BASE CHANGE AND TRIPLE PRODUCT L-SERIES

MING-LUN HSIEH AND SHUNSUKE YAMANA

Contents

1. Introduction 1
2. Twisted Shimizu correspondence 4
3. Local trilinear forms 12
4. The trilinear forms and local zeta integrals 16
5. The basic identity 25
Acknowledgements 30
References 31

1. Introduction

Let F be a number field with adèle ring \mathbb{A}, K a quadratic extension of F with adèle ring \mathbb{K} and D a quaternion algebra over F. Let $D_{K}=D \otimes_{F} K$ be a quaternion algebra over K. Let ϵ_{K} be the character of $F^{\times} \backslash \mathbb{A}^{\times}$of order 2 corresponding to K via class field theory. Let π_{i} be an irreducible unitary cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$ with central character ω_{i}. We denote the base change lift of π_{i} to $\mathrm{GL}_{2}(\mathbb{K})$ by $\pi_{i, K}$. We impose on π_{i} and D the following conditions:
(Cent) $\omega_{1} \omega_{2} \omega_{3}=\epsilon_{K}$;
(Cusp) $\pi_{i, K}$ is cuspidal;
(JL) there exists an irreducible automorphic representation $\pi_{i, K}^{D}$ of $D_{K}^{\times}(\mathbb{A})$ associated to $\pi_{i, K}$ by the Jacquet-Langlands correspondence;
(Per) the period integral

$$
B_{i}\left(\phi_{i}\right)=\int_{\mathbb{A}^{\times} D^{\times}(F) \backslash D^{\times}(\mathbb{A})} \phi_{i}(h)\left(\omega_{i}^{-1} \epsilon_{K}\right)\left(\mathrm{N}_{D / F}(h)\right) \mathrm{d} h
$$

does not vanish for some $\phi_{i} \in \pi_{i, K}^{D}$, where $\mathrm{N}_{D / F}$ denotes the reduced norm on D and $\mathrm{d} h=\prod_{v} \mathrm{~d} h_{v}$ is the Tamagawa measure on $\mathbb{A}^{\times} \backslash D^{\times}(\mathbb{A})$.

[^0](Arc) K is split at all the archimedean places of F.
The assumption (JL) is automatic if $D_{K} \simeq \mathrm{M}_{2}(K)$. The assumption (Per) is automatic if $D \simeq \mathrm{M}_{2}(F)$ (see Proposition 2.13(1)). The assumption (Arc) is made for convenience to simplify the local calculations in $\$ 4$.

Put $\Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$ and $\Pi_{K}^{D}=\pi_{1, K}^{D} \otimes \pi_{2, K}^{D} \otimes \pi_{3, K}^{D}$. One of the purposes of this article is to establish an explicit formula relating the period integral

$$
I\left(\phi_{1} \otimes \phi_{2} \otimes \phi_{3}\right)=\int_{\mathbb{K}^{\times} D_{K}^{\times}(F) \backslash D_{K}^{\times}(\mathbb{A})} \phi_{1}(\Xi) \phi_{2}(\Xi) \phi_{3}(\Xi) \mathrm{d} \Xi
$$

on Π_{K}^{D} to the central value $L\left(\frac{1}{2}, \Pi\right)=L\left(\frac{1}{2}, \pi_{1} \times \pi_{2} \times \pi_{3}\right)$ of the triple product L-series associated to the Langlands parameters of π_{i} and the eightdimensional representation of the L-group of $\mathrm{GL}_{2} \times \mathrm{GL}_{2} \times \mathrm{GL}_{2}$. Here $\mathrm{d} \Xi=\prod_{v} \mathrm{~d} \Xi_{v}$ is the Tamagawa measure on $\mathbb{K}^{\times} \backslash D_{K}^{\times}(\mathbb{A})$.

For each place v of F we let F_{v} be the completion of F at v and put

$$
D_{v}=D \otimes F_{v}, \quad D_{K_{v}}=D \otimes K_{v} .
$$

We will explicitly factorize B_{i} into local functionals in $\$ 2.5$. Choose a local invariant form $B_{i, v} \in \operatorname{Hom}_{D_{v}^{\times}}\left(\pi_{i, K_{v}}^{D_{v}}, \omega_{i, v} \epsilon_{K_{v}}\right)$ so that

$$
B_{i}\left(\phi_{i}\right)=\prod_{v} B_{i, v}\left(\phi_{i, v}\right)
$$

for $\phi_{i}=\otimes \phi_{i, v} \in \pi_{i, K}^{D}$, and $B_{i, v}\left(\phi_{i, v}\right)=1$ for almost all v. Put

$$
B_{v}=B_{1, v} \otimes B_{2, v} \otimes B_{3, v}, \quad L\left(s, \operatorname{Ad}(\Pi) \otimes \epsilon_{K}\right)=\prod_{i=1}^{3} L\left(s, \operatorname{Ad}\left(\pi_{i}\right) \otimes \epsilon_{K}\right)
$$

We define an element of the space

$$
\begin{equation*}
\operatorname{Hom}_{D_{K_{v}}^{\times}}\left(\Pi_{K_{v}}^{D_{v}}, \mathbb{C}\right) \tag{1.1}
\end{equation*}
$$

by the convergent integral

$$
\mathbf{I}_{v}\left(\phi_{v}\right)=\int_{K_{v}^{\times} D_{v}^{\times} \backslash D_{K_{v}}^{\times}} B_{v}\left(\Pi_{K_{v}}^{D_{v}}\left(\xi_{v}\right) \phi_{v}\right) \mathrm{d} \xi_{v}
$$

for $\phi_{v} \in \Pi_{K_{v}}^{D_{v}}=\pi_{1, K_{v}}^{D_{v}} \otimes \pi_{2, K_{v}}^{D_{v}} \otimes \pi_{3, K_{v}}^{D_{v}}$, where $\mathrm{d} \xi_{v}$ is the measure defined by the quotient of $\mathrm{d} \Xi_{v}$ by $\mathrm{d} h_{v}$. Let $\epsilon\left(D_{v}\right)$ be either 1 or -1 according as D is split at v or not. Fix a non-trivial additive character $\psi=\prod_{v} \psi_{v}$ of $F \backslash \mathbb{A}$. We write

$$
\gamma\left(\Pi_{v}\right)=\gamma\left(\frac{1}{2}, \pi_{1, v} \times \pi_{2, v} \times \pi_{3, v}, \psi_{v}\right)
$$

for the central value of the triple product gamma factor. Note that $\gamma\left(\Pi_{v}\right)$ is independent of the choice of ψ_{v} by Remark 1.4 (2).
Theorem 1.1. Assume that $K_{v} \simeq F_{v} \times F_{v}$ if v is archimedean. The functional \mathbf{I}_{v} is non-vanishing if and only if

$$
\gamma\left(\Pi_{v}\right) \neq-\epsilon_{K}(-1) \epsilon\left(D_{v}\right) .
$$

If $K_{v} \simeq F_{v} \times F_{v}$, then $\gamma\left(\Pi_{v}\right)=\varepsilon\left(\frac{1}{2}, \pi_{1, v} \times \pi_{2, v} \times \pi_{3, v}, \psi_{v}\right)$ is the local root number, and Theorem 1.1 is known as the epsilon dichotomy, proved by Prasad in Pra90. On the other hand, if K_{v} is not split at v, then $D_{K_{v}} \simeq \mathrm{M}_{2}\left(K_{v}\right)$, and (1.1) is one-dimensional (see Remark 3.4(1)). Two functionals thus constructed satisfy the relation stated in Proposition 4.7. Note that $\gamma\left(\Pi_{v}\right)$ may not be a sign.
Theorem 1.2. Assume the following conditions:

- v is non-archimedean,
- $\epsilon_{K_{v}}$ is unramified,
- $\epsilon\left(D_{v}\right)=1$,
- $B_{v}\left(\phi_{v}\right)=1$ and $\Pi_{K_{v}}^{D_{v}}(k) \phi_{v}=\phi_{v}$ for $k \in \mathrm{GL}_{2}\left(\mathfrak{o}_{K_{v}} \times \mathfrak{o}_{K_{v}} \times \mathfrak{o}_{K_{v}}\right)$,
- $\mathrm{d} \xi_{v}$ is the right invariant measure on $K_{v}^{\times} \mathrm{GL}_{2}\left(F_{v}\right) \backslash \mathrm{GL}_{2}\left(K_{v}\right)$ which gives $\mathfrak{o}_{K_{v}}^{\times} \mathrm{GL}_{2}\left(\mathfrak{o}_{F_{v}}\right) \backslash \mathrm{GL}_{2}\left(\mathfrak{o}_{K_{v}}\right)$ volume 1 .
Then

$$
\mathbf{I}_{v}\left(\phi_{v}\right)=\frac{\zeta_{F_{v}}(2)^{2} L\left(\frac{1}{2}, \Pi_{v}\right)}{L\left(1, \operatorname{Ad}\left(\Pi_{v}\right) \otimes \epsilon_{K_{v}}\right)} \cdot \frac{1+\gamma\left(\Pi_{v}\right)}{2} .
$$

When $\gamma\left(\Pi_{v}\right) \neq-\epsilon_{K}(-1) \epsilon\left(D_{v}\right)$, we normalize the functional \mathbf{I}_{v} by setting

$$
I_{v}=\frac{L\left(1, \operatorname{Ad}\left(\Pi_{v}\right) \otimes \epsilon_{K_{v}}\right)}{\zeta_{F_{v}}(2)^{2} L\left(\frac{1}{2}, \Pi_{v}\right)} \cdot \frac{2}{\epsilon\left(D_{v}\right)+\epsilon_{K}(-1) \gamma\left(\Pi_{v}\right)} \cdot \mathbf{I}_{v}
$$

Theorem 1.3. Assume the conditions (Arc), (Cent) and (Cusp). If there exists a quaternion algebra D over F which satisfies $\epsilon\left(D_{v}\right) \neq-\epsilon_{K}(-1) \gamma\left(\Pi_{v}\right)$ for all v, then such D satisfies the conditions (JL) and (Per), and we have

$$
I=2^{-3} \cdot \frac{\zeta_{F}(2)^{2} L\left(\frac{1}{2}, \Pi\right)}{L\left(1, \operatorname{Ad}(\Pi) \otimes \epsilon_{K}\right)} \cdot \prod_{v} I_{v}
$$

as elements of $\operatorname{Hom}_{D_{K}^{\times}(\mathbb{A})}\left(\Pi_{K}^{D}, \mathbb{C}\right)$.
Remark 1.4. (1) We define the L-series $L\left(s, \operatorname{Ad}\left(\pi_{i}\right) \otimes \epsilon_{K}\right)$ as the ratio

$$
L\left(s, \operatorname{Ad}\left(\pi_{i}\right) \otimes \epsilon_{K}\right)=L\left(s, \pi_{i} \times \pi_{i}^{\vee} \otimes \epsilon_{K}\right) / L\left(s, \epsilon_{K}\right)
$$

Since $\pi_{i} \not 千 \pi_{i} \otimes \epsilon_{K}$ by (Cusp), the L-series $L\left(s, \operatorname{Ad}\left(\pi_{i}\right) \otimes \epsilon_{K}\right)$ has neither zero nor pole at $s=1$.
(2) Fix $a \in F_{v}^{\times}$and define the character ψ_{v}^{a} of F_{v} by $\psi_{v}^{a}(x)=\psi_{v}(a x)$ for $x \in F_{v}$. Then
$\gamma\left(\frac{1}{2}, \pi_{1, v} \times \pi_{2, v} \times \pi_{3, v}, \psi_{v}^{a}\right)=\left(\omega_{1} \omega_{2} \omega_{3}\right)^{4}(a) \gamma\left(\frac{1}{2}, \pi_{1, v} \times \pi_{2, v} \times \pi_{3, v}, \psi_{v}\right)$.
Therefore $\gamma\left(\Pi_{v}\right)$ is independent of the choice of ψ_{v}.
(3) If $\gamma\left(\Pi_{v}\right)^{2} \neq 1$ for some v, then there exists a quaternion algebra D such that $\epsilon\left(D_{v}\right) \neq-\epsilon_{K}(-1) \gamma\left(\Pi_{v}\right)$ for all v (see Proposition 5.3).

When $K=F \times F$, Theorem 1.3 is nothing but Ichino's formula proved in Ich08. Ichino considers an étale cubic algebra over F. It should not be difficult to extend Theorem 1.3 to this case. The proof follows the same line
as in the proof of [Ich08]. The global ingredient is the vanishing of incoherent Eisenstein series (see Proposition 5.1), which is combined with the seesaw identity. The assumption (Cusp) will be used to apply Proposition 2.11 at the last stage of the proof of Theorem 1.1. The local ingredient is the local functional equation of Garrett's zeta integral. Corollary 4.3 will relate the zeta integral to the sum of the two invariant trilinear forms. Then the local functional equation gives the relation stated in Proposition 4.7, from which Theorem 1.1 follows. Theorem 1.2 can be deduced from the unramified computation of the zeta integral.

Here is a short summary of the content of this paper. Section 2 describes the quaternary quadratic space V_{D} and studies theta lifts from GL_{2} to $\mathrm{GO}\left(V_{D}\right)$. Section 3 constructs the local invariant trilinear forms. Section 4 relates those trilinear forms to (partial) zeta integrals and proves Theorems 1.1 and 1.2. Section 5 applies the seesaw machinery, following HK91.

2. Twisted Shimizu correspondence

2.1. Quaternary quadratic spaces. Let D and K be a quaternion algebra and a quadratic extension over an arbitrary field F of characteristic zero. Fix an element $\delta \in F^{\times} \backslash F^{\times 2}$ so that $K=F(\sqrt{\delta})$. The main involution ι of D is uniquely determined by the conditions $x+x^{l} \in F$ and $x x^{l} \in F$ for every $x \in D$. The norm map $\mathrm{N}_{K / F}: K^{\times} \rightarrow F^{\times}$is defined by $\mathrm{N}_{K / F}(k)=k \bar{k}$, where - denotes the non-trivial automorphism of K over F.

Given a central simple algebra A over K, by an involution (anti-involution) of A, we mean an arbitrary F-linear automorphism (resp. anti-automorphism) of A of order 2. It is said to be of the second kind if its restriction to K coincides with $־^{-}$Let $D_{K}=D \otimes_{F} K$ be a quaternion algebra over K. We K-linearly extend ι to an anti-involution of D_{K}, which is the main involution of D_{K}. An involution σ of D_{K} of the second kind can be defined by $\sigma(x \otimes k)=x \otimes \bar{k}$ for $x \in D$ and $k \in K$.

Involutions of $\mathrm{M}_{n}(K)$ of the first and second kind are defined by $x \mapsto{ }^{t} x$ and $\varrho(x)_{i j}=\bar{x}_{i j}$ for $x=\left(x_{i j}\right) \in \mathrm{M}_{n}(K)$, where ${ }^{t} x$ is the transpose of x. Put

$$
\begin{array}{rlrl}
\operatorname{Sym}_{n}(F) & =\left\{\left.b \in \mathrm{M}_{n}(F)\right|^{t} b=b\right\}, & D^{\circ}=\left\{x \in D \mid x^{\iota}=-x\right\}, \\
\operatorname{Her}_{n}(F) & =\left\{\left.\xi \in \mathrm{M}_{n}(K)\right|^{t} \varrho(\xi)=\xi\right\}, & J_{n} & =\left(\begin{array}{cc}
0 & -\mathbf{1}_{n} \\
\mathbf{1}_{n} & 0
\end{array}\right) .
\end{array}
$$

We define the symplectic similitude group by

$$
\mathrm{GSp}_{2 n}=\left\{g \in \mathrm{GL}_{2 n} \mid g J_{n}{ }^{t} g=\nu_{n}(g) J_{n}, \nu_{n}(g) \in \mathbb{G}_{m}\right\}
$$

and the similitude unitary group of a Hermitian matrix $\xi \in \operatorname{Her}_{n}(F)$ with $\operatorname{det} \xi \neq 0$ by

$$
\mathrm{GU}(\xi)=\left\{g \in \operatorname{Res}_{K / F} \mathrm{GL}_{n} \mid g \xi^{t} \varrho(g)=\nu_{\xi}(g) \xi, \nu_{\xi}(g) \in \mathbb{G}_{m}\right\} .
$$

The action ρ_{1} of the group D_{K}^{\times}on the subspace

$$
V_{D}=\left\{x \in D_{K} \mid \sigma(x)=x^{\iota}\right\}=F \oplus \sqrt{\delta} D^{\circ}
$$

is given by $\rho_{1}(\xi) x=\xi x \sigma(\xi)^{\iota}$. Define a quadratic form $(,)_{D}$ on V_{D} by $(x, x)_{D}=x x^{\iota}$ for $x \in V_{D}$. The discriminant algebra of V_{D} is K.

The triplet $\left(D_{K}^{\times}, \rho_{1}, V_{D}\right)$ forms a prehomogeneous vector space. Note that

$$
\left(\rho_{1}(\xi) x, \rho_{1}(\xi) x\right)_{D}=\mathrm{N}_{K / F}\left(\xi \xi^{\iota}\right)(x, x)_{D}
$$

for $x \in V_{D}$ and $\xi \in D_{K}^{\times}$. Put

$$
\mathcal{Y}_{D}=\left\{y \in V_{D} \mid(y, y)_{D} \neq 0\right\} .
$$

Given $y \in \mathcal{Y}_{D}$, we can define an involution σ_{y} of D_{K} of the second kind by

$$
\sigma_{y}(x)=\sigma\left(y^{-1} x y\right)
$$

Lemma 2.1. Let τ be an involution of D_{K} of the second kind. Then there exists $y \in \mathcal{Y}_{D}$ such that $\tau=\sigma_{y}$.
Proof. The Skolem-Noether theorem implies that $\tau(x)^{l}=\tau\left(x^{l}\right)$ for all $x \in$ D_{K}. Thus we can define two anti-involutions σ_{0} and τ_{0} of D_{K} of the second kind by $\sigma_{0}(x)=\sigma\left(x^{l}\right)$ and $\tau_{0}(x)=\tau\left(x^{l}\right)$ for $x \in D_{K}$. Lemma 2.10 of PR94] gives an element $y \in D_{K}^{\times}$such that $\tau_{0}(x)=y^{-1} \sigma_{0}(x) y$ and $\sigma_{0}(y)=y$.

Let $D_{y}:=\left\{x \in D_{K} \mid \sigma_{y}(x)=x\right\}$ be an F-subalgebra of D_{K}.
Lemma 2.2. D_{y} is a quaternion algebra over F such that $D_{y} \otimes K=D_{K}$.
Proof. It is evident that D_{y} has dimension 4 over F and $D_{y} \otimes K=D_{K}$. Thus D_{y} is central over F. If D_{y} has a non-trivial two-sided ideal, then so does D_{K}.

Let $\operatorname{GO}\left(V_{D}\right)$ denote the orthogonal similitude group of V_{D} defined by

$$
\operatorname{GO}\left(V_{D}\right)=\left\{h \in \operatorname{GL}\left(V_{D}\right) \mid(h x, h y)_{D}=\boldsymbol{\nu}(h)(x, y)_{D}, \boldsymbol{\nu}(h) \in \mathbb{G}_{m}\right\}
$$

The subgroup $\operatorname{GSO}\left(V_{D}\right)$ of $\operatorname{GO}\left(V_{D}\right)$ consists of the elements h such that $\operatorname{det} h=\boldsymbol{\nu}(h)^{2}$. We view D_{K}^{\times}as a subgroup of $\operatorname{GSO}\left(V_{D}\right)$ via ρ_{1}. There is an exact sequence

$$
\begin{equation*}
1 \rightarrow K^{\times} \xrightarrow{\rho_{0}}\left(F^{\times} \times D_{K}^{\times}\right) \rtimes\langle\mathbf{t}\rangle \xrightarrow{\rho} \mathrm{GO}\left(V_{D}\right) \rightarrow 1, \tag{2.1}
\end{equation*}
$$

where

$$
\rho_{0}(c)=\left(\mathrm{N}_{K / F}(c), c^{-1}\right), \quad \rho(a, \xi) v=a \rho_{1}(\xi) v, \quad \rho(\mathbf{t}) v=v^{\iota}
$$

for $v \in V_{D}$, and \mathbf{t} acts on D_{K}^{\times}by $x \mapsto \sigma(x)$. Observe that

$$
\boldsymbol{\nu}(\rho(a, \xi))=a^{2} \mathrm{~N}_{K / F}\left(\xi \xi^{\iota}\right)
$$

Given $a \in F^{\times}$and a quadratic space $(V,()$,$) , we write V^{a}$ for the space V quipped with the quadratic form $a($,$) . Put$

$$
V_{D_{y}}=\left\{x \in D_{K} \mid \sigma_{y}(x)=x^{\iota}\right\}, \quad \mathcal{V}_{y}=\left\{\xi \in D_{K}^{\times} \mid \xi \sigma_{y}(\xi)^{\iota} \in F^{\times}\right\}
$$

Equip $V_{D_{y}}$ with a quadratic form defined by $(x, x)_{D_{y}}=x x^{\iota}$ for $x \in V_{D_{y}}$.
The following lemma is straightforward to prove.

Lemma 2.3. Notation being as above, we have $V_{D_{y}}=V_{D} y^{-1}$. Put a $=$ $(y, y)_{D}$. Then the map $x \mapsto x y$ for $x \in V_{D_{y}}$ gives an isomorphism of $V_{D_{y}}^{a}$ onto V_{D}.

When $D=\mathrm{M}_{2}(F)$, we write $V_{+}=V_{D}$ and $(,)_{+}=(,)_{D}$. In this case

$$
x^{\iota}=J_{1}{ }^{t} x J_{1}^{-1}, \quad \sigma=\varrho, \quad V_{+}=\sqrt{\delta} J_{1} \cdot \operatorname{Her}_{2}(F)
$$

for $x \in D_{K}$. Note that $\left(\sqrt{\delta} J_{1} \xi, \sqrt{\delta} J_{1} \xi\right)_{+}=\delta \operatorname{det} \xi$ for $\xi \in \operatorname{Her}_{2}(F)$.
2.2. Quaternary quadratic spaces over local fields. Let F be a local field of characteristic zero. Then $D_{K} \simeq \mathrm{M}_{2}(K)$. We denote by $\epsilon(D)$ the Hasse invariant of D and by ϵ_{K} the quadratic character of F^{\times}whose kernel is $\mathrm{N}_{K / F}\left(K^{\times}\right)$. If $\epsilon(D)=-1$, then V_{+}and V_{D} have opposite Hasse invariants.
Remark 2.4. The quadratic space V_{+}is isomorphic to the orthogonal sum of the norm form on K with a split binary quadratic space as a quadratic space. Take $\alpha \in F^{\times}$so that $\epsilon_{K}(\alpha)=\epsilon(D)$. Then $V_{D} \simeq V_{+}^{\alpha}$.
Proposition 2.5. Let $y \in \mathcal{Y}_{D}$.
(1) Fix an element $y_{-} \in \mathcal{Y}_{D}$ with $\epsilon_{K}\left(\operatorname{det} y_{-}\right)=-1$. Then

$$
\mathcal{Y}_{D}=\rho_{1}\left(\mathrm{GL}_{2}(K)\right) \mathbf{1}_{2} \sqcup \rho_{1}\left(\mathrm{GL}_{2}(K)\right) y_{-} .
$$

(2) $\epsilon\left(D_{y}\right)=\epsilon_{K}\left((y, y)_{D}\right) \epsilon(D)$.
(3) $\mathcal{V}_{y}=K^{\times} D_{y}^{\times}$.

Proof. If $y^{\prime} \in \mathcal{Y}_{D_{y}}$, then

$$
y^{\prime} y \in \mathcal{Y}_{D}, \quad \sigma_{y^{\prime} y}=\left(\sigma_{y}\right)_{y^{\prime}}, \quad D_{y^{\prime} y}=\left(D_{y}\right)_{y^{\prime}}
$$

Thanks to Lemma 2.1, we may assume that $D=\mathrm{M}_{2}(F)$ and $\sigma=\varrho$. Put

$$
\mathcal{Y}:=\mathcal{Y}_{\mathrm{M}_{2}(F)}=\left\{\sqrt{\delta} J_{1} \cdot \xi \mid \xi \in \operatorname{Her}_{2}(F), \operatorname{det} \xi \neq 0\right\} .
$$

The group $\mathrm{GL}_{2}(K)$ acts on \mathcal{Y} by $\rho_{1}(g) y=g y \varrho(g)^{\iota}=g y J_{1}{ }^{t} \varrho(g) J_{1}^{-1}$ for $g \in \mathrm{GL}_{2}(K)$ and $y \in \mathcal{Y}$. Note that $\rho_{1}(g)\left(\xi \cdot \sqrt{\delta} J_{1}\right)=g \xi^{t} \varrho(g) \cdot \sqrt{\delta} J_{1}$. Since there are two equivalence classes of non-degenerate Hermitian matrices ξ of size 2 classified by the sign $\epsilon_{K}(-\operatorname{det} \xi)$, one can deduce (11).

We write $y=\sqrt{\delta} J_{1} \cdot{ }^{{ }^{\xi}}{ }^{-1}$ with $\xi \in \operatorname{Her}_{2}(F)$. Let $x \in \mathrm{M}_{2}(F)_{y}$. Then

$$
x=\varrho\left(y^{-1} x y\right)=\xi J_{1}^{-1} \varrho(x) J_{1} \xi^{-1}=\xi^{t} \varrho(x)^{\iota} \xi^{-1}, \quad x \xi^{t} \varrho(x)=\overline{\operatorname{det} x} \cdot \xi .
$$

It is well-known that

$$
\mathrm{GU}(\xi) \simeq\left(D_{\xi}^{\times} \times K^{\times}\right) / F^{\times},
$$

where D_{ξ} is a quaternion algebra with $\epsilon\left(D_{\xi}\right)=\epsilon_{K}(-\operatorname{det} \xi)=\epsilon_{K}(\operatorname{det} y)$. Now (2) follows from the observation

$$
\mathrm{M}_{2}(F)_{y} \cap \mathrm{GL}_{2}(K)=\left\{g \in \mathrm{GU}(\xi) \mid \lambda_{\xi}(g)=\operatorname{det} g\right\} \simeq D_{\xi}^{\times} .
$$

Clearly, $K^{\times} D_{y}^{\times} \subset \mathcal{V}_{y}$. We shall prove the reverse inclusion. Let $\xi \in \mathcal{V}_{y}$. Put $a:=\xi \sigma_{y}(\xi)^{\iota} \in F^{\times}$. Since σ_{y} has order 2 and acts on K non-trivially,
we get $a=\sigma_{y}(a)=\sigma_{y}(\xi) \xi^{\iota}$ and $a^{2}=\mathrm{N}_{K / F}(\operatorname{det} \xi)$. We can therefore take $k \in K^{\times}$so that $\operatorname{det} \xi=a \bar{k} k^{-1}$. Then since

$$
\xi \xi^{\iota}=a \bar{k} k^{-1}=\xi \sigma_{y}(\xi)^{\iota} \bar{k} k^{-1}
$$

we have $\xi k=\sigma_{y}(\xi k)$, which proves (3).
2.3. The Weil representation for similitudes. Given $a \in \mathrm{GL}_{n}, b \in$ Sym_{n} and a scalar $t \in \mathbb{G}_{m}$, we put

$$
\mathbf{m}(a)=\left(\begin{array}{cc}
a & \\
& { }^{t} a^{-1}
\end{array}\right), \quad \mathbf{n}(b)=\left(\begin{array}{cc}
\mathbf{1}_{n} & b \\
& \mathbf{1}_{n}
\end{array}\right), \quad \mathbf{d}(t)=\left(\begin{array}{ll}
\mathbf{1}_{n} & \\
& t \cdot \mathbf{1}_{n}
\end{array}\right) .
$$

Let $P_{n}=M N$ be the Siegel parabolic subgroup of $\mathrm{GSp}_{2 n}$ given by

$$
M=\left\{\mathbf{m}(a) \mathbf{d}(t) \mid a \in \mathrm{GL}_{n}, t \in \mathbb{G}_{m}\right\}, \quad N=\left\{\mathbf{n}(b) \mid b \in \operatorname{Sym}_{n}\right\}
$$

We denote the kernels of the similitude characters $\nu_{n}: \mathrm{GSp}_{2 n} \rightarrow \mathbb{G}_{m}$ and $\nu: \mathrm{GO}\left(V_{D}\right) \rightarrow \mathbb{G}_{m}$ by $\mathrm{Sp}_{2 n}$ and $\mathrm{O}\left(V_{D}\right)$, and the centers of $\mathrm{GSp}_{2 n}$ and $\mathrm{GO}\left(V_{D}\right)$ by Z_{n} and Z_{D}. Note that Z_{n} and Z_{D} are isomorphic to \mathbb{G}_{m}.

Let F be a number field with adèle ring \mathbb{A} and ϵ_{K} the quadratic Hecke character corresponding to a quadratic extension K / F via class field theory. Fix a non-trivial additive character $\psi=\prod_{v} \psi_{v}$ of \mathbb{A} / F. Let $\Omega_{D, \psi}^{n}=$ $\otimes_{v} \Omega_{D_{v}, \psi_{v}}^{n}$ denote the Weil representation of $\mathrm{Sp}_{2 n}(\mathbb{A}) \times \mathrm{O}\left(V_{D}, \mathbb{A}\right)$ with respect to ψ on the Schwartz space $\mathcal{S}\left(V_{D}^{n}(\mathbb{A})\right)$ with

$$
\begin{align*}
\Omega_{D, \psi}^{n}(\mathbf{m}(a)) \Phi(x) & =\epsilon_{K}(\operatorname{det} a)|\operatorname{det} a|^{2} \Phi(x a), & & a \in \mathrm{GL}_{n}(\mathbb{A}), \tag{2.2}\\
\Omega_{D, \psi}^{n}(\mathbf{n}(b)) \Phi(x) & =\psi\left(\operatorname{tr}\left(b(x, x)_{D}\right)\right) \Phi(x), & & b \in \operatorname{Sym}_{n}(\mathbb{A}), \\
\Omega_{D, \psi}^{n}(h) \Phi(x) & =\Phi\left(h^{-1} x\right), & & h \in \mathrm{O}\left(V_{D}, \mathbb{A}\right),
\end{align*}
$$

where $(x, x)_{D}=\left(\left(x_{i}, x_{j}\right)_{D}\right) \in \operatorname{Sym}_{n}(\mathbb{A})$.
On the orthogonal similitude group $\mathrm{GO}\left(V_{D}, \mathbb{A}\right)$ we can extend $\Omega_{D, \psi}^{n}$ by

$$
L(h) \Phi(x)=|\boldsymbol{\nu}(h)|^{-n} \Phi\left(h^{-1} x\right) .
$$

We use it to extend $\Omega_{D, \psi}^{n}$ to a representation of the group

$$
R_{n}=\left\{(h, g) \in \mathrm{GO}\left(V_{D}\right) \times \operatorname{GSp}_{2 n} \mid \nu_{n}(g)=\boldsymbol{\nu}(h)\right\} .
$$

Since $L(h) \Omega_{D, \psi}^{n}(g) L(h)^{-1}=\Omega_{D, \psi}^{n}\left(\mathbf{d}(t) g \mathbf{d}(t)^{-1}\right)$ with $t=\boldsymbol{\nu}(h)$ for $g \in$ $\mathrm{Sp}_{2 n}(\mathbb{A})$ and $h \in \mathrm{GO}\left(V_{D}, \mathbb{A}\right)$, one obtains a representation of the semidirect product $\mathrm{GO}\left(V_{D}, \mathbb{A}\right) \ltimes \mathrm{Sp}_{2 n}(\mathbb{A})$ on $\mathcal{S}\left(V_{D}^{n}(\mathbb{A})\right)$. By composition with the isomorphism $(h, g) \rightarrow\left(h, \mathbf{d}(\boldsymbol{\nu}(h))^{-1} g\right)$ from R_{n} onto $\mathrm{GO}\left(V_{D}\right) \ltimes \mathrm{Sp}_{2 n}$, we get the representation of $R_{n}(\mathbb{A})$ on $\mathcal{S}\left(V_{D}^{n}(\mathbb{A})\right)$, which we denote also by $\Omega_{D, \psi}^{n}$.
Remark 2.6. Note that for $z \in \mathbb{A}^{\times}$and $\Phi \in \mathcal{S}\left(V_{D}^{n}(\mathbb{A})\right)$

$$
\Omega_{D, \psi}^{n}(z, z) \Phi=\epsilon_{K}(z)^{n} \Phi
$$

We can form the theta series as a function on $R_{n}(F) \backslash R_{n}(\mathbb{A})$ defined by

$$
\Theta(h, g ; \Phi)=\sum_{x \in V_{D}^{n}(F)} \Omega_{D, \psi}^{n}(h, g) \Phi(x) .
$$

Definition 2.7. Let \mathbb{B} be the open subgroup of \mathbb{A}^{\times}which consists of idèles $\boldsymbol{\nu}(h)$ with $h \in \operatorname{GO}\left(V_{D}, \mathbb{A}\right)$. Let S_{D}^{K} be the set of real places of F at which either K or D is not split. When $v \in S_{D}^{K}$, the subgroup \mathcal{B}_{v} consists of positive real numbers in F_{v}^{\times}. If $v \notin S_{D}^{K}$, then we set $\mathcal{B}_{v}=\mathrm{N}_{K_{v} / F_{v}}\left(K_{v}^{\times}\right)$. Put

$$
\begin{aligned}
\operatorname{GSp}_{2 n}(\mathbb{A})^{\star} & =\left\{g \in \operatorname{GSp}_{2 n}(\mathbb{A}) \mid \nu_{n}(g) \in \mathbb{B}\right\}, \\
\operatorname{GSp}_{2 n}(F)^{\star} & =\operatorname{GSp}_{2 n}(F) \cap \operatorname{GSp}_{2 n}(\mathbb{A})^{\star}, \\
\operatorname{GSp}_{2 n}\left(F_{v}\right)^{\star} & =\left\{g \in \operatorname{GSp}_{2 n}\left(F_{v}\right) \mid \nu_{n}(g) \in \mathcal{B}_{v}\right\} .
\end{aligned}
$$

2.4. The quadratic base change as a theta lift. Let $n=1$. Then $\mathrm{GSp}_{2} \simeq \mathrm{GL}_{2}$. We start with a quadratic extension K / F of non-archimedean local fields of characteristic zero. Fix a non-trivial additive character ψ on F and a quaternion algebra D over F. We will abbreviate $\Omega_{D, \psi}^{1}=\Omega_{\psi}^{\epsilon(D)}$ to denote the local Weil representation.

Recall the subgroup

$$
\operatorname{GL}_{2}(F)^{\star}=\operatorname{GSp}_{2}(F)^{\star}=\left\{g \in \operatorname{GL}_{2}(F) \mid \epsilon_{K}(\operatorname{det} g)=1\right\} .
$$

Let π^{\star} be an infinite-dimensional irreducible admissible representation of $\mathrm{GL}_{2}(F)^{\star}$. The maximal $\left(\pi^{\star}\right)^{\vee}$-isotypic quotient of $\mathrm{c}-\operatorname{ind}_{R_{1}}^{\mathrm{GO}(V) \times \mathrm{GL}_{2}(F)^{\star}} \Omega_{\psi}^{\epsilon(D)}$ is of the form $\left(\pi^{\star}\right)^{\vee} \boxtimes \Theta_{K}^{D}\left(\pi^{\star}\right)$, where $\left(\pi^{\star}\right)^{\vee}$ is the contragredient representation of π^{\star} and $\Theta_{K}^{D}\left(\pi^{\star}\right)$ is a (possibly zero) smooth representation of $\mathrm{GO}\left(V_{D}\right)$.

Let π be a generic irreducible admissible representation of $\mathrm{GL}_{2}(F)$ of central character ω. We write π_{K} for the base change of π to $\mathrm{GL}_{2}(K)$.
Definition 2.8. When $\left.\pi\right|_{\mathrm{GL}_{2}(F)^{\star}}$ is reducible, Lemma 4.1 of [GI11] allows us to write $\left.\pi\right|_{\mathrm{GL}_{2}(F)^{\star}}=\pi^{+} \oplus \pi^{-}$, where $\pi^{ \pm}$are irreducible representations of $\mathrm{GL}_{2}(F)^{\star}$ such that

$$
\Theta_{K}^{D}\left(\pi^{+}\right) \neq 0, \quad \Theta_{K}^{D}\left(\pi^{-}\right)=0
$$

We set

$$
\Theta_{K}^{D}(\pi)= \begin{cases}\Theta_{K}^{D}\left(\pi^{+}\right) & \text {if }\left.\pi\right|_{\mathrm{GL}_{2}(F)^{\star}} \text { is reducible } \\ \Theta_{K}^{D}\left(\left.\pi\right|_{\mathrm{GL}_{2}(F)^{\star}}\right) & \text { if }\left.\pi\right|_{\mathrm{GL}_{2}(F)^{\star}} \text { is irreducible }\end{cases}
$$

Proposition 2.9 (Lu17). $\Theta_{K}^{D}(\pi)$ is nonzero, irreducible and

$$
\left.\Theta_{K}^{D}(\pi)\right|_{D_{K}^{\times} \times F^{\times}} \simeq \pi_{K} \boxtimes \omega \epsilon_{K} .
$$

Proof. See Section 3 of Lu17 (cf. (2.1)).
We switch to the global setting. Thus F is a number field and π an irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$ with central character ω. For a technical reason we assume that all the archimedean places of F are split in K. Given a cusp form $f \in \pi$ and $\varphi \in \mathcal{S}\left(V_{D}(\mathbb{A})\right)$, we define an automorphic form on $\mathrm{GO}\left(V_{D}, \mathbb{A}\right)$ by

$$
\theta(\xi ; f, \varphi)=\int_{\mathrm{SL}_{2}(F) \backslash \mathrm{SL}_{2}(\mathbb{A})} f\left(g g^{\prime}\right) \Theta\left(\xi, g g^{\prime} ; \varphi\right) \mathrm{d} g
$$

where we choose $g^{\prime} \in \mathrm{GL}_{2}(\mathbb{A})^{\star}$ so that $\operatorname{det} g^{\prime}=\boldsymbol{\nu}(\xi)$. Here, $\mathrm{d} g=\prod_{v} \mathrm{~d} g_{v}$ is the Tamagawa measure on $\mathrm{SL}_{2}(\mathbb{A})$. Let $\theta_{K}^{D}(\pi)$ denote the automorphic representation of $\mathrm{GO}\left(V_{D}, \mathbb{A}\right)$ generated by $\theta(\xi ; f, \varphi)$, as $\varphi \in \mathcal{S}\left(V_{D}(\mathbb{A})\right)$ and $f \in \pi$ vary.

We denote the base change of π to $\mathrm{GL}_{2}(\mathbb{K})$ by π_{K}. We denote the JacquetLanglands lift of π_{K} to $D_{K}^{\times}(\mathbb{A})$ by π_{K}^{D} if it exists. By the following result π_{K}^{D} can be extended to a representation of $\mathrm{GO}\left(V_{D}, \mathbb{A}\right)$.
Proposition 2.10. Assume that π_{K} is cuspidal. The space $\theta_{K}^{D}(\pi)$ is not zero precisely when π_{K}^{D} exists. In this case

$$
\left.\theta_{K}^{D}(\pi)\right|_{D_{K}^{\times}(\mathbb{A}) \times \mathbb{A}^{\times}} \simeq \pi_{K}^{D} \boxtimes \omega \epsilon_{K}
$$

Proof. This is due, in essence, to Shi72. The standard L-function of $\left.\pi\right|_{\mathrm{SL}_{2}(\mathbb{A})}$ twisted by ϵ_{K} is $L\left(s, \operatorname{Ad}(\pi) \otimes \epsilon_{K}\right)$ and is holomorphic and not zero at $s=1$ by assumption (cf. Remark 1.4(1)). Theorem 11.6 of GQT14 applied to the restriction of $\theta(\xi ; f, \varphi)$ to $\mathrm{SO}\left(V_{D}, \mathbb{A}\right)$ implies that the global theta lift $\theta_{K}^{D}(\pi)$ is not zero if the local theta lift of π_{v} to $\mathrm{GO}\left(V_{D_{v}}\right)$ is not zero for all v.
2.5. Factorization of the Flicker-Rallis period. Let π be an irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$ whose base change π_{K} is cuspidal. We define an element

$$
B \in \operatorname{Hom}_{D \times(\mathbb{A})}\left(\pi_{K}^{D},\left(\omega \epsilon_{K}\right) \circ \mathrm{N}_{D / F}\right)
$$

by the period integral

$$
B(\phi)=\int_{\mathbb{A}^{\times} D^{\times}(F) \backslash D^{\times}(\mathbb{A})} \phi(h)\left(\omega^{-1} \epsilon_{K}\right)\left(h h^{\iota}\right) \mathrm{d} h,
$$

where $\mathrm{d} h$ is the Tamagawa measure on $\mathbb{A}^{\times} \backslash D^{\times}(\mathbb{A})$.
Define the Whittaker function of $f \in \pi$ with respect to $\bar{\psi}$ by

$$
W_{f}(g)=\int_{F \backslash \mathbb{A}} f(\mathbf{n}(b) g) \psi(b) \mathrm{d} b,
$$

where $\mathrm{d} b=\prod_{v} \mathrm{~d} b_{v}$ is the Tamagawa measure on \mathbb{A}. Assume that $W_{f}(g)=$ $\prod_{v} W_{v}\left(g_{v}\right)$, where $W_{v}\left(\mathbf{1}_{2}\right)=1$ for almost all v. Define a map $\tilde{B}_{v}: \pi_{v} \otimes$ $\mathcal{S}\left(V_{D_{v}}\right) \rightarrow \mathbb{C}$ by

$$
\tilde{B}_{v}\left(W_{v}, \varphi_{v}\right)=\int_{U\left(F_{v}\right) \backslash \mathrm{SL}_{2}\left(F_{v}\right)} W_{v}\left(\dot{g}_{v}\right) \Omega_{\psi_{v}}^{\epsilon\left(D_{v}\right)}\left(\dot{g}_{v}\right) \varphi_{v}(1) \mathrm{d} \dot{g}_{v}
$$

for each place v of F, where $U=\left\{\mathbf{n}(b) \mid b \in \mathbb{G}_{a}\right\}$ and $\mathrm{d} \dot{g}_{v}$ is the quotient measure of $\mathrm{d} g_{v}$ by $\mathrm{d} b_{v}$. Since there exists $\varphi_{0} \in \mathcal{S}\left(F_{v}\right)$ and for $\epsilon>0$ there exists $\varphi_{\epsilon} \in \mathcal{S}\left(F_{v}\right)$ such that

$$
\left|\Omega_{\psi_{v}}^{\epsilon\left(D_{v}\right)}(\mathbf{m}(a) k) \varphi_{v}(1)\right| \leq|a|^{2} \varphi_{0}(a), \quad\left|W_{v}(m(a) k)\right| \leq|a|^{\epsilon} \varphi_{\epsilon}\left(a^{2}\right)
$$

for $a \in F_{v}^{\times}$and $k \in \mathrm{SL}_{2}\left(\mathfrak{o}_{F_{v}}\right)$ (cf. p. 298 of [Ich08]), the integral converges absolutely.

Let $S_{f, \varphi}$ be a finite set of places of F including all archimedean places so that for $v \notin S_{f, \varphi}$,

- $\epsilon_{K_{v}}$ is unramified,
- ψ_{v} is trivial on $\mathfrak{o}_{F_{v}}$ but non-trivial on \mathfrak{p}_{v}^{-1},
- $W_{v}\left(\mathrm{GL}_{2}\left(\mathfrak{o}_{F_{v}}\right)\right)=1$,
- $\epsilon\left(D_{v}\right)=1$ and φ_{v} is the characteristic function of $V_{D_{v}} \cap \mathrm{M}_{2}\left(\mathfrak{o}_{K_{v}}\right)$,
- $\operatorname{vol}\left(\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right), \mathrm{d} g_{v}\right)=1$.

Here $\mathfrak{o}_{F_{v}}$ and $\mathfrak{o}_{K_{v}}$ are the maximal compact subrings of F_{v} and K_{v}, and \mathfrak{p}_{v} is the maximal ideal of $\mathfrak{o}_{F_{v}}$.

Proposition 2.11. (1) If $v \notin S_{f, \varphi}$, then $\tilde{B}_{v}\left(W_{v}, \varphi_{v}\right)=\frac{L\left(1, \mathrm{Ad}\left(\pi_{v}\right) \otimes \epsilon_{K_{v}}\right)}{\zeta_{F_{v}}(2)}$.
(2) If π_{K} is cuspidal, then

$$
B(\theta(f, \varphi))=2 \zeta_{F}^{S}(2)^{-1} L^{S}\left(1, \operatorname{Ad}(\pi) \otimes \epsilon_{K}\right) \prod_{v \in S_{f, \varphi}} \tilde{B}_{v}\left(W_{v}, \varphi_{v}\right) .
$$

Remark 2.12. Proposition 5 of Wal85] deals with the case $K=F \times F$.
Let $v \notin S_{f, \varphi}$. Fix a prime element ϖ_{v} of $\mathfrak{o}_{F_{v}}$. Then

$$
\tilde{B}_{v}\left(W_{v}, \varphi_{v}\right)=\sum_{i=0}^{\infty} W_{v}\left(\mathbf{m}\left(\varpi_{v}^{i}\right)\right) \epsilon_{K_{v}}\left(\varpi_{v}^{i}\right) .
$$

Since the Shintani formula (cf. Wal85, p. 190]) gives

$$
W_{v}\left(\mathbf{m}\left(\varpi_{v}^{i}\right)\right)=\left(\alpha_{v} \beta_{v}\right)^{-i} W_{v}\left(\left(\begin{array}{cc}
\varpi_{v}^{2 i} & \\
& 1
\end{array}\right)\right)=\left(\alpha_{v} \beta_{v}\right)^{-i} q_{v}^{-i} \frac{\alpha_{v}^{2 i+1}-\beta_{v}^{2 i+1}}{\alpha_{v}-\beta_{v}},
$$

where $\left\{\alpha_{v}, \beta_{v}\right\}$ is the Satake parameter of π_{v} and q_{v} is the cardinality of the residue field of $\mathfrak{o}_{F_{v}}$, we get (1) by a simple calculation.

When D is not split, one can use the Siegel-Weil formula to prove the formula (2) as in the proof of Proposition 2.3 of [YZZ13]. The rest of this section is devoted to proving Proposition [2.11/(2) for $D=\mathrm{M}_{2}(F)$ and $\sigma=\varrho$.

Recall that $K=F(\sqrt{\delta})$. Define an additive character ψ_{K}^{δ} on \mathbb{K}, which is trivial on $K+\mathbb{A}$, by $\psi_{K}^{\delta}(k)=\psi\left(\mathrm{T}_{K / F}\left(\frac{k}{\sqrt{\delta}}\right)\right)$ for $k \in \mathbb{K}$, where $\mathrm{T}_{K / F}$ is the trace map from \mathbb{K} to \mathbb{A}. We define the Whittaker function of $\phi \in \pi_{K}$ with respect to ψ_{K}^{δ} by

$$
W_{\phi}(g)=\int_{K \backslash \mathbb{K}} \phi(\mathbf{n}(k) g) \overline{\psi_{K}^{\delta}(k)} \mathrm{d} k,
$$

where $\mathrm{d} k$ is the Tamagawa measure on \mathbb{K}. Let $\mathrm{d} a_{v}$ and $\mathrm{d} c_{v}$ be the selfdual Haar measures of F_{v} with respect to ψ_{v}. Put $\mathrm{d}^{\times} a_{v}=\zeta_{F_{v}}(1) \frac{\mathrm{d} a_{v}}{\left|a_{v}\right|}$. For $a_{v} \in F_{v}^{\times}$we put $\mathbf{t}\left(a_{v}\right)=\left(\begin{array}{cc}a_{v} & 0 \\ 0 & 1\end{array}\right) \in \mathrm{GL}_{2}\left(F_{v}\right)$.

Proposition 2.13. (1) There exists $\phi \in \pi_{K}$ such that $B(\phi) \neq 0$.
(2) Let $\phi \in \pi_{K}$ be factorizable, i.e., $W_{\phi}=\otimes_{v} W_{\phi_{v}}$. Then

$$
B(\phi)=2 L\left(1, \operatorname{Ad}(\pi) \otimes \epsilon_{K}\right) \prod_{v} \frac{\beta_{v}\left(W_{\phi_{v}}\right)}{\zeta_{F_{v}}(1) L\left(1, \operatorname{Ad}\left(\pi_{v}\right) \otimes \epsilon_{K_{v}}\right)},
$$

where

$$
\beta_{v}\left(W_{\phi_{v}}\right)=\int_{F_{v}^{\times}} W_{\phi_{v}}\left(\mathbf{t}\left(a_{v}\right)\right)\left(\omega_{v}^{-1} \epsilon_{K_{v}}\right)\left(a_{v}\right) \mathrm{d}^{\times} a_{v} .
$$

Proof. We extend $\omega^{-1} \epsilon_{K}$ to a character γ of $\mathbb{K}^{\times} / K^{\times}$. Put $\sigma=\pi_{K} \otimes \gamma$. The Asai L-function of σ is $\zeta_{F}(s) L\left(s, \operatorname{Ad}(\pi) \otimes \epsilon_{K}\right)$ and so by Remark 1.4 (1), it has a pole at $s=1$, which proves (1]) (see [FZ95]). Put $\mathbb{A}^{1}=\left\{a \in \mathbb{A}^{\times}| | a \mid=1\right\}$. Since the volume of $F^{\times} \backslash \mathbb{A}^{1}$ with respect to $\prod_{v} \mathrm{~d}^{\times} a_{v}$ is the residue of $\zeta_{F}(s)$ at $s=1$, Proposition 3.2 of [Zha14] includes (2).

Once we establish the identity

$$
\beta_{v}\left(W_{\phi_{v}}\right)=\zeta_{F_{v}}(1) \tilde{B}_{v}\left(W_{v}, \varphi_{v}\right)
$$

Proposition 2.11 2) follows from Proposition 2.13(2). The mixed model of $\Omega_{\psi_{v}}^{+}$is realized on $\mathcal{S}\left(K_{v} \oplus F_{v}^{2}\right)$. The intertwining map $I: \mathcal{S}\left(V^{+}\left(F_{v}\right)\right) \rightarrow$ $\mathcal{S}\left(K_{v} \oplus F_{v}^{2}\right)$ is given by a partial Fourier transform

$$
I\left(\varphi_{v}\right)(k ; a, b)=\int_{F_{v}} \psi_{v}\left(c_{v} a\right) \varphi_{v}\left(\left(\begin{array}{cc}
k & \sqrt{\delta} c_{v} \\
\frac{b}{\sqrt{\delta}} & \bar{k}
\end{array}\right)\right) \mathrm{d} c_{v}
$$

(see $\S 5.2$ of KR94]). Let $t \in F_{v}^{\times}$. Since $\boldsymbol{\nu}(\mathbf{d}(t))=\operatorname{det}\left(t \cdot \mathbf{1}_{2}\right)=t^{2}$, Remark 2.6 gives

$$
\Omega_{\psi_{v}}^{+}\left(\mathbf{d}(t), t \cdot \mathbf{1}_{2}\right) \varphi_{v}=\epsilon_{K_{v}}(t) \Omega_{\psi_{v}}^{+}\left(t^{-1} \cdot \mathbf{d}(t), \mathbf{1}_{2}\right) \varphi_{v}
$$

from which it follows that

$$
\begin{aligned}
& I\left(\Omega_{\psi_{v}}^{+}\left(\mathbf{d}(t), t \cdot \mathbf{1}_{2}\right) \varphi_{v}\right)(k ; a, b) \\
= & \epsilon_{K_{v}}(t) \int_{F_{v}} \psi_{v}\left(c_{v} a\right) \varphi_{v}\left(t \mathbf{d}\left(t^{-1}\right)\left(\begin{array}{cc}
k & \sqrt{\delta} c_{v} \\
\frac{b}{\sqrt{\delta}} & \bar{k}
\end{array}\right) \mathbf{d}\left(t^{-1}\right)^{\iota}\right) \mathrm{d} c_{v} \\
= & \epsilon_{K_{v}}(t)|t|^{-1} I\left(\varphi_{v}\right)\left(k ; t^{-1} a, t^{-1} b\right) .
\end{aligned}
$$

Let $f \in \pi$ and $\varphi \in \mathcal{S}\left(V^{+}(\mathbb{A})\right)$ be factorizable. Put $\phi=\theta(f, \varphi)$. The Whittaker function of ϕ with respect to ψ_{K}^{δ} is given by

$$
W_{\phi}(\xi)=\int_{U(\mathbb{A}) \backslash \mathrm{SL}_{2}(\mathbb{A})} W_{f}(\dot{g}) I\left(\Omega_{\psi}^{+}\left(\xi, \dot{g} g^{\prime}\right) \varphi\right)(1 ; 1,0) \mathrm{d} \dot{g}=\prod_{v} W_{\phi_{v}}\left(\xi_{v}\right)
$$

for $\xi \in \mathrm{GL}_{2}(\mathbb{K})$, where $\operatorname{det} g^{\prime}=\mathrm{N}_{K / F}(\operatorname{det} \xi)$ (see $\S 5.1$ of Lu17]). We have

$$
\begin{aligned}
W_{\phi_{v}}(\mathbf{t}(t)) & =\omega_{v}(t) W_{\phi_{v}}\left(\mathbf{d}\left(t^{-1}\right)\right) \\
& =\left(\omega_{v} \epsilon_{K_{v}}\right)(t)|t| \int_{U\left(F_{v}\right) \backslash \mathrm{SL}_{2}\left(F_{v}\right)} W_{v}\left(\dot{g}_{v}\right) I\left(\Omega_{\psi_{v}}^{+}\left(\dot{g}_{v}\right) \varphi_{v}\right)(1 ; t, 0) \mathrm{d} \dot{g}_{v}
\end{aligned}
$$

By the Fourier inversion formula we get

$$
\begin{aligned}
\beta_{v}\left(W_{\phi_{v}}\right) & =\int_{F_{v}^{\times}} W_{\phi_{v}}\left(\mathbf{t}\left(t_{v}\right)\right)\left(\omega_{v}^{-1} \epsilon_{K_{v}}\right)\left(t_{v}\right) \mathrm{d}^{\times} t_{v} \\
& =\zeta_{F_{v}}(1) \int_{U\left(F_{v}\right) \backslash \mathrm{SL}_{2}\left(F_{v}\right)} W_{v}\left(\dot{g}_{v}\right) \Omega_{\psi_{v}}^{+}\left(\dot{g}_{v}\right) \varphi_{v}\left(\mathbf{1}_{2}\right) \mathrm{d} \dot{g}_{v}
\end{aligned}
$$

as claimed.

3. Local trilinear forms

3.1. Flicker-Rallis functionals. In this and the next section we fix an inert place v of F and suppress it from the notation. Thus $F=F_{v}$ is a non-archimedean local field of characteristic zero, K a quadratic extension of F, D a quaternion algebra over F, ψ a fixed non-trivial additive character of F, and ϵ_{K} the quadratic character of F^{\times}whose kernel is $\mathrm{N}_{K / F}\left(K^{\times}\right)$. We denote by $\mathrm{N}_{D / F}: D^{\times} \rightarrow F^{\times}$the reduced norm and by $\tau_{D / F}: D \rightarrow F$ the reduced trace. Let $\boldsymbol{\alpha}_{F}(z)=|z|$ denote the normalized absolute value of $z \in F^{\times}$.

Recall that $D_{K}=D \otimes K \simeq \mathrm{M}_{2}(K)$. The main involution of D induces an anti-involution ι of D_{K} of the first kind. Let σ be the involution of D_{K} of the second kind such that $D=\left\{x \in D_{K} \mid \sigma(x)=x\right\}$. Equip $V_{D}=$ $\left\{x \in D_{K} \mid \sigma(x)=x^{\iota}\right\}$ with a quadratic form defined by $(x, x)_{D}=x x^{\iota}$. The discriminant character of V_{D} is ϵ_{K}. The morphisms $\rho_{1}: D_{K}^{\times} \rightarrow \operatorname{GSO}\left(V_{D}\right)$ and $\boldsymbol{\nu}: D_{K}^{\times} \rightarrow F^{\times}$are given by $\rho_{1}(\xi) x=\xi x \sigma(\xi)^{\iota}$ (see 2.1) and $\boldsymbol{\nu}(\xi)=$ $\mathrm{N}_{K / F}\left(\xi \xi^{\iota}\right)$ for $x \in V_{D}$ and $\xi \in D_{K}^{\times}$.

Let π be an irreducible unitary admissible infinite-dimensional representation of $\mathrm{GL}_{2}(F)$ whose central character is ω. Given $a \in F^{\times}$, we define an additive character ψ^{a} on F by setting $\psi^{a}(b)=\psi(a b)$ for $b \in F$. We denote by π_{K} the base change lift of π to $\mathrm{GL}_{2}(K)$, by $W^{\bar{\psi}^{a}}(\pi)$ the Whittaker model of π with respect to $\bar{\psi}^{a}$, and by $\lambda(\pi)$ the real number defined by

$$
\lambda(\pi)= \begin{cases}0 & \text { if } \pi \text { is tempered, } \\ |\lambda| & \text { if } \pi=\operatorname{Ind}_{P_{1}(F)}^{\mathrm{GL}(F)}\left(\chi \boldsymbol{\alpha}_{F}^{\lambda} \boxtimes \omega \chi^{-1} \boldsymbol{\alpha}_{F}^{-\lambda}\right),\end{cases}
$$

where $\lambda \in \mathbb{R}$ and χ is a unitary character of F^{\times}.
Given $W \in W^{\bar{\psi}}(\pi)$, we define $W^{\alpha} \in W^{\bar{\psi}^{\alpha}}(\pi)$ by

$$
W^{\alpha}(g)=W\left(\mathbf{d}(\alpha)^{-1} g\right) .
$$

Fix $y \in \mathcal{Y}_{D}$. Put $\alpha=(y, y)_{D}$. For $\varphi \in \mathcal{S}\left(V_{D}\right)$ and $\xi \in \operatorname{GO}\left(V_{D}\right)$ we put

$$
\tilde{B}_{y}(\xi ; W, \varphi)=\int_{U \backslash \mathrm{SL}_{2}(F)} W^{\alpha}(\dot{g} \mathbf{d}(\boldsymbol{\nu}(\xi))) \Omega_{\psi}^{\epsilon(D)}(\xi, \dot{g} \mathbf{d}(\boldsymbol{\nu}(\xi))) \varphi(y) \mathrm{d} \dot{g}
$$

One can see that this integral converges absolutely, likewise for \tilde{B}.

Remark 3.1. Taking Lemma 2.3 into account, we define $\varphi_{y} \in \mathcal{S}\left(V_{D_{y}}\right)$ by $\varphi_{y}(x)=\varphi(x y)$ for $x \in V_{D_{y}}$. It is easy to see that for $x \in V_{D_{y}}$

$$
\Omega_{\psi}^{\epsilon(D)}(h, g) \varphi(x y)=\Omega_{\psi^{\alpha}}^{\epsilon\left(D_{y}\right)}(h, g) \varphi_{y}(x) .
$$

Lemma 3.2. For $k \in K^{\times}, h \in D_{y}^{\times}$and $\xi \in \mathrm{GO}\left(V_{D}\right)$ we have

$$
\tilde{B}_{y}(k h \xi ; W, \varphi)=\left(\omega \epsilon_{K}\right)\left(k \bar{k} h h^{\iota}\right) \tilde{B}_{y}(\xi ; W, \varphi) .
$$

Moreover, if $\xi \in D_{K}^{\times}$, then

$$
\tilde{B}_{y}(\xi ; W, \varphi)=\int_{U \backslash \mathrm{SL}_{2}(F)} W^{\alpha}(\mathbf{d}(\boldsymbol{\nu}(\xi)) \dot{g}) \Omega_{\psi^{\alpha}}^{\epsilon\left(D_{y}\right)}(\dot{g}) \varphi_{y}\left(\xi^{-1} \sigma_{y}\left(\xi^{-1}\right)^{\iota}\right) \mathrm{d} \dot{g}
$$

Proof. The first part can be derived from (2.2) or Proposition 2.9. Changing the variable $g \mapsto \mathbf{d}(\boldsymbol{\nu}(\xi)) g \mathbf{d}\left(\boldsymbol{\nu}(\xi)^{-1}\right)$, we get

$$
\tilde{B}_{y}(\xi ; W, \varphi)=\int_{U \backslash \mathrm{SL}_{2}(F)} W^{\alpha}(\mathbf{d}(\boldsymbol{\nu}(\xi)) \dot{g}) \Omega_{\psi}^{\epsilon(D)}\left(\rho_{1}(\xi), \mathbf{d}(\boldsymbol{\nu}(\xi)) \dot{g}\right) \varphi(y)|\boldsymbol{\nu}(\xi)| \mathrm{d} \dot{g}
$$

For $g \in \mathrm{SL}_{2}(F)$ and $\xi \in D_{K}^{\times}$we have

$$
\Omega_{\psi}^{\epsilon(D)}\left(\rho_{1}(\xi), \mathbf{d}(\boldsymbol{\nu}(\xi)) g\right) \varphi(y)=|\boldsymbol{\nu}(\xi)|^{-1} \Omega_{\psi}^{\epsilon(D)}(g) \varphi\left(\xi^{-1} y \sigma\left(\xi^{-1}\right)^{\iota}\right) .
$$

Since $y \sigma(x)^{\iota}=\sigma\left(x \sigma\left(y^{\iota}\right)\right)^{\iota}=\sigma(x y)^{\iota}=\left(\sigma(y) \sigma_{y}(x)\right)^{\iota}=\sigma_{y}(x)^{\iota} y$ for $x \in D_{K}$, we get the stated expression.

By Proposition 2.9 there exists an equivariant surjective map

$$
\theta_{y}:\left.W^{\bar{\psi}}(\pi)\right|_{\mathrm{SL}_{2}(F)} \otimes \mathcal{S}\left(V_{D}\right) \rightarrow \Theta_{K}^{D_{y}}(\pi) .
$$

Lemma 3.2 gives rise to the following functional B_{y}.
Proposition 3.3. There is $B_{y} \in \operatorname{Hom}_{D_{y}^{\times}}\left(\Theta_{K}^{D_{y}}(\pi),\left(\omega \epsilon_{K}\right) \circ \mathrm{N}_{D_{y} / F}\right)$ such that

$$
\tilde{B}_{y}=B_{y} \circ \theta_{y} .
$$

3.2. Construction of trilinear forms. Let π_{i} be an irreducible unitary admissible infinite-dimensional representation of $\mathrm{GL}_{2}(F)$ with central character ω_{i} on which we impose the following condition:
(Cent)

$$
\omega_{1} \omega_{2} \omega_{3}=\epsilon_{K}
$$

Recall that $\left.\Theta_{K}^{D_{y}}\left(\pi_{i}\right)\right|_{\mathrm{GL}_{2}(K)} \simeq \pi_{i, K}$. We associate to $y \in \mathcal{Y}_{D}$ a functional $B_{y} \in \operatorname{Hom}_{D_{y}^{\times}}\left(\Theta_{K}^{D_{y}}\left(\pi_{i}\right),\left(\omega_{i} \epsilon_{K}\right) \circ \mathrm{N}_{D_{y} / F}\right)$ by Proposition 3.3 . Fix a right $\mathrm{GL}_{2}(K)$-invariant measure $\mathrm{d}_{y} \xi$ on $K^{\times} D_{y}^{\times} \backslash \mathrm{GL}_{2}(K)$. Define an element of

$$
\operatorname{Hom}_{\mathrm{GL}_{2}(K)}\left(\Theta_{K}^{D_{y}}\left(\pi_{1}\right) \otimes \Theta_{K}^{D_{y}}\left(\pi_{2}\right) \otimes \Theta_{K}^{D_{y}}\left(\pi_{3}\right), \mathbb{C}\right)
$$

by the integral

$$
\begin{equation*}
\int_{K^{\times} D_{y}^{\times} \backslash \mathrm{GL}_{2}(K)} B_{y}\left(\pi_{1, K}(\xi) \phi_{1}\right) B_{y}\left(\pi_{2, K}(\xi) \phi_{2}\right) B_{y}\left(\pi_{3, K}(\xi) \phi_{3}\right) \mathrm{d}_{y} \xi \tag{3.1}
\end{equation*}
$$

for $\phi_{i} \in \pi_{i, K}$. We will prove the convergence under the following condition:

$$
(\star) \quad \lambda\left(\pi_{1}\right)+\lambda\left(\pi_{2}\right)+\lambda\left(\pi_{3}\right)<\frac{1}{2}
$$

Remark 3.4.
(1) Since $\omega_{1} \omega_{2} \omega_{3}=\epsilon_{K}$, we have $\varepsilon\left(1 / 2, \pi_{1, K} \times \pi_{2, K} \times \pi_{3, K}\right)=\varepsilon\left(1 / 2, \pi_{1} \times \pi_{2} \times \pi_{3}\right) \varepsilon\left(1 / 2, \pi_{1}^{\vee} \times \pi_{2}^{\vee} \times \pi_{3}^{\vee}\right)=1$.

Theorem 1.4 of Pra90 gives

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{2}(K)}\left(\pi_{1, K} \otimes \pi_{2, K} \otimes \pi_{3, K}, \mathbb{C}\right)=1
$$

(2) If $\pi_{1}, \pi_{2}, \pi_{3}$ are local components of cuspidal automorphic representations, then $(\boldsymbol{\star})$ is fulfilled by the result [KS02] on the Ramanujan estimate for π_{i} and hence $L\left(s, \pi_{1} \times \pi_{2} \times \pi_{3}\right)$ is holomorphic at $s=\frac{1}{2}$.

3.3. Convergence.

Lemma 3.5. If (\star) holds, then the integral (3.1) is absolutely convergent.
Remark 3.6. When $K=F \times F$, the convergence is proved in Lemma 2.1 of [Ich08.

Lemma 3.7 below is stronger than Lemma 3.5. Put

$$
E=F \times F \times F, \quad \Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \quad \mathbf{U}=\left\{\mathbf{n}(b) \in \mathrm{GL}_{2}(E) \mid b \in E\right\} .
$$

Define $\mathrm{T}_{E / F}: E \rightarrow F$ by $\mathrm{T}_{E / F}(x, y, z)=x+y+z$ and algebraic groups $U^{0} \subset \mathbf{G}$ by

$$
\begin{aligned}
\mathbf{G} & =\left\{\mathbf{g} \in \mathrm{R}_{E / F} \mathrm{GL}_{2} \mid \operatorname{det} \mathbf{g} \in \mathbb{G}_{m}\right\}, \\
U^{0} & =\left\{\mathbf{n}(x) \mid x \in \mathrm{R}_{E / F} \mathbb{G}_{a}, \mathrm{~T}_{E / F}(x)=0\right\} .
\end{aligned}
$$

We embed \mathbf{G} diagonally in GSp_{6} via the map

$$
\iota\left(\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right),\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right),\left(\begin{array}{lll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right)\right)=\left(\begin{array}{lllll}
a_{1} & & & b_{1} & \\
& a_{2} & & & \\
& b_{2} & \\
& & a_{3} & & \\
\hline c_{1} & & & d_{3} \\
& c_{2} & & & \\
& & c_{3} & & \\
& & & \\
& & & d_{3}
\end{array}\right)
$$

Once and for all we fix a Haar measure $\mathrm{d} g$ on $\mathrm{SL}_{2}(F)$ and use it to define a Haar measure d^{\prime} on $\mathrm{SL}_{2}(E)$. Let $\mathrm{d} z$ and $\mathrm{d} \nu$ be the self-dual Haar measures of F with respect to ψ. We use them to define Haar measures $\mathrm{d} u^{0}$ on U^{0} and $\mathrm{d} \mathbf{u}$ on \mathbf{U}. We denote by $\mathrm{d} \ddot{\mathbf{g}}$ and $\mathrm{d} \dddot{\mathbf{g}}$ the quotient measures of $\mathrm{d}^{\prime}{ }^{\prime}$ by $\mathrm{d} u^{0}$ and du, respectively.

Put $\alpha=(y, y)_{D}$ and $\epsilon=\epsilon_{K}(\alpha)$. Let

$$
W^{\bar{\psi}}(\Pi)=W^{\bar{\psi}}\left(\pi_{1}\right) \otimes W^{\bar{\psi}}\left(\pi_{2}\right) \otimes W^{\bar{\psi}}\left(\pi_{3}\right)
$$

be the Whittaker model of Π with respect to $\bar{\psi} \circ \mathrm{T}_{E / F}$. Given

$$
\mathcal{W}=W_{1} \otimes W_{2} \otimes W_{3} \in W^{\bar{\psi}}(\Pi), \quad \Phi=\varphi_{1} \otimes \varphi_{2} \otimes \varphi_{3} \in \mathcal{S}\left(V_{D}^{3}\right)
$$

we consider the integral

$$
\mathscr{I}_{D}^{\epsilon}(\mathcal{W}, \Phi)=\int_{K^{\times} D_{y}^{\times} \backslash \operatorname{GL}_{2}(K)} \tilde{B}_{y}\left(\xi ; W_{1}, \varphi_{1}\right) \tilde{B}_{y}\left(\xi ; W_{2}, \varphi_{2}\right) \tilde{B}_{y}\left(\xi ; W_{3}, \varphi_{3}\right) \mathrm{d}_{y} \xi .
$$

Lemma 3.2 gives the expression

$$
\int_{\mathrm{GL}_{2}(K) / K^{\times} D_{y}^{\times}} \int_{\mathbf{U} \backslash \mathrm{SL}_{2}(E)} \mathcal{W}^{\alpha}\left(\mathbf{d}(\boldsymbol{\nu}(\xi))^{-1} \dddot{\mathbf{g}}\right) \Omega_{D, \psi}^{3}(\iota(\dddot{\mathbf{g}})) \Phi\left(\xi y \sigma(\xi)^{\iota}\right) \mathrm{d} \dddot{\mathbf{g}}_{\mathrm{d}_{y} \xi}
$$

of $\mathscr{I}_{D}^{\epsilon}(\mathcal{W}, \Phi)$, where $\mathcal{W}^{\alpha}=W_{1}^{\alpha} \otimes W_{2}^{\alpha} \otimes W_{3}^{\alpha} \in W^{\psi^{\alpha}}(\Pi)$. The measure $\mathrm{d}_{y} \xi$ is defined in $\S 4.1$. If $y^{\prime} \in \mathcal{Y}_{D}$ satisfies $\epsilon_{K}\left(\left(y^{\prime}, y^{\prime}\right)_{D}\right)=\epsilon$, then Proposition 2.5(1) gives $\xi^{\prime} \in \mathrm{GL}_{2}(K)$ such that $y^{\prime}=\xi^{\prime} y \sigma\left(\xi^{\prime}\right)^{\iota}$. Since $\left(y^{\prime}, y^{\prime}\right)_{D}=\alpha \boldsymbol{\nu}\left(\xi^{\prime}\right)$, it turns out that the integral is independent of the choice of y (cf. Remark 4.1).

Lemma 3.7. The integral above converges absolutely. Moreover, it defines an element of

$$
\operatorname{Hom}_{\mathrm{GO}\left(V_{D}\right)}\left(\Theta_{K}^{D_{y}}\left(\pi_{1}\right) \otimes \Theta_{K}^{D_{y}}\left(\pi_{2}\right) \otimes \Theta_{K}^{D_{y}}\left(\pi_{3}\right), \mathbb{C}\right) .
$$

Proof. To prove the invariance, it suffices to show that

$$
\mathscr{I}_{D}^{\epsilon}\left(\mathcal{W}, \Omega_{D, \psi}^{3}(\rho(a, \mathbf{t})) \Phi\right)=\mathscr{I}_{D}^{\epsilon}(\mathcal{W}, \Phi)
$$

for $a \in F^{\times}$in view of (2.1). Since $\epsilon_{K}\left((\rho(a, \mathbf{t}) y, \rho(a, \mathbf{t}) y)_{D}\right)=\epsilon$, it follows from the expression above.

Without loss of generality we may assume that $y=1 \in V_{D}$ in view of Lemma 2.3. Recall the decomposition $V_{D}=F \oplus \sqrt{\delta} D^{\circ}$ and

$$
\operatorname{GSO}\left(V_{D}\right)=\rho\left(F^{\times} \times D_{K}^{\times}\right), \quad \operatorname{SO}\left(\sqrt{\delta} D^{\circ}\right) \simeq D^{\times} / F^{\times}
$$

(see 2.1). It therefore suffices to show that the integral

$$
\int_{\mathrm{SO}\left(V_{D}\right) / \mathrm{SO}\left(\sqrt{\delta} D^{\circ}\right)} \int_{\mathbf{U} \backslash \mathrm{SL}_{2}(E)} \mathcal{W}(\mathbf{g}) \Omega_{D, \psi}^{3}(\iota(\mathbf{g})) \Phi(h \cdot 1) \mathrm{d} \mathbf{g} \mathrm{~d} h
$$

is absolutely convergent.
Let \mathfrak{o}_{F} and \mathfrak{o}_{K} denote the maximal compact subring of F and K, respectively. For simplicity we assume that $2 \delta \in \mathfrak{o}_{F}^{\times}$. Let $L=V_{D} \cap \mathrm{M}_{2}\left(\mathfrak{o}_{K}\right)$ be a maximal integral lattice of V_{D}. Put

$$
C=\left\{h \in \operatorname{SO}\left(V_{D}\right) \mid h L=L\right\}, \quad L[\mathfrak{a}]=\left\{x \in V_{D} \mid(x, x)_{D}=1,(x, L)_{D}=\mathfrak{a}\right\}
$$

for each fractional ideal \mathfrak{a} of \mathfrak{o}_{F}. Note that $L[\mathfrak{a}]=\emptyset$ unless $\mathfrak{a} \supset \mathfrak{o}_{F}$ as L is maximal. Fix a generator ϖ of the maximal ideal \mathfrak{p} of \mathfrak{o}_{F}. For each nonnegative integer j we choose elements $x_{j} \in L\left[\mathfrak{p}^{-j}\right]$ and $h_{j} \in \mathrm{SO}\left(V_{D}\right)$ such that $x_{j}=h_{j} \cdot 1$. Then $L\left[\mathfrak{p}^{-j}\right]=C \cdot x_{j}$ by Theorem 10.5 of [Shi04]. This combined with Witt's theorem gives the relative Cartan decomposition

$$
\begin{equation*}
\mathrm{SO}\left(V_{D}\right)=\bigsqcup_{j=0}^{\infty} C \cdot h_{j} \mathrm{SO}\left(\sqrt{\delta} D^{\circ}\right) . \tag{3.2}
\end{equation*}
$$

Let

$$
x_{j}=\left(\begin{array}{cc}
0 & -\sqrt{\delta} \varpi^{j} \\
\frac{1}{\sqrt{\delta} \varpi^{j}} & 0
\end{array}\right), \quad h_{j}=\rho\left(\varpi^{-j},\left(\begin{array}{cc}
\varpi^{j} & 0 \\
0 & 1
\end{array}\right)\right) h_{0} .
$$

It is enough to prove that the integral

$$
\sum_{j=0}^{\infty} q^{2 j} \int_{C} \int_{\mathbf{U} \backslash \mathrm{SL}_{2}(E)} \mathcal{W}(\mathbf{g}) \Omega_{D, \psi}^{3}(\iota(\mathbf{g})) \Phi\left(c \cdot x_{j}\right) \mathrm{d} \mathbf{g} \mathrm{~d} c
$$

is absolutely convergent in view of Proposition 2.6 of [KT10]. Equivalently, we will show that the triple integral

$$
\sum_{j=0}^{\infty} q^{2 j} \int_{C} \int_{E^{\times}} \int_{\mathrm{SL}_{2}\left(\boldsymbol{o}_{E}\right)} \mathcal{W}(\mathbf{m}(\mathbf{a}) \mathbf{k}) \Omega_{D, \psi}^{3}(\iota(\mathbf{m}(\mathbf{a}) \mathbf{k})) \Phi\left(c \cdot x_{j}\right)|\mathbf{a}|^{-2} \mathrm{~d} \mathbf{k} \mathrm{~d}^{\times} \mathbf{a d} c
$$

converges absolutely, where $|\mathbf{a}|=\left|a_{1} a_{2} a_{3}\right|$ for $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right) \in E^{\times}$and $\mathfrak{o}_{E}=\mathfrak{o}_{F} \times \mathfrak{o}_{F} \times \mathfrak{o}_{F}$. There exists $\Phi_{0} \in \mathcal{S}\left(E^{2}\right)$ and for $\epsilon>0$ there exists $\Phi_{\epsilon} \in \mathcal{S}(E)$ such that

$$
\begin{gathered}
\left|\Omega_{D, \psi}^{3}(\iota(\mathbf{m}(\mathbf{a}) \mathbf{k})) \Phi\left(c \cdot x_{j}\right)\right| \leq|\mathbf{a}|^{2} \Phi_{0}\left(\varpi^{j} \mathbf{a}, \varpi^{-j} \mathbf{a}\right), \\
|\mathcal{W}(\mathbf{m}(\mathbf{a}) \mathbf{k})| \leq|\mathbf{a}|^{1-\epsilon}\left|a_{1}\right|^{-2 \lambda\left(\pi_{1}\right)}\left|a_{2}\right|^{-2 \lambda\left(\pi_{2}\right)}\left|a_{3}\right|^{-2 \lambda\left(\pi_{3}\right)} \Phi_{\epsilon}\left(\mathbf{a}^{2}\right)
\end{gathered}
$$

for $\mathbf{a} \in E^{\times}, \mathbf{k} \in \mathrm{SL}_{2}\left(\mathfrak{o}_{E}\right)$ and $c \in C$. We take ϵ so that

$$
1-3 \epsilon-2 \lambda\left(\pi_{1}\right)-2 \lambda\left(\pi_{2}\right)-2 \lambda\left(\pi_{3}\right)>0 .
$$

Then the double integral

$$
\begin{aligned}
& \int_{F^{\times}} \int_{E^{\times}} \frac{|\mathbf{a}|^{1-\epsilon} \Phi_{0}\left(t \mathbf{a}, t^{-1} \mathbf{a}\right) \varphi(t)}{\left|a_{1}\right|^{2 \lambda\left(\pi_{1}\right)}\left|a_{2}\right|^{2 \lambda\left(\pi_{2}\right)}\left|a_{3}\right|^{2 \lambda\left(\pi_{3}\right)}}|t|^{-2} \mathrm{~d}^{\times} \mathbf{a d}^{\times} t \\
= & \int_{F^{\times}} \int_{E^{\times}} \frac{|\mathbf{a}|^{1-\epsilon} \Phi_{0}\left(t^{2} \mathbf{a}, \mathbf{a}\right) \varphi(t)}{\left|t a_{1}\right|^{2 \lambda\left(\pi_{1}\right)}\left|t a_{2}\right|^{2 \lambda\left(\pi_{2}\right)}\left|t a_{3}\right|^{2 \lambda\left(\pi_{3}\right)}}|t|^{1-3 \epsilon} \mathrm{~d}^{\times} \mathbf{a d}^{\times} t
\end{aligned}
$$

converges absolutely for $\varphi \in \mathcal{S}(F)$. We have thus completed our proof.

4. The trilinear forms and local zeta integrals

4.1. Garrett's integral representation. Recall that Z_{3} denotes the center of GSp_{6} and $E=F \times F \times F$. Put

$$
\eta=\left(\begin{array}{ccc|ccc}
0 & 0 & 0 & -1 & 0 & 0 \tag{4.1}\\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 1
\end{array}\right), \quad w_{0}=\left(\begin{array}{ccc|ccc}
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

We take Haar measures $\mathrm{d}^{\times} z=\zeta_{F}(1) \frac{\mathrm{d} z}{|z|}$ and $\mathrm{d}^{\times} \nu=\zeta_{F}(1) \frac{\mathrm{d} \nu}{|\nu|}$ of F^{\times}. Let $\mathrm{d}^{\times} \dot{\nu}$ be the Haar measure on $F^{\times} / F^{\times 2}$ so that

$$
\int_{F^{\times}} f(\nu) \mathrm{d}^{\times} \nu=\int_{F^{\times} / F^{\times 2}} \int_{F^{\times}} f\left(z^{2} \dot{\nu}\right) \mathrm{d} z \mathrm{~d}^{\times} \dot{\nu}
$$

for $f \in L^{1}\left(F^{\times}\right)$. We define a Haar measure $\mathrm{d} \mathbf{g}$ on $Z_{3} U^{0} \backslash \mathbf{G}$ by

$$
\begin{equation*}
\int_{Z_{3} U^{0} \backslash \mathbf{G}} f(\mathbf{g}) \mathrm{d} \mathbf{g}=\int_{F^{\times} / F^{\times 2}} \int_{U^{0} \backslash \mathrm{SL}_{2}(E)}|\dot{\nu}|^{2} f(\mathbf{d}(\dot{\nu}) \ddot{\mathbf{g}}) \mathrm{d} \ddot{\mathbf{g}} \mathrm{~d} \dot{\nu} \tag{4.2}
\end{equation*}
$$

for $f \in L^{1}\left(Z_{3} U^{0} \backslash \mathbf{G}\right)$. Let $\mathrm{d} x$ be the self-dual Haar measure on V_{D} with respect to $\psi\left((x, y)_{D}\right)$. We take the measure $\mathrm{d}^{\times} x=\zeta_{F}(1) L\left(2, \epsilon_{K}\right)\left|(x, x)_{D}\right|^{-2} \mathrm{~d} x$ on \mathcal{Y}_{D}, which is invariant under the action ρ_{1} of D_{K}^{\times}. For each $y \in \mathcal{Y}_{D}$ we define a $\operatorname{map} \wp_{y}: D_{K}^{\times} \rightarrow \mathcal{Y}_{D}$ by $\wp_{y}(\xi)=\rho_{1}(\xi) y=\xi y \sigma(\xi)^{\iota}$ for $\xi \in D_{K}^{\times}$. Put

$$
\mathcal{U}_{y}=\left\{\xi \in D_{K}^{\times} \mid \wp_{y}(\xi)=y\right\}
$$

We obtain a D_{K}^{\times}-invariant measure $\mathrm{d}_{y} \xi^{\prime}$ on $D_{K}^{\times} / \mathcal{U}_{y}$ by the pull-back $\mathrm{d}_{y} \xi^{\prime}=$ $\wp_{y}^{*} \mathrm{~d}^{\times} x$. In view of Proposition 2.53 we obtain a measure $\mathrm{d}_{y} \xi$ on $D_{K}^{\times} / K^{\times} D_{y}^{\times}$ as the quotient of $\mathrm{d}_{y} \xi^{\prime}$ by $\mathrm{d}^{\times} z$.
Remark 4.1. Given $h \in D_{K}^{\times}$, we define $\iota_{h}: D_{K}^{\times} \rightarrow D_{K}^{\times}$by $\iota_{h}(\xi)=h \xi h^{-1}$ for $\xi \in D_{K}^{\times}$. Since $\iota_{h}^{*} \circ \wp_{\rho_{1}(h) y}^{*}=\wp_{y}^{*} \circ \rho_{1}(h)^{*}$, we have

$$
\iota_{h}^{*} \mathrm{~d}_{\rho_{1}(h) y} \xi=\mathrm{d}_{y} \xi
$$

When $\epsilon=\epsilon_{K}\left((y, y)_{D}\right)$, we have

$$
\begin{equation*}
\int_{\mathcal{Y}_{D}^{\epsilon}} f(x) \mathrm{d} x=\int_{D_{K}^{\times} / K^{\times} D_{y}^{\times}} \int_{F^{\times}} f\left(z \wp_{y}(\xi)\right) \frac{\left|z^{2} \boldsymbol{\nu}(\xi)(y, y)_{D}\right|^{2}}{\zeta_{F}(1) L\left(2, \epsilon_{K}\right)} \mathrm{d}^{\times} z \mathrm{~d}_{y} \xi \tag{4.3}
\end{equation*}
$$

for any Schwartz function f on V_{D}.
Let $\pi_{1}, \pi_{2}, \pi_{3}$ be irreducible unitary generic admissible representations of $\mathrm{GL}_{2}(F)$ which satisfy (Cent) and (\star). Put $\mathbf{G}^{\star}=\mathbf{G} \cap \operatorname{GSp}_{6}(F)^{\star}$ (see Definition 2.7). Given $\alpha \in F^{\times}$and a Whittaker function $\mathcal{W} \in W^{\psi}(\Pi)$ with respect to $\bar{\psi} \circ \mathrm{T}_{E}$, we define $\mathcal{W}^{\alpha} \in W^{\bar{\psi}^{\alpha}}(\Pi)$ by

$$
\mathcal{W}^{\alpha}(\mathbf{g})=\mathcal{W}\left(\mathbf{d}(\alpha)^{-1} \mathbf{g}\right)
$$

Let \mathcal{K} be the standard maximal compact subgroup of $\operatorname{GSp}_{6}(F)$. Let $I_{3}\left(s, \epsilon_{K}\right)$ be the normalized induced representation of $\operatorname{GSp}_{6}(F)$, consisting of all smooth right \mathcal{K}-finite functions $f^{(s)}: \operatorname{GSp}_{6}(F) \rightarrow \mathbb{C}$ such that

$$
f^{(s)}(\mathbf{d}(t) \mathbf{n}(z) \mathbf{m}(a) g)=\epsilon_{K}(\operatorname{det} a)\left|t^{-3}(\operatorname{det} a)^{2}\right|^{s+1} f^{(s)}(g)
$$

We associate to $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$ a function f_{Φ} on $\operatorname{GSp}_{6}(F)^{\star}$ defined by

$$
f_{\Phi}(g)=\Omega_{D, \psi}^{3}(h, g) \Phi(0)
$$

where $h \in \operatorname{GO}\left(V_{D}\right)$ is chosen so that $\boldsymbol{\nu}(h)=\nu_{3}(g)$. The right hand side is independent of the choice of h. Since it satisfies

$$
f_{\Phi}(\mathbf{d}(t) \mathbf{n}(b) \mathbf{m}(a) g)=\epsilon_{K}(\operatorname{det} a)\left|t^{-3}(\operatorname{det} a)^{2}\right| f_{\Phi}(g)
$$

for $a \in \operatorname{GL}_{3}(F), b \in \operatorname{Sym}_{3}(F)$ and $t \in \mathrm{~N}_{K / F}\left(K^{\times}\right)$, it is uniquely extended to an element $f_{\Phi}^{(0)}$ of $I_{3}\left(0, \epsilon_{K}\right)$.

The local integral

$$
Z\left(\mathcal{W}, f_{\Phi}^{(0)}\right)=\int_{Z_{3} U^{0} \backslash \mathbf{G}} \mathcal{W}(\mathbf{g}) f_{\Phi}^{(0)}(\eta \iota(\mathbf{g})) \mathrm{d} \mathbf{g}
$$

converges absolutely by ($\boldsymbol{\star}$) and Ike92, Lemma 2.1]. If ψ is of order zero, ϵ_{K} is unramified, Φ is the characteristic function of $V_{D} \cap \mathrm{M}_{2}\left(\mathfrak{o}_{K}\right)$, $\mathcal{W}\left(\mathrm{GL}_{2}\left(\mathfrak{o}_{E}\right)\right)=1$ and $\operatorname{vol}\left(\mathfrak{o}_{F}^{\times} U^{0}\left(\mathfrak{o}_{F}\right) \backslash \mathbf{G}\left(\mathfrak{o}_{F}\right), \mathrm{d} \mathbf{g}\right)=1$, then by Theorem 3.1 of PSR87]

$$
\begin{equation*}
Z\left(\mathcal{W}, f_{\Phi}^{(0)}\right)=\frac{L\left(\frac{1}{2}, \Pi\right)}{\zeta_{F}(2) L\left(2, \epsilon_{K}\right)} \tag{4.4}
\end{equation*}
$$

4.2. Partial zeta integrals and trilinear forms. If $K \simeq F \times F$, then $\gamma(\Pi)=\varepsilon(\Pi)$ is a sign, and hence $\gamma(\Pi) \neq-\epsilon(D)$ if and only if $\varepsilon(\Pi)=\epsilon(D)$ if and only if \mathscr{I}_{D}^{+}is non-vanishing by epsilon dichotomy. Therefore we will assume that K is a quadratic extension of a non-archimedean local field F. Let $\alpha \in F^{\times}$. We introduce the partial zeta integral

$$
Z^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)=\int_{Z_{3} U^{0} \backslash \mathbf{G}^{\star}} \mathcal{W}^{\alpha}(\mathbf{g}) f_{\Phi}(\eta \iota(\mathbf{g})) \mathrm{d} \mathbf{g} .
$$

Observe that

$$
f_{\Phi}^{(0)}\left(\eta \iota\left(\mathbf{d}(\alpha) g_{1}, \mathbf{d}(\alpha) g_{2}, \mathbf{d}(\alpha) g_{3}\right)\right)=\epsilon_{K}(\alpha)|\alpha|^{-1} f_{\Phi}^{(0)}\left(\eta \iota\left(g_{1}, g_{2}, g_{3}\right)\right)
$$

and hence by the change of variables $\mathbf{g} \mapsto \mathbf{d}(\alpha) \mathbf{g d}(\alpha)^{-1}$

$$
\begin{align*}
Z^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right) & =|\alpha|^{2} \int_{Z_{3} U^{0} \backslash \mathbf{G}^{\star}} \mathcal{W}\left(\mathbf{g d}(\alpha)^{-1}\right) f_{\Phi}^{(0)}\left(\eta \iota\left(\mathbf{d}(\alpha) \mathbf{g d}(\alpha)^{-1}\right)\right) \mathrm{d} \mathbf{g} \\
& =\epsilon_{K}(\alpha)|\alpha| \int_{Z_{3} U^{0} \backslash \mathbf{G}^{\star}} \mathcal{W}\left(\boldsymbol{\operatorname { g d }}(\alpha)^{-1}\right) f_{\Phi}^{(0)}\left(\eta \iota\left(\mathbf{g d}(\alpha)^{-1}\right)\right) \mathrm{d} . \tag{4.5}
\end{align*}
$$

When $\epsilon_{K}(\alpha)=-1$, we get

$$
Z\left(\mathcal{W}, f_{\Phi}^{(0)}\right)=Z^{\star}(\mathcal{W}, \Phi)-|\alpha|^{-1} Z^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)
$$

Proposition 4.2. Let $\alpha \in F^{\times}, \Phi \in \mathcal{S}\left(V_{D}^{3}\right)$ and $\mathcal{W} \in W^{\bar{\psi}}(\Pi)$. Then

$$
Z^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)=|\alpha| \epsilon(D) L\left(2, \epsilon_{K}\right)^{-1} \mathscr{I}_{D}^{\epsilon_{K}(\alpha)}(\mathcal{W}, \Phi) .
$$

Corollary 4.3. Let $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$ and $\mathcal{W} \in W^{\bar{\psi}}(\Pi)$. Then

$$
Z\left(\mathcal{W}, f_{\Phi}^{(0)}\right)=\epsilon(D) L\left(2, \epsilon_{K}\right)^{-1}\left(\mathscr{I}_{D}^{+}(\mathcal{W}, \Phi)-\mathscr{I}_{D}^{-}(\mathcal{W}, \Phi)\right)
$$

We will prove Proposition 4.2 in 4.5 . Granted Proposition 4.2, we can easily prove Theorems 1.1 and 1.2 .
4.3. The proof of Theorem 1.1, Let $\pi_{1}, \pi_{2}, \pi_{3}$ be irreducible unitary generic admissible representations of $\mathrm{GL}_{2}(F)$ which satisfy (Cent) and (\star). Define the intertwining operator $M(s): I_{3}\left(s, \epsilon_{K}\right) \rightarrow I_{3}\left(-s, \epsilon_{K}\right) \otimes \epsilon_{K} \circ \nu_{3}$ by

$$
M(s) f^{(s)}(g)=|2|^{-3 / 2} \int_{\operatorname{Sym}_{3}(F)} f^{(s)}\left(w_{0}^{-1} \mathbf{n}(b) g\right) \mathrm{d} b
$$

where w_{0} is defined in (4.1) and $\mathrm{d} b$ is the self-dual Haar measure of $\operatorname{Sym}_{3}(F)$ with respect to $\left(b, b^{\prime}\right) \mapsto \psi\left(\operatorname{tr}\left(b b^{\prime}\right)\right)$. This integral is absolutely convergent for $\Re(s) \gg 0$ and can be meromorphically continued to the whole complex plane. We normalize the operator $M(s)$ by setting

$$
M^{*}(s)=\gamma\left(2 s-1, \epsilon_{K}, \psi\right) \gamma(4 s-1,1, \psi) M(s) .
$$

The gamma factor $\gamma(s, \Pi, \psi)$ is defined as the proportionality constant of the functional equation

$$
Z\left(\mathcal{W}, M^{*}(s) f^{(s)}\right)=\gamma\left(s+\frac{1}{2}, \Pi, \psi\right) Z\left(\mathcal{W}, f^{(s)}\right)
$$

for $f^{(s)} \in I_{3}\left(s, \epsilon_{K}\right)$. This gamma factor coincides with $\gamma\left(s, \sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}, \psi\right)$ by Proposition 3.3.7 of [Ram00] (cf. [CCI20]), where σ_{i} be the 2-dimensional representation of the Weil-Deligne group of F associated to π_{i} by the local Langlands correspondence for GL_{2}. The central value $\gamma(\Pi)=\gamma\left(\frac{1}{2}, \Pi, \psi\right)$ is independent of the choice of ψ (see Remark 1.4 (2)).

Theorem 4.4. The following conditions are equivalent:

- $\mathscr{I}_{D}^{\epsilon} \in \operatorname{Hom}_{\mathrm{GL}_{2}(K)}\left(\pi_{1, K} \otimes \pi_{2, K} \otimes \pi_{3, K}, \mathbb{C}\right)$ is zero;
- $\gamma(\Pi)=-\epsilon \cdot \epsilon(D)$.

Theorem 4.4 can be deduced from Lemma 4.5 and Proposition 4.7 below.
Lemma 4.5. There are $\mathcal{W} \in W^{\bar{\psi}}(\Pi)$ and $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$ such that not both $\mathscr{I}_{D}^{+}(\mathcal{W}, \Phi)$ and $\mathscr{I}_{D}^{-}(\mathcal{W}, \Phi)$ are zero.
Proof. Given $\alpha \in F^{\times}$, we define an element $f_{\Phi}^{\alpha} \in I_{3}\left(0, \epsilon_{K}\right)$ by $f_{\Phi}^{\alpha}(g)=$ $f_{\Phi}^{(0)}(g \mathbf{d}(\alpha))$ for $g \in \operatorname{GSp}_{6}(F)$. Put $R_{3}\left(V_{D}\right):=\left\{f_{\Phi} \mid \Phi \in \mathcal{S}\left(V_{D}^{3}\right)\right\}$. Fix $\alpha_{0} \in F^{\times}$with $\epsilon_{K}\left(\alpha_{0}\right)=-1$. Theorem 2.1 of [KR94] tells us that

$$
I_{3}\left(0, \epsilon_{K}\right)=R_{3}\left(V_{D}\right) \oplus R_{3}\left(V_{D}^{\alpha_{0}}\right)
$$

Since $R_{3}\left(V_{D}^{\alpha_{0}}\right)=\left\{f_{\Phi}^{\alpha_{0}} \mid \Phi \in \mathcal{S}\left(V_{D}^{3}\right)\right\}$, the space $I_{3}\left(0, \epsilon_{K}\right)$ is a \mathbb{C}-linear span of elements of the form f_{Φ}^{α}.

If $\mathscr{I}_{D}^{+}(\mathcal{W}, \Phi)=\mathscr{I}_{D}^{-}(\mathcal{W}, \Phi)=0$ for all $\mathcal{W} \in W^{\bar{\psi}}(\Pi)$ and $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$, then $Z^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)=0$ for all $\alpha \in F^{\times}$by Proposition 4.2, and hence $Z\left(\mathcal{W}, f_{\Phi}^{\alpha}\right)=0$ for all $\alpha \in F^{\times}$by (4.5). This is a contradiction as the zeta integral defines a non-zero functional on $\Pi \otimes I_{3}\left(0, \epsilon_{K}\right)$ by Proposition 3.3 of PSR87].

Let $S \in \operatorname{Sym}_{3}(F)$ with $\operatorname{det} S \neq 0$. For a section $f^{(s)}$ of $I_{3}\left(s, \epsilon_{K}\right)$ we put

$$
W_{S}\left(f^{(s)}\right)=\int_{\operatorname{Sym}_{3}(F)} f^{(s)}\left(w_{0} \mathbf{n}(b)\right) \psi(-\operatorname{tr}(S b)) \mathrm{d} b .
$$

The integral can be continued to an entire function in s. Let $\epsilon(S)$ be either 1 or -1 according to whether S is split or anisotropic. Theorem 2.1 combined with Lemma 3.1 of [Ike17] gives

$$
W_{S}\left(M^{*}(s) f^{(s)}\right)=\epsilon(S) \epsilon_{K}(4 \operatorname{det} S)|4 \operatorname{det} S|^{-2 s} W_{S}\left(f^{(s)}\right)
$$

Lemma 4.6. Let $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$. Then

$$
M^{*}(0) f_{\Phi}^{(0)}=\epsilon_{K}(-1) \epsilon(D) f_{\Phi}^{(0)} \cdot \epsilon_{K} \circ \nu_{3}
$$

Proof. It suffices to determine $\left.M^{*}(0) f_{\Phi}^{(0)}\right|_{\mathrm{SP}_{6}(F)}$. The operator $M^{*}(0)$ preserves the space $R_{3}\left(V_{D}\right)$ by Proposition 5.5 of KR92. Since this space is irreducible as an $\mathrm{Sp}_{6}(F)$-module by Corollary 3.7 of [KR92], the operator $M^{*}(0)$ acts on it by scalar multiplication. Take S such that $\epsilon(S)=1$ and $\epsilon_{K}(-4 \operatorname{det} S)=\epsilon(D)$. Then $W_{S}\left(M^{*}(0) f_{\Phi}\right)=\epsilon_{K}(-1) \epsilon(D) W_{S}\left(f_{\Phi}\right)$. Since such an S is represented by V_{D} (cf. Remark 2.4), Proposition 2.7 of KR94] gives $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$ with $W_{S}\left(f_{\Phi}\right) \neq 0$.

Proposition 4.7. For all $\mathcal{W} \in W^{\bar{\psi}}(\Pi)$ and $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$ we have

$$
\left(1-\epsilon_{K}(-1) \epsilon(D) \gamma(\Pi)\right) \mathscr{I}_{D}^{+}(\mathcal{W}, \Phi)=-\left(1+\epsilon_{K}(-1) \epsilon(D) \gamma(\Pi)\right) \mathscr{I}_{D}^{-}(\mathcal{W}, \Phi)
$$

Proof. Take $\alpha \in F^{\times}$with $\epsilon_{K}(\alpha)=-1$. Then we have

$$
\begin{aligned}
Z\left(\mathcal{W}, M^{*}(0) f_{\Phi}^{(0)}\right) & =\epsilon_{K}(-1) \epsilon(D) Z\left(\mathcal{W}, f_{\Phi}^{(0)} \cdot \epsilon_{K} \circ \nu_{3}\right) \\
& =\epsilon_{K}(-1) \epsilon(D)\left(Z^{\star}(\mathcal{W}, \Phi)+|\alpha|^{-1} Z^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)\right) \\
& =\epsilon_{K}(-1) L\left(2, \epsilon_{K}\right)^{-1}\left(\mathscr{I}_{D}^{+}(\mathcal{W}, \Phi)+\mathscr{I}_{D}^{-}(\mathcal{W}, \Phi)\right)
\end{aligned}
$$

by Lemma 4.6. (4.5) and Proposition 4.2.
We combine Corollary 4.3 with the functional equation

$$
Z\left(\mathcal{W}, M^{*}(0) f_{\Phi}^{(0)}\right)=\gamma(\Pi) Z\left(\mathcal{W}, f_{\Phi}^{(0)}\right)
$$

to verify the relation.
Corollary 4.3 and Proposition 4.7 give the following result:
Corollary 4.8. Let $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$ and $\mathcal{W} \in W^{\bar{\psi}}(\Pi)$. If $\gamma(\Pi) \neq-\epsilon_{K}(-1) \epsilon(D)$, then

$$
Z\left(\mathcal{W}, f_{\Phi}^{(0)}\right)=\frac{2}{\epsilon(D)+\epsilon_{K}(-1) \gamma(\Pi)} \cdot L\left(2, \epsilon_{K}\right)^{-1} \mathscr{I}_{D}^{+}(\mathcal{W}, \Phi)
$$

4.4. The proof of Theorem 1.2, Letting $y=1 \in V_{D}$, we put

$$
B_{i}^{\natural}=\zeta_{F}(2) L\left(1, \operatorname{Ad}\left(\pi_{i}\right) \otimes \epsilon_{K}\right)^{-1} B_{y} \in \operatorname{Hom}_{D^{\times}}\left(\pi_{i, K}^{D},\left(\omega_{i} \epsilon_{K}\right) \circ \mathrm{N}_{D / F}\right),
$$

where B_{y} is as in Proposition 3.3, and define $\theta: \Pi \otimes \mathcal{S}\left(V_{D}^{3}\right) \rightarrow \Pi_{K}^{D}$ by

$$
\theta(\mathcal{W}, \Phi)=\theta_{y}\left(W_{1}, \varphi_{1}\right) \otimes \theta_{y}\left(W_{2}, \varphi_{2}\right) \otimes \theta_{y}\left(W_{3}, \varphi_{3}\right)
$$

for $\mathcal{W}=W_{1} \otimes W_{2} \otimes W_{3}$ and $\Phi=\varphi_{1} \otimes \varphi_{2} \otimes \varphi_{3}$. We define an element

$$
\mathbf{I}^{\natural} \in \operatorname{Hom}_{D_{K}^{\times}}\left(\pi_{1, K}^{D} \otimes \pi_{2, K}^{D} \otimes \pi_{3, K}^{D}, \mathbb{C}\right)
$$

by the convergent integral
$\mathbf{I}^{\natural}\left(\phi_{1} \otimes \phi_{2} \otimes \phi_{3}\right)=\int_{K^{\times} D^{\times} \backslash D_{K}^{\times}} B_{1}^{\natural}\left(\pi_{1, K}^{D}(\xi) \phi_{1}\right) B_{2}^{\natural}\left(\pi_{2, K}^{D}(\xi) \phi_{2}\right) B_{3}^{\natural}\left(\pi_{3, K}^{D}(\xi) \phi_{3}\right) \mathrm{d} \xi$,
where $\mathrm{d} \xi=\mathrm{d}_{1} \xi$. Assuming that $\gamma(\Pi) \neq-\epsilon_{K}(-1) \epsilon(D)$, we normalize \mathbf{I}^{\natural} by

$$
I^{\natural}=\frac{L\left(1, \operatorname{Ad}(\Pi) \otimes \epsilon_{K}\right)}{\zeta_{F}(2)^{2} L\left(\frac{1}{2}, \Pi\right)} \cdot \frac{2}{\epsilon(D)+\epsilon_{K}(-1) \gamma(\Pi)} \cdot \mathbf{I}^{\natural} .
$$

By the definition of B_{i}^{\natural} the functionals \mathbf{I}^{\natural} and \mathscr{I}_{D}^{+}are related as follows:

$$
\mathscr{I}_{D}^{+}(\mathcal{W}, \Phi)=\frac{L\left(1, \operatorname{Ad}(\Pi) \otimes \epsilon_{K}\right)}{\zeta_{F}(2)^{3}} \mathbf{I}^{\natural}(\theta(\mathcal{W}, \Phi))=\frac{L\left(\frac{1}{2}, \Pi\right)}{\zeta_{F}(2)} \cdot \frac{\epsilon(D)+\epsilon_{K}(-1) \gamma(\Pi)}{2} I^{\natural} .
$$

Corollary 4.8 gives

$$
\begin{equation*}
Z\left(\mathcal{W}, f_{\Phi}^{(0)}\right)=\frac{L\left(\frac{1}{2}, \Pi\right)}{\zeta_{F}(2) L\left(2, \epsilon_{K}\right)} I^{\natural}(\theta(\mathcal{W}, \Phi)) \tag{4.6}
\end{equation*}
$$

Now we assume that $\epsilon_{K}, \pi_{1}, \pi_{2}, \pi_{3}$ are unramified, ψ has order 0 and

$$
\begin{aligned}
\epsilon(D) & =1, & \operatorname{vol}\left(\mathfrak{o}_{F}^{\times} U^{0}\left(\mathfrak{o}_{F}\right) \backslash \mathbf{G}\left(\mathfrak{o}_{F}\right), \mathrm{d} \ddot{\mathbf{g}}\right) & =1, \\
W_{i}\left(\mathrm{GL}_{2}\left(\mathfrak{o}_{F}\right)\right) & =1, & \operatorname{vol}\left(\mathfrak{o}_{K}^{\times} \mathrm{GL}_{2}\left(\mathfrak{o}_{F}\right) \backslash \mathrm{GL}_{2}\left(\mathfrak{o}_{K}\right), \mathrm{d} \xi\right) & =1 .
\end{aligned}
$$

Let φ_{i} be the characteristic function of $V^{+} \cap \mathrm{M}_{2}\left(\mathfrak{o}_{K}\right)$. Then

$$
B_{i}^{\natural}\left(\theta_{y}\left(W_{i}, \varphi_{i}\right)\right)=1, \quad I^{\natural}(\theta(\mathcal{W}, \Phi))=1
$$

by Proposition 2.11 1) and (4.4.
4.5. The proof of Proposition 4.2, The rest of this section is devoted to the proof of Proposition 4.2. The proof is similar to that of Proposition 5.1 of Ich08 but more complicated as Proposition 2.5(1) says that the action of $\mathrm{GL}_{2}(K)$ divides \mathcal{Y}_{D} into two orbits $\mathcal{Y}_{D}=\mathcal{Y}_{D}^{+} \sqcup \mathcal{Y}_{D}^{-}$, where

$$
\mathcal{Y}_{D}^{ \pm}=\left\{y \in \mathcal{Y}_{D} \mid \epsilon_{K}\left((y, y)_{D}\right)= \pm 1\right\} .
$$

Recall that $\boldsymbol{\nu}(\xi)=\mathrm{N}_{K / F}(\operatorname{det} \xi)$ for $\xi \in \mathrm{GL}_{2}(K)$. We associate to $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$ a function $H_{\psi}^{D}(\Phi): \mathrm{GL}_{2}(K) \times \mathrm{SL}_{2}(E) \rightarrow \mathbb{C}$ by

$$
H_{\psi}^{D}(\xi, g ; \Phi)=L\left(2, \epsilon_{K}\right)^{-1}\left(\Omega_{D, \psi}^{3}(\iota(g)) \Phi\right)\left(\xi \sigma(\xi)^{\iota}\right) .
$$

Take $y \in \mathcal{Y}_{D}$. Define $\Phi_{y} \in \mathcal{S}\left(V_{D_{y}}^{3}\right)$ by $\Phi_{y}(x)=\Phi(x y)$ for $x \in V_{D_{y}}^{3}$. Put

$$
\begin{aligned}
\gamma & =(y, y)_{D}, \quad \epsilon=\epsilon_{K}(\gamma), \quad \boldsymbol{\nu}_{3}=\nu_{3} \circ \iota, \\
J_{\Phi}^{\epsilon}(g) & =J_{\Phi}^{y}(g) \\
& =|\gamma|^{2} \int_{\mathrm{GL}_{2}(K) / K^{\times} D_{y}^{\times}} \int_{F^{\times}} H_{\psi^{\gamma}}^{D_{y}}\left(\xi, \mathbf{m}(z) g ; \Phi_{y}\right) \epsilon_{K}(z)\left|\frac{\boldsymbol{\nu}(\xi)}{z}\right|^{2} \frac{\mathrm{~d}^{\times} z}{\zeta_{F}(1)} \mathrm{d}_{y} \xi
\end{aligned}
$$

for $g \in \mathrm{SL}_{2}(E)$. The integral makes sense by Proposition 2.5(3).
Lemma 4.9. Let $\Phi \in \mathcal{S}\left(V_{D}^{3}\right)$. Then for $\mathbf{g} \in \mathbf{G}^{\star}$

$$
f_{\Phi}^{(0)}(\eta \mathbf{g})=\epsilon(D)\left|\boldsymbol{\nu}_{3}(\mathbf{g})\right|^{-1}\left(J_{\Phi}^{+}\left(\mathbf{d}\left(\boldsymbol{\nu}_{3}(\mathbf{g})^{-1}\right) \mathbf{g}\right)+J_{\Phi}^{-}\left(\mathbf{d}\left(\boldsymbol{\nu}_{3}(\mathbf{g})^{-1}\right) \mathbf{g}\right)\right) .
$$

Proof. Since $f_{\Phi}^{(0)}(\eta \mathbf{d}(\nu) g)=\frac{\epsilon_{K}(\nu)}{|\nu|} f_{\Phi}^{(0)}(\eta g)$ for all $\nu \in F^{\times}$and $g \in \operatorname{Sp}_{6}(F)$, we may assume that $\mathbf{g} \in \mathrm{SL}_{2}(E)$. Put

$$
w_{1}=\left(\begin{array}{cc|cc}
0 & 0 & -1 & 0 \\
0 & \mathbf{1}_{2} & 0 & 0 \\
\hline 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbf{1}_{2}
\end{array}\right), \quad A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then $\eta=w_{1} \mathbf{m}(A)$. Recall that

$$
\epsilon(D) \Omega_{D, \psi}^{1}\left(J_{1}\right) \varphi(y)=\int_{V_{D}} \varphi(x) \psi\left((x, y)_{D}\right) \mathrm{d} x=\int_{\mathcal{Y}_{D}} \varphi(x) \psi\left((x, y)_{D}\right) \mathrm{d} x
$$

for $\varphi \in \mathcal{S}\left(V_{D}\right)$. We see therefore that for $g \in \operatorname{Sp}_{6}(F)$

$$
\begin{aligned}
\epsilon(D) f_{\Phi}^{(0)}(\eta g) & =\epsilon(D) \Omega_{D, \psi}^{3}\left(w_{1} \mathbf{m}(A) g\right) \Phi(0) \\
& =\int_{\mathcal{Y}_{D}} \Omega_{D, \psi}^{3}(\mathbf{m}(A) g) \Phi(x, 0,0) \mathrm{d} x=\int_{\mathcal{Y}_{D}} \Omega_{D, \psi}^{3}(g) \Phi(x, x, x) \mathrm{d} x
\end{aligned}
$$

Take $y \in \mathcal{Y}_{D}$. Employing (4.3), we rewrite the right hand side as a sum of

$$
\int_{\mathrm{GL}_{2}(K) / K^{\times} D_{y}^{\times}} \int_{F^{\times}} \Omega_{D, \psi}^{3}(\iota(g)) \Phi\left(z \wp_{y}(\xi)\right) \frac{\left|z^{2} \boldsymbol{\nu}(\xi) \gamma\right|^{2}}{\zeta_{F}(1) L\left(2, \epsilon_{K}\right)} \mathrm{d}^{\times} z \mathrm{~d}_{y} \xi
$$

It is equal to $J_{\Phi}^{y}(g)$ by 2.2 and Remark 3.1.
To simplify notation, we put

$$
\mathcal{B}=\mathrm{N}_{K / F}\left(K^{\times}\right), \quad \mathcal{B}^{c}=F^{\times} \backslash \mathcal{B}, \quad \mathcal{B}_{E}=\mathcal{B} \times \mathcal{B} \times \mathcal{B}
$$

Let $\mathbb{R}_{\geq 0}$ be the set of non-negative real numbers. Fix a $\mathbb{R}_{\geq 0}$-valued function $\beta \in C_{c}^{\infty}\left(E^{\times}\right)$whose support is contained in \mathcal{B}_{E} and such that $\beta(a u)=\beta(a)$ for $a \in \mathcal{B}_{E}$ and $u \in \mathfrak{o}_{E}^{\times} \cap \mathcal{B}_{E}$. Let $\mathcal{C}=\mathfrak{o}_{F}$. We choose a $\mathbb{R}_{\geq 0}$-valued function $\phi \in C_{c}^{\infty}(F)$ so that

$$
\begin{array}{ll}
\phi(1)=0, & \operatorname{supp}(\phi) \cdot \mathcal{C} \subset \operatorname{supp}(\phi) \\
\hat{\phi}_{\alpha}(0)=1, & \operatorname{supp}(\phi) \cap\left(1-\mathcal{B}^{c}\right)=\emptyset
\end{array}
$$

and such that $\hat{\phi}_{\alpha}(x+v)=\hat{\phi}_{\alpha}(x)$ for $x \in F$ and $v \in \mathrm{~T}_{E / F}\left(\operatorname{supp}(\beta) \cdot \mathfrak{o}_{E}\right)$. Here $\hat{\phi}_{\alpha} \in \mathcal{S}(F)$ is the Fourier transform of ϕ defined by

$$
\hat{\phi}_{\alpha}(b)=\int_{F} \phi(z) \psi^{\alpha}(z b) \mathrm{d}_{\alpha} z
$$

for $b \in F$, where $\mathrm{d}_{\alpha} z=|\alpha|^{1 / 2} \mathrm{~d} z$ is the self-dual Haar measure of F with respect to ψ^{α}. We can define a function $\tau_{\beta, \phi}^{\alpha}$ on $Z_{3} U^{0} \backslash \mathbf{G}^{\star}$ by

$$
\tau_{\beta, \phi}^{\alpha}\left(\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) k\right)=\hat{\phi}_{\alpha}\left(\mathrm{T}_{E / F}(b)\right) \beta\left(a d^{-1}\right)
$$

for $b \in E, a, d \in E^{\times}$with $a d \in \mathcal{B}$ and $k \in \mathrm{GL}_{2}\left(\mathfrak{o}_{E}\right) \cap \mathbf{G}^{\star}$. One can easily verify that $\tau_{\beta, \phi}^{\alpha}$ is well-defined.

We define a modified truncated partial zeta integral by

$$
Z_{\beta, \phi}^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)=\int_{Z_{3} U^{0} \backslash \mathbf{G}^{\star}} \mathcal{W}^{\alpha}(\mathbf{g}) f_{\Phi}(\eta \iota(\mathbf{g})) \tau_{\beta, \phi}^{\alpha}(\mathbf{g}) \mathrm{d} \mathbf{g} .
$$

Since $Z^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)$ is absolutely convergent and $\tau_{\beta, \phi}^{\alpha}$ is bounded, this integral is absolutely convergent. Put

$$
I_{\beta, \phi}^{\alpha, \epsilon}=I_{\beta, \phi}^{\alpha, y}=\int_{Z_{3} U^{0} \backslash \mathbf{G}^{\star}} \mathcal{W}^{\alpha}(\mathbf{g}) \tau_{\beta, \phi}^{\alpha}(\mathbf{g})\left|\boldsymbol{\nu}_{3}(\mathbf{g})\right|^{-1} J_{\Phi}^{y}\left(\mathbf{d}\left(\boldsymbol{\nu}_{3}(\mathbf{g})^{-1}\right) \mathbf{g}\right) \mathrm{d} \mathbf{g},
$$

where $\epsilon=\epsilon_{K}\left((y, y)_{D}\right)$. Then Lemma 4.9 gives

$$
Z_{\beta, \phi}^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)=\epsilon(D)\left(I_{\beta, \phi}^{\alpha,+}+I_{\beta, \phi}^{\alpha,-}\right) .
$$

Following [Ich08], for given $\mathbf{g} \in \mathbf{G}^{\star}$, we put

$$
\mathcal{W}_{\beta, \phi}^{\alpha}(\mathbf{g})=\int_{F} \int_{F^{\times}} \mathcal{W}^{\alpha}(\mathbf{d}(\nu) \mathbf{g}) \tau_{\beta, \phi}^{\alpha}(\mathbf{n}(z / 3) \mathbf{d}(\nu) \mathbf{g}) \psi^{\alpha}(\nu z-z)|\nu|^{2} \frac{\mathrm{~d}_{\alpha}^{\times} \nu}{\zeta_{F}(1)} \mathrm{d}_{\alpha} z .
$$

Then $\mathcal{W}_{\beta, \phi}^{\alpha}(\mathbf{n}(x) \mathbf{g})=\psi^{\alpha}\left(-\mathrm{T}_{E / F}(x)\right) \mathcal{W}_{\beta, \phi}^{\alpha}(\mathbf{g})$ for $x \in E$ and $\mathbf{g} \in \mathbf{G}^{\star}$.
Lemma 4.10. (1) If $\epsilon_{K}(\alpha) \neq \epsilon$, then $I_{\beta, \phi}^{\alpha, \epsilon}=0$.
(2) If $\alpha=(y, y)_{D}$, then
$I_{\beta, \phi}^{\alpha, y}=|\alpha| \int_{\mathrm{GL}_{2}(K) / K^{\times} D_{y}^{\times}} \int_{\mathbf{U} \backslash \mathrm{SL}_{2}(E)} H_{\psi^{\alpha}}^{D_{y}}\left(\xi, \dddot{\mathbf{g}} ; \Phi_{y}\right) \mathcal{W}_{\beta, \phi}^{\alpha}\left(\mathbf{d}\left(\boldsymbol{\nu}(\xi)^{-1}\right) \dddot{\mathbf{g}}\right) \mathrm{d} \dddot{\mathbf{g}} \mathrm{d}_{y} \xi$.
Proof. To simplify notation, we write $\mathfrak{X}_{y}=\mathrm{GL}_{2}(K) / K^{\times} D_{y}^{\times}$. Changing the variables $\mathbf{g} \mapsto \mathbf{m}\left(z^{-1}\right) \mathbf{g}$, we get

$$
\begin{aligned}
I_{\beta, \phi}^{\alpha, y}= & |\gamma|^{2} \int_{Z_{3} U^{0} \backslash \mathbf{G}^{\star}} \int_{\mathfrak{X}_{y}} \int_{F^{\times}} \mathcal{W}^{\alpha}\left(\mathbf{m}\left(z^{-1}\right) \mathbf{g}\right) \tau_{\beta, \phi}^{\alpha}\left(\mathbf{m}\left(z^{-1}\right) \mathbf{g}\right)\left|\boldsymbol{\nu}_{3}(\mathbf{g})\right|^{-1} \\
& \times \epsilon_{K}(z) H_{\psi \gamma}^{D_{y}}\left(\xi, \mathbf{d}\left(\boldsymbol{\nu}_{3}(\mathbf{g})^{-1}\right) \mathbf{g} ; \Phi_{y}\right)|z \boldsymbol{\nu}(\xi)|^{2} \frac{\mathrm{~d}^{\times} z}{\zeta_{F}(1)} \mathrm{d}_{y} \xi \mathrm{~d} \mathbf{g} \\
= & |\gamma|^{2} \int_{F^{\times 2} \backslash \mathcal{B}} \int_{U^{0} \backslash \mathrm{SL}_{2}(E)} \int_{\mathfrak{X}_{y}} \int_{F^{\times}} \mathcal{W}^{\alpha}\left(\mathbf{d}\left(z^{2} \dot{\nu}\right) \ddot{\mathbf{g}}\right) \tau_{\beta, \phi}^{\alpha}\left(\mathbf{d}\left(z^{2} \dot{\nu}\right) \ddot{\mathbf{g}}\right) \\
& \times H_{\psi^{\gamma}}^{D_{y}}\left(\xi, \ddot{\mathbf{g}} ; \Phi_{y}\right)\left|z^{2} \dot{\nu} \boldsymbol{\nu}(\xi)^{2}\right| \frac{\mathrm{d}^{\times} z}{\zeta_{F}(1)} \mathrm{d}_{y} \xi \mathrm{~d} \ddot{\mathbf{g}} \mathrm{~d}^{\times} \dot{\nu}
\end{aligned}
$$

by (4.2). Combining the integrals over $F^{\times 2} \backslash \mathcal{B}$ and F^{\times}into an integral over \mathcal{B} and integrating over $U^{0} \backslash \mathbf{U}$, we obtain

$$
\begin{aligned}
\frac{I_{\beta, \phi}^{\alpha, y}}{|\gamma|^{2}} & =\int_{U^{0} \backslash \mathrm{SL}_{2}(E)} \int_{\mathfrak{X}_{y}} \int_{\mathcal{B}} \mathcal{W}^{\alpha}(\mathbf{d}(\nu) \ddot{\mathbf{g}}) \tau_{\beta, \phi}^{\alpha}(\mathbf{d}(\nu) \ddot{\mathbf{g}}) H_{\psi^{\gamma}}^{D_{y}}\left(\xi, \ddot{\mathbf{g}} ; \Phi_{y}\right)\left|\nu \boldsymbol{\nu}(\xi)^{2}\right| \frac{\mathrm{d}^{\times} \nu}{\zeta_{F}(1)} \mathrm{d} y \xi \mathrm{~d} \ddot{\mathbf{g}} \\
& =\int_{\mathfrak{x}_{y}} \int_{\mathbf{U} \backslash \mathrm{SL}_{2}(E)} H_{\psi^{\gamma}}^{D_{y}}\left(\xi, \dddot{\mathbf{g}} ; \Phi_{y}\right)|\boldsymbol{\nu}(\xi)|^{2} \int_{\mathcal{B}} \mathcal{W}^{\alpha}(\mathbf{d}(\nu) \dddot{\mathbf{g}}) L_{\beta, \phi}^{\alpha, y}(\dddot{\mathbf{g}}, \xi, \nu) \frac{\mathrm{d}_{\alpha}^{\times} \nu}{\zeta_{F}(1)} \mathrm{d} \dddot{\mathbf{g}} \mathrm{~d}_{y} \xi,
\end{aligned}
$$

where

$$
L_{\beta, \phi}^{\alpha, y}(\mathbf{g}, \xi, \nu)=\left|\alpha^{-1} \nu\right| \int_{F} \overline{\psi^{\alpha}(z / \nu)} \tau_{\beta, \phi}^{\alpha}(\mathbf{d}(\nu) \mathbf{n}(z / 3) \mathbf{g}) \psi^{\gamma}(\boldsymbol{\nu}(\xi) z) \mathrm{d}_{\alpha} z
$$

Changing the variables $z \mapsto \nu z$, we get

$$
L_{\beta, \phi}^{\alpha, y}(\mathbf{g}, \xi, \nu)=\left|\alpha^{-1} \nu^{2}\right| \int_{F} \psi^{\alpha}\left(\left(\alpha^{-1} \gamma \boldsymbol{\nu}(\xi) \nu-1\right) z\right) \tau_{\beta, \phi}^{\alpha}(\mathbf{n}(z / 3) \mathbf{d}(\nu) \mathbf{g}) \mathrm{d}_{\alpha} z .
$$

When $\mathbf{g}=\operatorname{diag}\left(\mathbf{a}, \mathbf{a}^{-1}\right) \mathbf{k}$ with $\mathbf{a} \in E^{\times}$and $\mathbf{k} \in \mathrm{SL}_{2}\left(\mathfrak{o}_{E}\right)$, we get

$$
L_{\beta, \phi}^{\alpha, y}(\mathbf{g}, \xi, \nu)=\left|\alpha^{-1} \nu^{2}\right| \phi\left(1-\alpha^{-1} \gamma \boldsymbol{\nu}(\xi) \nu\right) \beta\left(\mathbf{a}^{2} \nu^{-1}\right) .
$$

If $\alpha^{-1} \gamma \in \mathcal{B}^{c}$, then $L_{\beta, \phi}^{\alpha, y}(\mathbf{g}, \xi, \nu)=0$ for $\nu \in \mathcal{B}$ due to our choice of ϕ, which proves (11).

From now on we assume that $\alpha=\gamma$. Recall that $\operatorname{supp}(\beta) \subset \mathcal{B}_{E}$. Thus $L_{\beta, \phi}^{\alpha, y}(\mathbf{g}, \xi, \nu)=0$ unless $\nu \in \mathcal{B}$, so that the integral over \mathcal{B} can be replaced by the integral over F^{\times}. Changing the variables $\nu \mapsto \boldsymbol{\nu}(\xi)^{-1} \nu$, we get

$$
|\boldsymbol{\nu}(\xi)|^{2} \int_{\mathcal{B}} \mathcal{W}^{\alpha}(\mathbf{d}(\nu) \mathbf{g}) L_{\beta, \phi}^{\alpha, y}(\mathbf{g}, \xi, \nu) \frac{\mathrm{d}^{\times} \nu}{\zeta_{F}(1)}=|\alpha|^{-1} \mathcal{W}_{\beta, \phi}^{\alpha}\left(\mathbf{d}\left(\boldsymbol{\nu}(\xi)^{-1}\right) \mathbf{g}\right) .
$$

Finally, we justify the manipulations above. Our task is to check that

$$
\begin{aligned}
& \int_{\mathfrak{X}_{y}} \int_{\mathbf{U} \backslash \mathrm{SL}_{2}(E)} \int_{\mathcal{B}} \int_{F} \mathcal{W}^{\alpha}(\mathbf{d}(\nu) \dddot{\mathbf{g}}) \Omega_{D, \psi}^{3}(\iota(\dddot{\mathbf{g}})) \Phi\left(\xi y \sigma(\xi)^{\iota}\right) \\
& \times|\nu \boldsymbol{\nu}(\xi)|^{2} \tau_{\beta, \phi}^{\alpha}(\mathbf{n}(z / 3) \mathbf{d}(\nu) \dddot{\mathbf{g}}) \mathrm{d} z \frac{\mathrm{~d}^{\times} \nu}{\zeta_{F}(1)} \mathrm{d} \dddot{\mathbf{g}}_{\mathrm{d}_{y} \xi}
\end{aligned}
$$

is absolutely convergent. We have only to show that the integral

$$
\begin{aligned}
& \sum_{j=0}^{\infty} q^{2 j} \int_{C} \int_{E^{\times}} \int_{\mathrm{SL}_{2}\left(\mathfrak{o}_{E}\right)} \int_{F^{\times}} \mathcal{W}^{\alpha}(\mathbf{d}(\nu) \mathbf{m}(\mathbf{a}) \mathbf{k}) \Omega_{D, \psi}^{3}(\iota(\mathbf{m}(\mathbf{a}) \mathbf{k})) \Phi\left(c x_{j} y \sigma(c)^{\iota}\right) \\
& \times|\nu|^{2} \beta\left(\mathbf{a}^{2} \nu^{-1}\right)|\mathbf{a}|^{-2} \mathrm{~d}^{\times} \nu \mathrm{d} \mathbf{k}^{\times} \mathbf{a d} c
\end{aligned}
$$

is absolutely convergent in view of the relative Cartan decomposition (3.2).
Since the integral

$$
\int_{F^{\times}} \int_{E^{\times}} \int_{F^{\times}} \frac{\left|\nu^{-1} \mathbf{a}^{2}\right|^{(1-\epsilon) / 2} \Phi_{0}\left(t \mathbf{a}, t^{-1} \mathbf{a}\right) \varphi(t)}{\left|\nu^{-1} a_{1}^{2}\right|^{\lambda\left(\pi_{1}\right)}\left|\nu^{-1} a_{2}^{2}\right|^{\lambda\left(\pi_{2}\right)}\left|\nu^{-1} a_{3}^{2}\right| \lambda\left(\pi_{3}\right)}|\nu|^{2} \beta\left(\mathbf{a}^{2} \nu^{-1}\right) \mathrm{d}^{\times} \nu \mathrm{d}^{\times} \mathbf{a} \frac{\mathrm{d}^{\times} t}{|t|^{2}}
$$

is convergent for $\Phi_{0} \in \mathcal{S}\left(E^{2}\right)$ and $\varphi \in \mathcal{S}(F)$, the proof is complete.
For each $n \in \mathbb{N}$ we define $\phi_{n} \in C_{c}^{\infty}(F)$ by

$$
\phi_{n}(z)=|\varpi|^{-n} \phi\left(\varpi^{-n} z\right) .
$$

Then

$$
\widehat{\left(\phi_{n}\right)_{\alpha}}(b)=\hat{\phi}_{\alpha}\left(\varpi^{n} b\right) .
$$

The functions ϕ_{n} satisfy the condition on ϕ.
Take $y \in \mathcal{Y}_{D}$ with $(y, y)_{D}=\alpha$. Lemma 4.10(1) gives

$$
Z_{\beta, \phi_{n}}^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)=\epsilon(D) I_{\beta, \phi_{n}}^{\alpha, y} .
$$

A function τ_{β} on $Z_{3} \mathbf{U} \backslash \mathbf{G}^{\star}$ is defined by

$$
\tau_{\beta}\left(\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) k\right)=\beta\left(a d^{-1}\right)
$$

for $b \in E, a, d \in E^{\times}$and $k \in \mathrm{GL}_{2}\left(\mathfrak{o}_{E}\right) \cap \mathbf{G}^{\star}$. We consider a truncated partial zeta integral defined by

$$
Z_{\beta}^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)=\int_{Z_{3} U^{0} \backslash \mathbf{G}^{\star}} \mathcal{W}^{\alpha}(\mathbf{g}) f_{\Phi}(\eta \iota(\mathbf{g})) \tau_{\beta}(\mathbf{g}) \mathrm{d} \mathbf{g}
$$

Since $\lim _{n \rightarrow \infty} \tau_{\beta, \phi_{n}}^{\alpha}(\mathbf{g})=\tau_{\beta}(\mathbf{g})$ for $\mathbf{g} \in \mathbf{G}^{\star}$, we have

$$
\lim _{n \rightarrow \infty} Z_{\beta, \phi_{n}}^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)=Z_{\beta}^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)
$$

by the dominated convergence theorem. Put

$$
\mathcal{W}_{\beta}^{\alpha}(\mathbf{g})=\mathcal{W}^{\alpha}(\mathbf{g}) \tau_{\beta}(\mathbf{g}), \quad \phi_{\beta, \mathbf{g}}^{\alpha}(\nu)=\mathcal{W}_{\beta}^{\alpha}(\mathbf{d}(\nu) \mathbf{g})|\nu|
$$

By the proof of Lemma 5.5 of [Ich08]

$$
\mathcal{W}_{\beta, \phi_{n}}^{\alpha}(\mathbf{g})=\int_{F} \phi_{\beta, \mathbf{g}}^{\alpha}(1-z) \phi_{n}(z) \mathrm{d}_{\alpha} z
$$

for $\mathbf{g} \in \mathbf{G}^{\star}$. Since $\widehat{\left(\phi_{n}\right)_{\alpha}}(0)=\hat{\phi}_{\alpha}(0)=1$, we arrive at

$$
\lim _{n \rightarrow \infty} \mathcal{W}_{\beta, \phi_{n}}^{\alpha}(\mathbf{g})=\phi_{\beta, \mathbf{g}}^{\alpha}(1)=\mathcal{W}_{\beta}^{\alpha}(\mathbf{g}) .
$$

As in the proof of Lemma 5.6 of Ich08 one can interchange the integrals with the limit as $n \rightarrow \infty$ in Lemma 4.10(2), so that

$$
\lim _{n \rightarrow \infty} I_{\beta, \phi_{n}}^{\alpha, y}=|\alpha| \int_{\mathrm{GL}_{2}(K) / K^{\times} D_{y}^{\times}} \int_{\mathbf{U} \backslash \mathrm{SL}_{2}(E)} H_{\psi^{\alpha}}^{D_{y}}\left(\xi, \dddot{\mathbf{g}} ; \Phi_{y}\right) \mathcal{W}_{\beta}^{\alpha}\left(\mathbf{d}\left(\boldsymbol{\nu}(\xi)^{-1}\right) \dddot{\mathbf{g}}\right) \mathrm{d} \dddot{\mathbf{g}}_{\mathrm{d}_{y}} \xi
$$

For each $m \in \mathbb{N}$ we choose $\beta_{m} \in C_{c}^{\infty}\left(E^{\times}\right)$, which satisfies the condition on ξ, so that $0 \leq \beta_{m}(\mathbf{a}) \leq 1$ and $\lim _{m \rightarrow \infty} \beta_{m}(\mathbf{a})=1$ for $\mathbf{a} \in \mathcal{B}_{E}$. Then $0 \leq \tau_{\beta_{m}}(g) \leq 1$ and $\lim _{m \rightarrow \infty} \tau_{\beta_{m}}(g)=1$ for $g \in \mathbf{G}^{\star}$. Since $Z^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right)$ is absolutely convergent, we can use the dominated convergence theorem to interchange the integrals with the limit as $m \rightarrow \infty$ to obtain

$$
\begin{aligned}
Z^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right) & =\lim _{m \rightarrow \infty} Z_{\beta_{m}}^{\star}\left(\mathcal{W}^{\alpha}, \Phi\right) \\
& =\epsilon(D) \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} I_{\beta_{m}, \phi_{n}}^{\alpha, y}=\epsilon(D)|\alpha| L\left(2, \epsilon_{K}\right)^{-1} \mathscr{I}_{D}^{\epsilon}(\mathcal{W}, \Phi)
\end{aligned}
$$

(cf. Remark 3.1).

5. The basic identity

5.1. Measures. We first choose Haar measures on various groups as follows. Once and for all we fix a non-trivial additive character $\psi=\prod_{v} \psi_{v}$ of \mathbb{A} / F. For each place v of F we take Haar measures $\mathrm{d}^{\times} z_{v}=\zeta_{F_{v}}(1) \frac{\mathrm{d} z_{v}}{\left|z_{v}\right|}$ of F_{v}^{\times}and $\mathrm{d}^{\times} k_{v}=\zeta_{K_{v}}(1) \frac{\mathrm{d} k_{v}}{\alpha_{K_{v}}\left(k_{v}\right)}$, where $\mathrm{d} z_{v}$ and $\mathrm{d} k_{v}$ are the self-dual measures on F_{v} and K_{v} with respect to ψ_{v} and $\psi_{v} \circ \mathrm{~T}_{K_{v} / F_{v}}$, and $\boldsymbol{\alpha}_{K_{v}}\left(k_{v}\right)=\left|k_{v}\right|_{K_{v}}$ denotes the normalized absolute value. We define the Tamagawa measure of \mathbb{A}^{\times} by $\mathrm{d}^{\times} z=c_{F}^{-1} \prod_{v} \mathrm{~d}^{\times} z_{v}$, where c_{F} denotes the residue of the complete zeta function $\zeta_{F}(s)=\prod_{v} \zeta_{F_{v}}(s)$ at $s=1$. Let Ξ^{\prime} be a gauge form on D_{K}^{\times}defined
over F. Let $\mathrm{d} \Xi_{v}^{\prime}$ be the measure on $D_{K_{v}}^{\times}$associated to Ξ^{\prime}. On $D_{K}^{\times}(\mathbb{A})$ we take the Tamagawa measure

$$
\mathrm{d} \Xi^{\prime}=c_{K}^{-1} \zeta_{K}(2)^{-1} D_{F}^{-4} \prod_{v} \zeta_{K_{v}}(1) \zeta_{K_{v}}(2) \mathrm{d} \Xi_{v}^{\prime}
$$

Let $\mathrm{d} \Xi$ be the quotient measure of $\mathrm{d} \Xi^{\prime}$ by $\mathrm{d}^{\times} k$.
Let $\mathrm{d}^{\times} x=\frac{\mathrm{d} x}{(x, x)_{D}^{2}}$ be a D_{K}^{\times}-invariant gauge form on \mathcal{Y}_{D}, where $\mathrm{d} x$ is the differential form $\mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4}$ on V_{D} for a system of coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ of V_{D} over F. Recall the map $\wp=\wp_{1}: D_{K}^{\times} \rightarrow \mathcal{Y}_{D}$ defined by $\wp(\xi)=\xi \sigma(\xi)^{\iota}$ for $\xi \in D_{K}^{\times}$, and the subgroup $\mathcal{U}=\mathcal{U}_{1}=\left\{\xi \in D_{K}^{\times} \mid \wp(\xi)=1\right\}$. Let $\mu=\Xi^{\prime} / \wp^{*} \mathrm{~d}^{\times} x$ be the gauge form on \mathcal{U} determined by Ξ^{\prime} and $\wp^{*} \mathrm{~d}^{\times} x$ (see p. 12 of [Wei65]). We define the Tamagawa measure on $\mathcal{U}(\mathbb{A})$ by

$$
\mathrm{d} \mu=\zeta_{F}(2)^{-1} D_{F}^{-2} \prod_{v} \zeta_{F_{v}}(2) \mathrm{d} \mu_{v}
$$

Let $\mathrm{d}^{\prime \prime}, \mathrm{d} \mathbf{g}^{\prime}$ and $\mathrm{d} h$ be the Tamagawa measures on $Z_{3}(\mathbb{A}) \backslash \mathbf{G}(\mathbb{A}), \mathrm{SL}_{2}(\mathbb{E})$ and $\mathrm{O}\left(V_{D}, \mathbb{A}\right)$, respectively.
5.2. Siegel Eisenstein series. Fix a maximal compact subgroup \mathcal{K} of $\operatorname{GSp}_{6}(\mathbb{A})$. Let $I_{3}\left(s, \epsilon_{K}\right)=\otimes_{v} I_{3}\left(s, \epsilon_{K_{v}}\right)$ consist of all right \mathcal{K}-finite functions $f^{(s)}: \operatorname{GSp}_{6}(\mathbb{A}) \rightarrow \mathbb{C}$ such that

$$
f^{(s)}(\mathbf{d}(t) \mathbf{n}(z) \mathbf{m}(a) g)=\epsilon_{K}(\operatorname{det} a)\left|t^{-3}(\operatorname{det} a)^{2}\right|^{s+1} f^{(s)}(g)
$$

for $t \in \mathbb{A}^{\times}, z \in \operatorname{Sym}_{3}(\mathbb{A}), a \in \operatorname{GL}_{3}(\mathbb{A})$ and $g \in \operatorname{GSp}_{6}(\mathbb{A})$. The Eisenstein series associated to $f^{(s)} \in I_{3}\left(s, \epsilon_{K}\right)$ is defined by

$$
E\left(g ; f^{(s)}\right)=\sum_{\gamma \in P_{3}(F) \backslash \operatorname{GSp}_{6}(F)} f^{(s)}(\gamma g)
$$

for $\Re s>2$. The series has meromorphic continuation to the whole s-plane and has no poles on the unitary axis $\Re s=0$.

Define the character $\delta_{P_{3}}$ of $P_{3}(\mathbb{A})$ by $\delta_{P_{3}}(\mathbf{d}(t) \mathbf{n}(z) \mathbf{m}(a))=|t|^{-3}|\operatorname{det} a|^{2}$. We extend $\delta_{P_{3}}$ to the right \mathcal{K}-invariant function on $\mathrm{GSp}_{6}(\mathbb{A})$ by the Iwasawa decomposition. Let $\Phi=\otimes_{v} \Phi_{v} \in \mathcal{S}\left(V_{D}^{3}(\mathbb{A})\right)$. Set $f_{\Phi}(g)=\prod_{v} f_{\Phi_{v}}\left(g_{v}\right)$ for $g=\left(g_{v}\right) \in \operatorname{GSp}_{6}(\mathbb{A})^{\star}$. Recall that f_{Φ} is extended to a section $f_{\Phi}^{(s)}$ of $I_{3}\left(s, \epsilon_{K}\right)$ by $f_{\Phi}^{(s)}(g)=\delta_{P_{3}}(g)^{s} f_{\Phi}^{(0)}(g)$ for $g \in \operatorname{GSp}_{6}(\mathbb{A})$.

We associated to Φ the series defined for $\Re s>2$ and $g \in \mathrm{GSp}_{6}(\mathbb{A})^{\star}$ by

$$
\mathcal{E}(s, g ; \Phi)=\sum_{\gamma \in P_{3}(F)^{\star} \backslash \operatorname{GSp}_{6}(F)^{\star}} \delta_{P_{3}}(\gamma g)^{s} f_{\Phi}(\gamma g) .
$$

We extend $\mathcal{E}(s, g ; \Phi)$ to a left $\operatorname{GSp}_{6}(F)$-invariant function on

$$
\mathcal{G}_{K}=\operatorname{GSp}_{6}(F) \operatorname{GSp}_{6}(\mathbb{A})^{\star}=\left\{g \in \operatorname{GSp}_{6}(\mathbb{A}) \mid \nu_{3}(g) \in F^{\times} \mathbb{B}\right\} .
$$

The subgroup \mathbb{B} of \mathbb{A}^{\times}is defined in Definition 2.7. The set \mathcal{G}_{K} is a subgroup of $\operatorname{GSp}_{6}(\mathbb{A})$ of index 2 as $F^{\times} \mathbb{B}=F^{\times} \mathrm{N}_{K / F}\left(\mathbb{K}^{\times}\right)$. The series $\mathcal{E}(s, g ; \Phi)$ is related to $E\left(g ; f_{\Phi}^{(s)}\right)$ in the following way:

Proposition 5.1. (1) If $g \in \mathcal{G}_{K}$, then $E\left(g ; f_{\Phi}^{(s)}\right)=\mathcal{E}(s, g ; \Phi)$.
(2) If $g \notin \mathcal{G}_{K}$, then $\lim _{s \rightarrow 0} E\left(g ; f_{\Phi}^{(s)}\right)=0$.

Proof. The first statement is clear from $\operatorname{GSp}_{6}(F)=P_{3}(F) \operatorname{GSp}_{6}(F)^{\star}$. Suppose that $\Phi=\otimes_{v} \Phi_{v}$ is factorizable. Take an idèle $a \notin F^{\times} \mathbb{B}$. Note that

$$
f_{\Phi}^{(0)}(g \mathbf{d}(a))=|a|^{-3} \Omega_{D, \psi}^{3}\left(\mathbf{d}(a)^{-1} g \mathbf{d}(a)\right) \Phi(0)
$$

for $g \in \operatorname{Sp}_{6}(\mathbb{A})$. Then

$$
\Omega_{D_{v}, \psi_{v}}^{3}\left(\mathbf{d}\left(a_{v}\right)^{-1} g_{v} \mathbf{d}\left(a_{v}\right)\right)=\Omega_{D_{v}, \psi_{v}^{a v}}^{3}\left(g_{v}\right)
$$

is the local Weil representation associated to the dual pair $\mathrm{Sp}_{6}\left(F_{v}\right) \times \mathrm{O}\left(V_{D_{v}}^{a_{v}}\right)$. By Remark 2.4 there exists no global quadratic space with $V_{D_{v}}^{a_{v}}$ as its completions. In other words, the series $E\left(g \mathbf{d}(a) ; f_{\Phi}^{(s)}\right)$ is incoherent and vanishes at $s=0$ by Theorem 3.1(ii) of KR94.
5.3. The Siegel-Weil formula. When D_{K} is not split, the theta integral is defined, for $g \in \operatorname{GSp}_{6}(\mathbb{A})^{\star}$ and $\Phi \in \mathcal{S}\left(V_{D}^{3}(\mathbb{A})\right)$, by

$$
\theta(g ; \Phi)=\int_{\mathrm{O}\left(V_{D}, F\right) \backslash \mathrm{O}\left(V_{D}, \mathbb{A}\right)} \Theta\left(h h^{\prime}, g ; \Phi\right) \mathrm{d} h
$$

where $h^{\prime} \in \operatorname{GO}\left(V_{D}, \mathbb{A}\right)$ with $\boldsymbol{\nu}\left(h^{\prime}\right)=\nu_{3}(g)$. It does not depend on the choice of h^{\prime}. Here the Haar measure $\mathrm{d} h$ gives $\mathrm{O}\left(V_{D}, F\right) \backslash \mathrm{O}\left(V_{D}, \mathbb{A}\right)$ volume 1. In the case $D_{K} \simeq \mathrm{M}_{2}(K)$ the theta integral can be defined by regularization (see [KR94]). The group $\mathcal{B}=\mathbb{B} \cap F^{\times}$consists of idèles $\boldsymbol{\nu}(h)$ with $h \in \mathrm{GO}\left(V_{D}, F\right)$ by Eichler's norm theorem. It follows from Remark 2.6 that

$$
\theta(z \gamma g ; \Phi)=\epsilon_{K}(z) \theta(g ; \Phi)
$$

for $z \in Z_{3}(\mathbb{A}), \gamma \in \operatorname{GSp}_{6}(F)^{\star}$ and $g \in \operatorname{GSp}_{6}(\mathbb{A})^{\star}$.
The Siegel-Weil formula is now stated as follows:

$$
\mathcal{E}(0, g ; \Phi)=2 \theta(g ; \Phi)
$$

The reader who has interested in this formula can consult HK91, Theorem 4.1] or [KR94, Theorem 6.12].
5.4. The seesaw identity. Put $\mathbb{E}=\mathbb{A} \times \mathbb{A} \times \mathbb{A}$. Let Π be an irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{E})$ whose central character has the restriction ϵ_{K} to \mathbb{A}^{\times}. For a cusp form $\mathcal{F}=f_{1} \otimes f_{2} \otimes f_{3} \in \Pi$ and $\Phi=\varphi_{1} \otimes \varphi_{2} \otimes \varphi_{3} \in \mathcal{S}\left(V_{D}^{3}(\mathbb{A})\right)$ the global zeta integral is defined by

$$
Z\left(\mathcal{F}, f^{(s)}\right)=\int_{Z_{3}(\mathbb{A}) \mathbf{G}(F) \backslash \mathbf{G}(\mathbb{A})} \mathcal{F}\left(\mathbf{g}^{\prime \prime}\right) E\left(\iota\left(\mathbf{g}^{\prime \prime}\right) ; f^{(s)}\right) \mathrm{d} \mathbf{g}^{\prime \prime}
$$

where $d \mathbf{g}^{\prime \prime}$ is the Tamagawa measure of $Z_{3}(\mathbb{A}) \backslash \mathbf{G}(\mathbb{A})$.
We consider the period integral I, which is an element of

$$
\operatorname{Hom}_{D_{K}^{\times}(\mathbb{A})}\left(\pi_{1, K}^{D} \otimes \pi_{2, K}^{D} \otimes \pi_{3, K}^{D}, \mathbb{C}\right)
$$

defined by

$$
I\left(\phi_{1} \otimes \phi_{2} \otimes \phi_{3}\right)=\int_{\mathbb{K} \times D_{K}^{\times}(F) \backslash D_{K}^{\times}(\mathbb{A})} \phi_{1}(\xi) \phi_{2}(\xi) \phi_{3}(\xi) \mathrm{d} \xi,
$$

where $\mathrm{d} \xi$ is the Tamagawa measure on $\mathbb{K}^{\times} \backslash D_{K}^{\times}(\mathbb{A})$. Put

$$
\begin{aligned}
& \mathbf{H}=\left\{\left(h_{1}, h_{2}, h_{3}\right) \in \operatorname{GO}\left(V_{D}\right)^{3} \mid \boldsymbol{\nu}\left(h_{1}\right)=\boldsymbol{\nu}\left(h_{2}\right)=\boldsymbol{\nu}\left(h_{3}\right)\right\}, \\
& \mathbf{G}(\mathbb{A})^{\star}=\mathbf{G}(\mathbb{A}) \cap \operatorname{GSp}_{6}(\mathbb{A})^{\star} .
\end{aligned}
$$

Let $\mathcal{F}=f_{1} \otimes f_{2} \otimes f_{3} \in \Pi$ and $\Phi=\varphi_{1} \otimes \varphi_{2} \otimes \varphi_{3} \in \mathcal{S}\left(V_{D}^{3}(\mathbb{A})\right)$. We write

$$
\theta(h ; \mathcal{F}, \Phi)=\prod_{i=1}^{3} \theta\left(h_{i} ; f_{i}, \varphi_{i}\right)=\int_{\mathrm{SL}_{2}(E) \backslash \mathrm{SL}_{2}(\mathbb{E})} \mathcal{F}\left(\mathbf{g}^{\prime}\right) \Theta\left(h ; \iota\left(\mathbf{g}^{\prime} \mathbf{g}_{h}\right), \Phi\right) \mathrm{d}^{\prime}
$$

for $h=\left(h_{1}, h_{2}, h_{3}\right) \in \mathbf{H}(\mathbb{A})$, where $\mathbf{g}_{h} \in \mathbf{G}(\mathbb{A})$ with $\operatorname{det}\left(\mathbf{g}_{h}\right)=\boldsymbol{\nu}(h)$ and dg' denotes the Tamagawa measure of $\mathrm{SL}_{2}(\mathbb{E})$.

Proposition 5.2 (The seesaw identity).

$$
\lim _{s \rightarrow 0} Z\left(\mathcal{F}, f_{\Phi}^{(s)}\right)=I(\theta(\mathcal{F}, \Phi)) .
$$

Proof. Let $\mathbf{G}_{K}=\mathbf{G}(F) \mathbf{G}(\mathbb{A})^{\star}=\mathbf{G}(\mathbb{A}) \cap \mathcal{G}_{K}$ be a subgroup of $\mathbf{G}(\mathbb{A})$ of index 2. Since the function $\mathbf{g} \mapsto E\left(\iota(\mathbf{g}) ; f^{(s)}\right)$ is the extension of $\mathcal{E}(0, \iota(\mathbf{g}) ; \Phi)$ by zero from \mathbf{G}_{K} to $\mathbf{G}(\mathbb{A})$ by Proposition 5.1.

$$
\lim _{s \rightarrow 0} Z\left(\mathcal{F}, f_{\Phi}^{(s)}\right)=\int_{Z_{3}(\mathbb{A}) \mathbf{G}(F) \backslash \mathbf{G}_{K}} \mathcal{F}\left(\mathbf{g}^{\prime \prime}\right) \mathcal{E}\left(0, \iota\left(\mathbf{g}^{\prime \prime}\right) ; \Phi\right) \mathrm{d} \mathbf{g}^{\prime \prime}
$$

The Siegel-Weil formula gives

$$
\lim _{s \rightarrow 0} Z\left(\mathcal{F}, f_{\Phi}^{(s)}\right)=2 \int_{Z_{3}(\mathbb{A}) \mathbf{G}(F)^{\star} \backslash \mathbf{G}(\mathbb{A})^{\star}} \mathcal{F}\left(\mathbf{g}^{\prime \prime}\right) \theta\left(\iota\left(\mathbf{g}^{\prime \prime}\right) ; \Phi\right) \mathrm{d}^{\prime \prime}
$$

where $\mathbf{G}(F)^{\star}=\mathbf{G}(F) \cap \mathbf{G}(\mathbb{A})^{\star}$. Since $Z_{3} \backslash \mathbf{G} \simeq \mathrm{PGL}_{2} \ltimes\left(\mathrm{SL}_{2} \times \mathrm{SL}_{2}\right)$, the Tamagawa measure $\mathrm{dg}^{\prime \prime}$ gives the domain $Z_{3}(\mathbb{A}) \mathbf{G}(F)^{\star} \backslash \mathbf{G}(\mathbb{A})^{\star}$ volume 1.

Now we apply the seesaw pair:

Set $C:=\mathcal{B}_{\mathbb{A}}{ }^{\times 2} \backslash \mathbb{B}$. Note that

$$
Z_{3}(\mathbb{A}) \mathbf{G}(F)^{\star} \mathrm{SL}_{2}(\mathbb{E}) \backslash \mathbf{G}(\mathbb{A})^{\star} \simeq Z_{D}(\mathbb{A}) \mathrm{GO}\left(V_{D}, F\right) \mathrm{O}\left(V_{D}, \mathbb{A}\right) \backslash \mathrm{GO}\left(V_{D}, \mathbb{A}\right) \simeq C
$$

is compact. Fix a Haar measure $\mathrm{d} c$ giving C volume 1. We have

$$
\begin{aligned}
& \int_{Z_{3}(\mathbb{A}) \mathbf{G}(F)^{\star} \backslash \mathbf{G}(\mathbb{A})^{\star}} \mathcal{F}\left(\mathbf{g}^{\prime \prime}\right) \theta\left(\iota\left(\mathbf{g}^{\prime \prime}\right) ; \Phi\right) \mathrm{d}^{\prime \prime} \\
= & \int_{C} \int_{\mathrm{SL}_{2}(E) \backslash \mathrm{SL}_{2}(\mathbb{E})} \mathcal{F}\left(\mathbf{g}^{\prime} \mathbf{g}_{c}\right) \int_{\mathrm{O}\left(V_{D}, F\right) \backslash \mathrm{O}\left(V_{D}, \mathbb{A}\right)} \Theta\left(h h_{c}, \iota\left(\mathbf{g}^{\prime} \mathbf{g}_{c}\right) ; \Phi\right) \mathrm{d} h \mathrm{~d}^{\prime} \mathrm{d} c
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{C} \int_{\mathrm{O}\left(V_{D}, F\right) \backslash \mathrm{O}\left(V_{D}, \mathbb{A}\right)} \theta\left(h h_{c} ; \mathcal{F}, \Phi\right) \mathrm{d} h \mathrm{~d} c \\
& =\int_{Z_{D}(\mathbb{A}) \mathrm{GO}\left(V_{D}, F\right) \backslash \operatorname{GO}\left(V_{D}, \mathbb{A}\right)} \theta(h ; \mathcal{F}, \Phi) \mathrm{d} h
\end{aligned}
$$

This integral factorizes into the product of local invariant trilinear forms constructed in Section 3 by Prasad's uniqueness theorem. Put

$$
\tilde{H}=\left(\mathbb{G}_{m} \times D_{K}^{\times}\right) \rtimes\langle\mathbf{t}\rangle, \quad \tilde{H}^{0}=\mathbb{G}_{m} \times D_{K}^{\times}, \quad Z_{\tilde{H}^{0}}=\mathbb{G}_{m} \times \mathrm{R}_{K / F} \mathbb{G}_{m}
$$

Recall the homomorphism $\rho: \tilde{H} \rightarrow \operatorname{GO}\left(V_{D}\right)$ defined in 2.1. Since $\mathrm{d} h$ gives

$$
Z_{D}(\mathbb{A}) \mathrm{GO}\left(V_{D}, F\right) \backslash \mathrm{GO}\left(V_{D}, \mathbb{A}\right)
$$

volume 1, we have

$$
\begin{aligned}
& 2 \int_{Z_{\tilde{H}^{0}}(\mathbb{A}) \tilde{H}(F) \backslash \tilde{H}(\mathbb{A})} \theta(\rho(h) ; \mathcal{F}, \Phi) \mathrm{d} h \\
= & 2 \int_{Z_{\tilde{H}^{0}}(\mathbb{A}) \tilde{H}^{0}(F) \backslash \tilde{H}^{0}(\mathbb{A})} \theta(\rho(h) ; \mathcal{F}, \Phi) \mathrm{d} h \\
= & \int_{\mathbb{K}^{\times} D_{K}^{\times}(F) \backslash D_{K}^{\times}(\mathbb{A})} \theta(\xi ; \mathcal{F}, \Phi) \mathrm{d} \xi .
\end{aligned}
$$

If v is inert, then $D_{K_{v}}^{\times}$-invariant trilinear forms are invariant under the action of \mathbf{t} by Lemma 3.7. The analogous invariance holds for split places. Therefore the integral over $Z_{\tilde{H}^{0}}(\mathbb{A}) \tilde{H}(F) \backslash \tilde{H}(\mathbb{A})$ can be replaced by the integral over $Z_{\tilde{H}^{0}}(\mathbb{A}) \tilde{H}^{0}(F) \backslash \tilde{H}^{0}(\mathbb{A})$ in the second line.
5.5. The proof of Theorem $\mathbf{1 . 3}$. We hereafter require the base change Π_{K} to be cuspidal. We write $L\left(s, \Pi_{v}\right)$ for the triple product L-factor of Π_{v}. The epsilon factor is defined by the relation

$$
\varepsilon\left(s, \Pi_{v}, \psi_{v}\right)=\gamma\left(s, \Pi_{v}, \psi_{v}\right) \frac{L\left(s, \Pi_{v}\right)}{L\left(1-s, \Pi_{v}^{\vee}\right)}
$$

Clearly, $\varepsilon\left(\Pi_{v}\right)=\gamma\left(\Pi_{v}\right)$ if Π_{v} is self-dual.
For a quaternion algebra D over F we consider the following condition:

$$
\epsilon\left(D_{v}\right) \neq-\epsilon_{K}(-1) \gamma\left(\Pi_{v}\right) \text { for all } v
$$

Proposition 5.3. (1) If D satisfies ($\#$), then it satisfies (JL) and (Per).
(2) If there exists a place v such that $\gamma\left(\Pi_{v}\right)^{2} \neq 1$, then there is a quaternion algebra which satisfies (\sharp).

Proof. Since $D_{K_{v}} \simeq \mathrm{M}_{2}\left(K_{v}\right)$ unless $K_{v} \simeq F_{v} \times F_{v}$, the Jacquet-Langlands lift π_{K}^{D} exists if and only if the local Jacquet-Langlands lift π_{v}^{D} of π_{v} to D_{v}^{\times} exists for all the split places v.

Assume that D satisfies (\sharp). Then the functional $\mathscr{I}_{D_{v}}^{+}$is non-vanishing for all v by Theorem 1.1. A fortiori, $\pi_{v}^{D_{v}}$ exists and $B_{1, v}, B_{2, v}, B_{3, v}$ are nonvanishing. Thus π_{K}^{D} exists. For B_{i} to be non-vanishing there is no global obstruction in view of Propositions 2.10 and $2.11,2$. Hence (\sharp) implies (Per).

If the cardinality of the residue field of $\mathfrak{o}_{F_{v}}$ is sufficiently large, then $L\left(\frac{1}{2}, \Pi_{v}\right) \neq-L\left(\frac{1}{2}, \Pi_{v}^{\vee}\right)$ in view of Remark $3.4(2)$. It follows that $\gamma\left(\Pi_{v}\right) \neq-1$ for all but finitely many places of F. One can now trivially prove (2) by the Minkowski-Hasse theorem.

We are now ready to prove the central value formula. From now on we assume that D satisfies (\sharp). We denote the Jacquet-Langlands lift of Π_{K} to $\left(D_{K} \otimes \mathbb{E}\right)^{\times}$by Π_{K}^{D}. Take $\varphi=\phi_{1} \otimes \phi_{2} \otimes \phi_{3}=\otimes_{v} \varphi_{v} \in \Pi_{K}^{D}$ so that

$$
\mathscr{B}(\varphi):=B_{1}\left(\phi_{1}\right) B_{2}\left(\phi_{2}\right) B_{3}\left(\phi_{3}\right) \neq 0 .
$$

Recall the functionals $B_{i, v}^{\natural}$ and I_{v}^{\natural} defined in $\S 4.4$. By by Remark 3.42 and Lemma 3.5 I_{v}^{\natural} makes sense. Set $\mathscr{B}_{v}^{\natural}=B_{1, v}^{\natural} \otimes B_{2, v}^{\natural} \otimes B_{3, v}^{\natural}$. The formula stated in Theorem 1.3 is equivalent to the following formula:

$$
\frac{I(\varphi)}{\mathscr{B}(\varphi)}=2^{-3} \cdot \frac{\zeta_{F}(2)^{2} L\left(\frac{1}{2}, \Pi\right)}{L\left(1, \operatorname{Ad}(\Pi) \otimes \epsilon_{K}\right)} \cdot \prod_{v} \frac{I_{v}^{\sharp}\left(\varphi_{v}\right)}{\mathscr{B}_{v}^{\natural}\left(\varphi_{v}\right)}
$$

If \mathcal{F} has the factorizable Whittaker function $\mathcal{W}=\otimes_{v} \mathcal{W}_{v}$ with respect to $\bar{\psi}$ and if $\Phi=\otimes_{v} \Phi_{v}$ is factorizable, then

$$
Z\left(\mathcal{F}, f_{\Phi}^{(s)}\right)=\prod_{v} Z\left(\mathcal{W}_{v}, f_{\Phi_{v}}^{(s)}\right)=\frac{L^{S}\left(s+\frac{1}{2}, \Pi\right)}{L^{S}\left(2 s+2, \epsilon_{K}\right) \zeta_{F}^{S}(4 s+2)} \prod_{v \in S} Z\left(\mathcal{W}_{v}, f_{\Phi_{v}}^{(s)}\right)
$$

where $S=S_{f_{1}, \varphi_{1}} \cup S_{f_{2}, \varphi_{2}} \cup S_{f_{3}, \varphi_{3}}$. Take $\mathcal{F} \in \Pi$ and $\Phi=\otimes_{v} \Phi_{v} \in \mathcal{S}\left(V_{D}^{3}(\mathbb{A})\right)$ so that $\theta(\mathcal{F}, \Phi)=\varphi$. Let $\mathcal{W}=\prod_{v} \mathcal{W}_{v}$ be the Whittaker function of \mathcal{F} with respect to $\bar{\psi}$. The formula (4.6) remains true at split places of F (cf. p. 296 of [Ich08]). Hence Proposition 5.2 gives

$$
\begin{aligned}
I(\theta(\mathcal{F}, \Phi)) & =\frac{L^{S}\left(\frac{1}{2}, \Pi\right)}{L^{S}\left(2, \epsilon_{K}\right) \zeta_{F}^{S}(2)} \prod_{v \in S} Z\left(\mathcal{W}_{v}, f_{\Phi_{v}}^{(0)}\right) \\
& =\zeta_{F}(2)^{-1} L\left(\frac{1}{2}, \Pi\right) \prod_{v \in S} I_{v}^{\natural}\left(\theta\left(\mathcal{W}_{v}, \Phi_{v}\right)\right)
\end{aligned}
$$

Since

$$
\mathscr{B}(\varphi)=\frac{2^{3}}{\zeta_{F}(2)^{3}} \cdot L\left(1, \operatorname{Ad}(\Pi) \otimes \epsilon_{K}\right) \cdot \prod_{v} \mathscr{B}_{v}^{\natural}\left(\varphi_{v}\right)
$$

by Proposition 2.11, we have thus completed our proof.

Acknowledgements

We would like to thank Shih-Yu Chen for most helpful comments, Hengfei Lu for a useful comment and the referee for a very careful reading, which helped improve the exposition of the earlier version.

References

[CCI20] Shih.-Yu. Chen, Yao Cheng, and Isao Ishikawa, Gamma factors for the Asai representation of GL_{2}, J. Number Theory 209 (2020), 83-146.
[FZ95] Y. Z. Flicker and D. Zinoviev, On poles of twisted tensor L-functions, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 114-116.
[GI11] Wee Teck Gan and Atsushi Ichino, On endoscopy and the refined Gross-Prasad conjecture for $\left(\mathrm{SO}_{5}, \mathrm{SO}_{4}\right)$, J. Inst. Math. Jussieu 10 (2011), no. 2, 235-324.
[GQT14] Wee Teck Gan, Yannan Qiu, and Shuichiro Takeda, The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math. 198 (2014), no. 3, 739-831.
[HK91] Michael Harris and Stephen S. Kudla, The central critical value of a triple product L-function, Ann. of Math. (2) $\mathbf{1 3 3}$ (1991), no. 3, 605-672. MR 1109355
[Ich08] Atsushi Ichino, Trilinear forms and the central values of triple product L functions, Duke Math. J. 145 (2008), no. 2, 281-307.
[Ike92] Tamotsu Ikeda, On the location of poles of the triple L-functions, Compositio Math. 83 (1992), no. 2, 187-237.
[Ike17] , On the functional equation of the Siegel series, J. Number Theory 172 (2017), 44-62.
[KR92] Stephen S. Kudla and Stephen Rallis, Ramified degenerate principal series representations for $S p(n)$, Israel J. Math. 78 (1992), 209-256.
[KR94] , A regularized Siegel-Weil formula; the first term identity, Ann. of Math. (2) $\mathbf{1 4 0}$ (1994), no. 1, 1-80.
[KS02] H. H. Kim and F. Shahidi, Functorial products for $\mathrm{GL}_{2} \times \mathrm{GL}_{3}$ and the symmetric cube for GL_{2}, Ann. of Math. (2) $\mathbf{1 5 5}$ (2002), 837-893.
[KT10] Shin-ichi Kato and Kenji Takano, Square integrability of representations on p adic symmetric spaces, J. Funct. Anal. 258 (2010), 1427-1451.
[Lu17] Hengfei Lu, A new proof to the period problems of GL(2), J. Number Theory 180 (2017), 1-25.
[PR94] Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Boston, MA, 1994, Translated from the 1991 Russian original by Rachel Rowen, pp. xii +614.
[Pra90] Dipendra Prasad, Trilinear forms for representations of $\mathrm{GL}(2)$ and local ϵ factors, Compositio Math. 75 (1990), no. 1, 1-46.
[PSR87] I. Piatetski-Shapiro and Stephen Rallis, Rankin triple L functions, Compositio Math. 64 (1987), no. 1, 31-115. MR 911357
[Ram00] Dinakar Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of Math. (2) 152 (2000), no. 1, 45-111. MR 1792292
[Shi72] H. Shimizu, Theta series and automorphic forms on GL_{2}, J. Math. Soc. Japan 24 (1972), 638-683. MR 033081
[Shi04] Goro Shimura, Arithmetic and Analytic Theories of Quadratic Forms and Clifford Groups, english ed., Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004.
[Wal85] J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Math. 54 (1985), no. 2, 173-242.
[Wei65] André Weil, Sur la formule de siegel dans la théorie des groupes classiques, Acta Math. 113 (1965), 1-87.
[YZZ13] Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Zagier formula on Shimura curves, english ed., Annals of Mathematics Studies, vol. 184, Princeton University Press, Princeton, N.J., 2013.
[Zha14] Wei Zhang, Automorphic period and the central value of Rankin-Selberg Lfunction, J. Amer. Math. Soc. 27 (2014), no. 2, 541-612.

Institute of Mathematics, Academia Sinica and National Center for Theoretical Sciences, Taipei 10617, Taiwan

E-mail address: mlhsieh@math.sinica.edu.tw
Osaka City University, Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 JAPAN

E-mail address: yamana@sci.osaka-cu.ac.jp

[^0]: 2010 Mathematics Subject Classification. 11F67, 11F70, 11F27.
 Hsieh was partially supported by MOST grants 108-2628-M-001-009-MY4 and 110-2628-M-001-004 -. Yamana is partially supported by JSPS Grant-in-Aid for Scientific Research (C) 18 K 03210 and (B) 19 H 01778 . This work is partially supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

