

θ(ρ(h);F ,Φ) dh

=2

∫
ZH̃0 (A)H̃0(F )\H̃0(A)

θ(ρ(h);F ,Φ) dh

=

∫
K×D×K(F )\D×K(A)

θ(ξ;F ,Φ) dξ.

If v is inert, then D×Kv -invariant trilinear forms are invariant under the action
of t by Lemma 3.7. The analogous invariance holds for split places. There-
fore the integral over ZH̃0(A)H̃(F )\H̃(A) can be replaced by the integral

over ZH̃0(A)H̃0(F )\H̃0(A) in the second line. �

5.5. The proof of Theorem 1.3. We hereafter require the base change
ΠK to be cuspidal. We write L(s,Πv) for the triple product L-factor of Πv.
The epsilon factor is defined by the relation

ε(s,Πv, ψv) = γ(s,Πv, ψv)
L(s,Πv)

L(1− s,Π∨v )
.

Clearly, ε(Πv) = γ(Πv) if Πv is self-dual.
For a quaternion algebra D over F we consider the following condition:

(]) ε(Dv) 6= −εK(−1)γ(Πv) for all v.

Proposition 5.3. (1) If D satisfies (]), then it satisfies (JL) and (Per).
(2) If there exists a place v such that γ(Πv)

2 6= 1, then there is a quater-
nion algebra which satisfies (]).

Proof. Since DKv ' M2(Kv) unless Kv ' Fv × Fv, the Jacquet-Langlands
lift πDK exists if and only if the local Jacquet-Langlands lift πDv of πv to D×v
exists for all the split places v.

Assume that D satisfies (]). Then the functional I +
Dv

is non-vanishing

for all v by Theorem 1.1. A fortiori, πDvv exists and B1,v, B2,v, B3,v are non-
vanishing. Thus πDK exists. For Bi to be non-vanishing there is no global
obstruction in view of Propositions 2.10 and 2.11(2). Hence (]) implies (Per).
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If the cardinality of the residue field of oFv is sufficiently large, then
L
(

1
2 ,Πv

)
6= −L

(
1
2 ,Π

∨
v

)
in view of Remark 3.4(2). It follows that γ(Πv) 6= −1

for all but finitely many places of F . One can now trivially prove (2) by the
Minkowski-Hasse theorem. �

We are now ready to prove the central value formula. From now on we
assume that D satisfies (]). We denote the Jacquet-Langlands lift of ΠK to
(DK ⊗ E)× by ΠD

K . Take ϕ = φ1 ⊗ φ2 ⊗ φ3 = ⊗vϕv ∈ ΠD
K so that

B(ϕ) := B1(φ1)B2(φ2)B3(φ3) 6= 0.

Recall the functionals B\
i,v and I\v defined in §4.4. By by Remark 3.4(2) and

Lemma 3.5 I\v makes sense. Set B\
v = B\

1,v⊗B
\
2,v⊗B

\
3,v. The formula stated

in Theorem 1.3 is equivalent to the following formula:

I(ϕ)

B(ϕ)
= 2−3 ·

ζF (2)2L
(

1
2 ,Π

)
L(1,Ad(Π)⊗ εK)

·
∏
v

I]v(ϕv)

B\
v(ϕv)

.

If F has the factorizable Whittaker function W = ⊗vWv with respect to
ψ̄ and if Φ = ⊗vΦv is factorizable, then

Z(F , f (s)
Φ ) =

∏
v

Z(Wv, f
(s)
Φv

) =
LS
(
s+ 1

2 ,Π
)

LS(2s+ 2, εK)ζSF (4s+ 2)

∏
v∈S

Z(Wv, f
(s)
Φv

),

where S = Sf1,ϕ1 ∪ Sf2,ϕ2 ∪ Sf3,ϕ3 . Take F ∈ Π and Φ = ⊗vΦv ∈ S(V 3
D(A))

so that θ(F ,Φ) = ϕ. Let W =
∏
vWv be the Whittaker function of F with

respect to ψ̄. The formula (4.6) remains true at split places of F (cf. p. 296
of [Ich08]). Hence Proposition 5.2 gives

I(θ(F ,Φ)) =
LS
(

1
2 ,Π

)
LS(2, εK)ζSF (2)

∏
v∈S

Z(Wv, f
(0)
Φv

)

= ζF (2)−1L

(
1

2
,Π

)∏
v∈S

I\v(θ(Wv,Φv)).

Since

B(ϕ) =
23

ζF (2)3
· L(1,Ad(Π)⊗ εK) ·

∏
v

B\
v(ϕv)

by Proposition 2.11, we have thus completed our proof.
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