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Abstract. We construct the anticyclotomic p-adic L-function that in-
terpolates a square root of central values of twisted spinor L-functions
of a quadratic base change of a Siegel cusp form of genus 2 with respect
to a paramodular group of square-free level.
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1. Introduction

The purpose of this article is to carry out the first step towards the ana-
lytic side of anticyclotomic Iwasawa theory for Siegel cusp forms by gener-
alizing the works [4, 8, 21] for elliptic cusp forms. Namely, we construct an-
ticyclotomic p-adic L-functions for scalar valued Siegel cusp forms of genus
two and weight greater than one with respect to paramodular groups of
square-free level and establish the explicit interpolation formulae.

1.1. Anticyclotomic Iwasawa main conjecture. Let π ' ⊗′vπv be a uni-
tary irreducible cuspidal automorphic representation of PGSp4(A) generated
by a scalar valued degree two Siegel cuspidal Hecke eigenform f of weight
κ ≥ 2 and paramodular level N , where A denotes the rational adèle ring. Let
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S be the set of ramified places of the representation π. Fix a prime number
p /∈ S and embeddings ι∞ : Q̄ ↪→ C and ιp : Q̄ ↪→ Cp. Let E/Qp be a finite
extension containing Hecke eigenvalues of f . Thanks to the work of many
people (Chai-Faltings, Laumon, Shimura, Taylor and Weissauer), there ex-
ists a geometric p-adic Galois representation ρf,p : Gal(Q̄/Q) → GSp4(E)
such that ρf,p is unramified outside S ∪ {p} and

det(14 − ι∞ι−1
p ρf,p(Frob`)`

−s)−1 = L

(
s− κ+

3

2
, Spn(π`)

)
for ` /∈ S ∪ {p} at least if κ > 2, where Frob` is the geometric Frobeninus
and the right-hand side is the spinor L-factor of π`. See [25] and [38] for
the complete result. Denote by εcyc the p-adic cyclotomic character. We are
interested in the central critical twist

ρ∗f,p := ρf,p ⊗ εκ−1
cyc : Gal(Q̄/Q)→ GSp4(E).

Let Vf = E4 be the representation space of ρ∗f,p. Then Vf is self-dual in

the sense that V ∨f (1) ' Vf . We further assume the Vf satisfies the follow-

ing Panchishkin condition: there exists a rank two Gal(Q̄p/Qp)-invariant
subspace Fil+p Vf of Vf such that Fil+p Vf has positive Hodge-Tate weights

(κ−1, 1) while the quotient Vf/Fil+p Vf has non-positive Hodge-Tate weights

(0, 2 − κ)1. Let oE be the ring of integers of E. We shall fix a Gal(Q̄/Q)-
stable oE-lattice Tf ⊂ Vf once and for all. Let Af = Vf/Tf and let Fil+p Af
be the image of Fil+p Vf in Af . For any algebraic extension L over Q, we
consider the (minimal) Selmer group defined by

Sel(Af/L) := ker

{
H1(L,Af )→

∏
v-p

H1(Lv, Af )×
∏
p|p

H1(Lp, Af/Fil+p Af )

}
.

Let K be an imaginary quadratic field of discriminant −∆K < 0 with
integer ring oK and adèle ring AK . Denote by Kab the maximal abelian
extension over K and by K∞ the composition of all the Zp-extensions of
K. Take the decomposition Gal(K∞/K) ' Γ+ ⊕ Γ− so that the non-trivial
element of Gal(K/Q) acts on Γ± ' Zp by ±1. Let K±∞ be the subfield of K∞
with Gal(K±∞/K) = Γ±. The Zp-extension K−∞/K is called anticyclotomic.
We consider Iwasawa theory for f over K−∞. On the algebraic side, one con-
siders the Pontryagin dual Sel(Af/K

−
∞)∨ of the Selmer group Sel(Af/K

−
∞),

which is known to be a finitely generated oEJΓ−K-module. On the analytic
side, one expects the existence of the p-adic L-function Lp(f/K

−
∞) ∈ oEJΓ−K

attached to f which interpolates the central values of L-functions associated
with ρf,p twisted by characters of Γ−, and then one could make the following
anticyclotomic Iwasawa main conjecture for Siegel cusp forms.

Conjecture 1.1. The characteristic ideal charoEJΓ−KSel(Af/K
−
∞)∨ is gen-

erated by Lp(f/K
−
∞).

1Here Qp(1) has Hodge-Tate weight 1 in our convention.
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The main result of this paper is the construction of Lp(f/K∞) when f is
a paramodular newform of square-free level. Actually, we will construct a
square root Θf of the anticyclotomic p-adic L-function.

1.2. Paramodular Siegel cusp forms. The paramodular group of level
N is defined by

K(N) = Sp4(Q) ∩


Z Z N−1Z Z
NZ Z Z Z
NZ NZ Z NZ
NZ Z Z Z

 .

This subgroup is a good analogue of the congruence subgroup Γ0(N) under-
lying the newform theory for GL2 (cf. [31]). Put

Symg = {z ∈ Mg | tz = z}, Hg = {Z ∈ Symg(C) | =Z > 0}.
Throughout this paper we require N to be square-free. Let π be an irre-
ducible cuspidal automorphic representation of PGSp4(A) generated by a
paramodular Siegel cuspidal Hecke eigenform

f(Z) =
∑
B

cB(f)e2π
√
−1tr(BZ), Z ∈ H2.

of genus 2 and weight κ with respect to K(N). For each prime ` - N we
write t`,1 and t`,2 for the respective eigenvalues of the Hecke operators

`κ−3[K(N)diag[1, 1, `, `]K(N)], `2(κ−3)[K(N)diag[1, `, `2, `]K(N)]

acting on f . Let

Q`(X) = 1− t1,`X + (`t2,` + (`3 + `)`2κ−6)X2 − `2κ−3t1,`X
3 + `4κ−6X4

be the Hecke polynomial of f at `. Then we have

Q`(`
−s) = L

(
s− κ+

3

2
,Spn(π`)

)
.

We write Spn(π) for the strong lift of π to an automorphic representation
of GL4(A) and Spn(π)K for the base change of Spn(π) to GL4(AK). We
consider its L-function twisted by Hecke characters ν

L(s, Spn(π)K ⊗ ν) =
∏
`

L(s, Spn(π`)K` ⊗ ν`).

When ` does not divide N and the conductor of ν, the local L-factor is
given as follows: If ` = l is inert in K, then

L(s, Spn(π`)K` ⊗ ν`) = Q`(λl`
3/2−κ−s)Q`(−λl`3/2−κ−s),

where λ2
l = ν`(l), if ` = l2 is ramified in K, then

L(s, Spn(π`)K` ⊗ ν`) = Q`(λl`
3/2−κ−s),

where λl = ν`(l), and if ` = l1l2 is split in K, then

L(s, Spn(π`)K` ⊗ ν`) = Q`(λl1`
3/2−κ−s)Q`(λl2`

3/2−κ−s).
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where λli = ν`(li) for i = 1, 2. The L-factors at prime factors of N are given
in (4.5). It is conjectured that there is a bijection between isogeny classes of
abelian surfaces A/Q of conductor N with EndQA = Z and such cusp forms
f with rational eigenvalues, up to scalar multiplication (see [42, 6]). In this
case Tf is the Tate module lim

←−
A[pn] and the generalized BSD conjecture

predicts that the vanishing order of L(s, Spn(π)K ⊗ ν) at the center s =
1
2 coincides the dimension dimC(A(K−∞) ⊗ C)ν of the ν-eigenspace of the
Mordell-Weil group of A for an anticyclotomic character ν of Γ−.

1.3. The Böcherer conjecture. We construct the anticyclotomic p-adic
L-function attached to π over K with explicit evaluation formula for anticy-
clotomic characters of finite order. The key ingredient of our construction
is the Böcherer conjecture [5], which is a special case of the refined Gross-
Prasad conjecture formulated by Yifeng Liu [26] in full generality.

Let S be a positive definite half-integral symmetric matrix of size 2 with
determinant ∆K

4 . The Böcherer conjecture relates the central L-values of π
to a square of the Bessel period defined by

Bν
S(φ) =

∫
K×A×\A×K

∫
φ

((
t tz
0 (det t) tt−1

))
e(tr(Sz))ν(t) dzdt,

where z is integrated over symmetric matrices of size 2 over A/Q, e denotes
the standard additive character on A/Q and K× is identified with the sub-

group {t ∈ GL2(Q) | ttSt = (det t)S}. Let α\S,νv be a normalized local Bessel

integral. Furusawa and Morimoto [15, Theorem 1.2] have recently proved
the Böcherer conjecture.

Theorem 1.2 (Furusawa-Morimoto). Assume that π is tempered. For ev-
ery anticyclotomic Hecke character ν : K×C×A×\A×K → C× of p-power

conductor and every nonzero cusp form φ = ⊗vφv ∈ πD

|Bν
S(φ)|2

(φ, φ)
= ξQ(2)ξQ(4)

Λ
(

1
2 , Spn(π)K ⊗ ν

)
2sπΛ(1, π, ad)

∏
v

α\S,νv(φv, φv)

(φv, φv)
,

where sπ = 2 or 1 according as π is endoscopic or not.

1.4. The ordinary hypothesis. The Hecke polynomial Qp(X) of f at p
can be factorized into

Qp(X) = (1− αPX)(1− βPX)(1− p2κ−3α−1
P X)(1− p2κ−3β−1

P X)

such that

0 ≤ ordp(ιp(αP)) ≤ ordp(ιp(βP)) ≤ κ− 3

2
.

Let αQ := p2−καPβP . In view of [36, Théorème 1], the Panchishkin hypoth-
esis is equivalent to the the following Klingen p-ordinary hypothesis:

ordp(ιp(αQ)) = 0.(Q-ord)
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Remark 1.3. The Siegel p-ordinary hypothesis is

(P-ord) ordp ιp(αP) = 0.

The condition (Q) + (P) is referred to as the p-ordinary assumption relative
to the Borel subgroup (cf. Remark 10.11).

1.5. Main theorem. Let recK : K×\A×K → Gal(Kab/K) denote the ge-

ometrically normalized reciprocity law map. Put wK = ]o×K . We view a
character ν̂ : Γ− → Q̄×p as a character of the Galois group of K and asso-
ciate a Hecke character

ν = ι∞ ◦ ι−1
p ◦ ν̂ ◦ recK : A×K/K

×A× → C×.

A character ν as above is usually referred to be anticyclotomic in the sense
that ν is trivial on A×. We write c(ν) for the smallest non-negative integer
n such that νp is trivial on o×Kp ∩ (1 + pnoKp).

Theorem 1.4. Assume that N is square-free and that K is split at each

prime factor of N . Fix a decomposition NoK = N+
0 N

+
0 . If π is tempered

and (Q-ord) holds, then there is an element Θf ∈ oEJΓ−K such that for
every finite-order character ν̂ : Γ− → Q̄×p we have the following interpolation
formula:

ν̂(Θf )2 =
Λ
(

1
2 , Spn(π)K ⊗ ν

)
Ωπ,1

· e(πp, νp)2

× ν−1(N+
0 ) · α6

P · 22κ−4 · w2
K∆κ−1

K ·N−1,

where e(πp, νp) is the p-adic multiplier defined by

e(πp, νp) = (pκ−1α−1
Q )c(ν),(c(ν) > 0)

e(πp, νp) =
2∏
i=1

(1− α−1
P λpip

κ−2)(1− β−1
P λpip

κ−2),(c(ν) = 0, p = p1p2)

e(πp, νp) = (1− α−2
P p2κ−4)(1− β−2

P p2κ−4),(c(ν) = 0, p = p)

e(πp, νp) = (1− α−1
P λpp

κ−2)(1− β−1
P λpp

κ−2)(c(ν) = 0, p = p2)

and the complex number Ωπ,1 is defined by

Ωπ,1 =
Λ(1, π, ad)

〈f, f〉K(N)
, 〈f, f〉K(N) =

∫
K(N)\H2

|f(Z)|2(detY )κ−3dZ.

Here f is normalized so that all the Fourier coefficients of f are real and
contained in E via ιp : Q̄p ' C and some Fourier coefficient of f is non-
vanishing modulo the maximal ideal of oE.

Remark 1.5. (1) The imaginary quadratic field K uniquely determines
a factorization N = N+N− with N+ divisible only by primes that
are split in K and N− divisible only by primes that are inert or
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ramified in K. In Theorem 2.5, we actually constructs the theta
element Θf ∈ oEJΓ−K under the following Heegner hypothesis:

(Heeg) N− is the product of an even number of primes.

If (Heeg) is not true, then L
(

1
2 , Spn(π)K⊗ν

)
= 0 (see Remark 2.6(2)).

Theorem 1.4 is its special case where N = N+ and N− = 1.
(2) Since endoscopic Siegel cusp forms of degree 2 are never paramodular

(cf. the proof of Proposition 12.3 of [39]), sπ = 1.
(3) If κ > 2 and π is not a Saito-Kurokawa lift, then π is tempered by

Proposition 8.1 of [15].
(4) The modified Euler factor e(πp, νp) is compatible with the conjec-

tural shape of p-adic L-functions due to Coates and Perrin-Riou. In-
deed, let M be the motive over Q associated with ρf,p|Gal(K̄/K) ⊗ ν.

Then e(πp, νp)
2 is the ratio between L(ρ)

p (M) defined in [9, (18),
p. 109] and Lp(M) = L

(
1
2 , Spn(πp)Kp ⊗ νp

)
.

1.6. The construction of Θf . We sketch the construction of the theta
element Θf . Define K(N, p) to be the subgroup which consists of matrices
(bij) ∈ K(N) such that b21, b31, b32, b34, b41, b42 are divisible by p. We define
Hecke operators on Sκ(K(N, p)) by

[UPp h](Z) =
∑
B

cpB(h)e2π
√
−1ptr(BZ),

[UQp h](Z) =

p∑
x=1

∑
B

c tup(x)Bup(x)(h)e2π
√
−1tr(BZ),

where B runs over positive definite symmetric half-integral matrices of size

2 and up(x) =

(
p x
0 1

)
. We define the p-stabilization f ‡ ∈ Sκ(K(N, p)) of f

with respect to αQ and αP by

f ‡ = α−3
P α−1

Q (UQp −pκ−1αPβ
−1
P )(UPp −p2κ−3α−1

P )(UPp −p2κ−3β−1
P )(UPp −βP)f.

This form f ‡ is an eigenform of the operators UQp and UPp with eigenvalues
αQ and αP , respectively.

We begin with some notation. Let R =

(
Z Z

pNZ Z

)
be the standard

Eichler order of level pN in D := M2(Q). The group R× acts on the set
Ψ ∈ Hom(K,D) by Ψ · r 7→ r−1Ψr. Let

CM(K,D) := Hom(K,D)/R×

be the set ofR×-conjugacy classes of field homomorphisms from K to D. For
Ψ ∈ Hom(K,D), denote by [Ψ] the R×-conjugacy class of Ψ in CM(K,D).
For a positive integer c, letOc be the order ofK of conductor c andKc the as-
sociated ring class field. The conductor of a homomorphism Ψ ∈ Hom(K,D)
is the unique positive integer c such that Ψ−1(R) = Oc. Let CM(Oc, R) be
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the set of R×-conjugacy classes of homomorphisms Ψ ∈ Hom(K,D) of con-
ductor c, which we call the set of CM points of conductor c.

The Galois group Gc := Gal(Kc/K) acts on CM(Oc,R) in the following
manner ([18, p.133]): for σ ∈ Gc and [Ψ] ∈ CM(Oc,R), write σ = recK(a) for

some a ∈ K̂× and decompose Ψ(a) = γ ·u for some u ∈ R̂× and γ ∈ GL2(Q)
with det γ > 0 by strong approximation. The action [Ψ]σ is defined by

[Ψ]σ := [γ−1Ψγ].

To each Ψ ∈ Hom(K,D) of conductor c, we associate a unique half-integral
symmetric positive definite matrix SΨ defined by

±SΨ =

(
0 1
−1 0

)
·Ψ(c

√
−∆K/2).

Thus [Ψ] 7→ [SΨ] gives a map from CM(Oc,R) to R×-conjugacy classes of
primitive half-integral symmetric positive definite matrices. For each non-
negative integer n, we will choose special CM points [Ψn] ∈ CM(Opn , R) of

conductor pn, and define the n-th theta element Θ̃n ∈ oE [Gpn ] by

Θ̃n = α−nQ

∑
σ∈Gpn

cSΨσn
(f ‡) · σ.

The fact that f ‡ is an UQp -eigenform allows us to make a good choice of CM

points {[Ψn]}∞n=1 such that Θ̃n is norm-compatible, i.e.

Π n+1
n (Θ̃n+1) = Θ̃n

under the quotient map Π n+1
n : Gpn+1 → Gpn , and hence we obtain the

element Θ̃∞ := lim
←−
n

Θ̃n ∈ oEJGal(Kp∞/K)K. The theta element Θf is defined

by Θf = Π
Kp∞

K−∞
(Θ̃∞) via the quotient map Π

Kp∞

K−∞
: Gal(Kp∞/K)→ Γ−. For

each anticyclotomic character ν of conductor pn, the interpolation ν̂(Θf ) is

essentially the global Bessel period of f ‡ with respect to Sn and ν, and the
square of the global Bessel period is a product of the central L-value and
local Bessel integrals by the Böcherer conjecture.

1.7. The interpolation formula. To obtain the precise interpolation for-
mula of Θf , we have to evaluate the local Bessel integrals explicitly. To this
end, we will construct a GSp4(Qv)-equivariant isomorphism Mv : πv ' π∨v .
Choose an element J ∈ GL2(Q) which satisfies tJSJ = S and det J = −1.
Then

[φv ⊗ φ′v 7→ α\S,νv(φv,Mv(πv(t(J))φ′v))] ∈ HomRS×RS (πv � πv, ν
S
v � νSv ),

where we put t(J) = diag[J,− tJ−1] and define the character νSv of RS =
K×v o Sym2(Qv) by νSv (t, z) = νv(t)ev(tr(Sz)). The Böcherer conjecture
relates the square Bν

S(φ)2 to the product of the central L-value and

α\S,νv(φ
0
v,Mv(πv(t(J))φ0

v)).
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Our main task is to compute this local factor for a nice test vector φ0
v ∈ πv.

If v 6= p and both πv and νv are unramified, then φ0
v is an unramified vector

and the local Bessel integral has been calculated in [26, 10]. If v divides
N , then φ0

v is a paramodular new vector of πv and its Bessel period will be
computed in §4.2. The quaternion case is discussed in §5.3. If v =∞, then
φ0
∞ is a lowest weight vector and the computation is done in §5.4. When
κ > 2, the archimedean Bessel integral has been computed in [10] by a
method suggested by Kazuki Morimoto. Our computation is different and
includes the case κ = 2.

The calculation of the local integral at v = p is one of the main novelties
in this paper. We first construct an ordinary projector e0

ord,p in Section

7 and compute the Bessel integral of e0
ord,pφ

0
p in Section 8. To that end,

we will construct a local Bessel period B
W,πp
S,νp

∈ HomRS (πp, ν
S
p ) so that

B
W,πp
S,νp

(e0
ord,pφ

0
p) is computable. By uniqueness we are led to a functional

equation and a factorization

B
W,π∨p
S,νp

◦Mp = c(πp, νp)B
W,πp
S,νp

, α\S,νp = c′(πp, νp)B
W,πp
S,νp

⊗B
W,π∨p

−S,ν−1
p
.

We determine the proportionality constants in Propositions 3.4, 6.5 and 6.6.
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2. The basic setting

2.1. Notation. Besides the standard symbols Z, Q, R, C, Zp, Qp we denote
by N the set of positive integers, by R×+ the group of strictly positive real

numbers and by Cp = Q̂p the completion of an algebraic closure of the p-adic
field Qp. If x is a real number, then we put [x] = max{i ∈ Z | i ≤ x}. For
any finite set A we denote by ]A the number of elements in A. For any set X
we denote by 1lX the characteristic function of X. When G is a topological
group, we write G◦ for its connected component of the identity. When G is
locally compact and abelian, we denote the group of quasi-characters of G
by Ω(G) and the subgroup of unitary characters of G by Ω1(G).

Let F be a local field of characteristic zero with normalized absolute value
ωF = | · |F . We often simply write |x| = |x|F and ω(x) = ωF (x) for x ∈ F× if
its meaning is clear from the context without possible confusion. The group
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Ω(F×)◦ (resp. Ω1(F×)◦) consists of homomorphisms of the form ωsF with

s ∈ C (resp. s ∈
√
−1R). Let σ ∈ Ω(F×). Define <σ as the unique real

number such that σω−<σF ∈ Ω1(F×).
Let F be nonarchimedean. We denote the integer ring of F by oF , the

maximal ideal of oF by p and the order of the residue field oF /p by q and
the different of F by dF . Fix a prime element $ of oF . When σ ∈ Ω(F×)◦,
we put L(s, σ) = 1

1−σ($)q−s . Otherwise we put L(s, σ) = 1. We extend | · |F
to fractional ideals of oF by |$i|F = q−i. Fix a generator dF of dF and a
nontrivial additive character ψ on F . Put ζ(s) = ζF (s) = 1

1−q−s . In our later

discussion we mostly let ψ be trivial on oF but not trivial on p−1. When
the residual characteristic of F is p, we define the character ψF of F by

ψF (x) = e−2π
√
−1y with y ∈ Q such that TrF/Qp(x)− y ∈ Zp. Let dx be the

self-dual Haar measure on F with respect to the pairing (x, y) 7→ ψF (xy).

This measure gives oF the volume |dF |1/2. The Haar measure d×x of F× is
normalized by d×x = ζ(1) dx

|x|F . When K is a quadratic étale algebra over

F , let dt be the quotient measure of the Haar measures of K× and F×.
For an admissible representation (π, V ) of a reductive group G over F we

will write π∨ for its contragredient representation. We occasionally identify
the space V with π itself when there is no danger of confusion. When
G = GLn(F ) and µ ∈ Ω(F×), we define the representation π ⊗ µ on the
same space Vπ by (π ⊗ µ)(g) = µ(det g)π(g). When Π is an irreducible
admissible representation of GLn(F ), we write ΠK for its base change to
GLn(K) and write L(s,Π) for its Godement-Jacquet L-factor. Given an
irreducible admissible representation π of GSp4(F ), we denote its transfer
to GL4(F ) by Spn(π) and its adjoint L-factor by L(s, π, ad). When π is
not supercuspidal, these L-parameter and degree 10 L-factor are explicitly
computed in Table A.7 of [31] and [3], respectively.

2.2. Quaternion unitary groups. For any ring R we denote by Mi,j(R)
the set of i × j-matrices with entries in R and write Mg(R) in place of
Mg,g(R). The group of all invertible elements of Mg(R) and the set of
symmetric matrices of size g with entries in R are denoted by GLg(R)
and Symg(R), respectively. We sometimes write R× = GL1(R). The sub-
group Bg(R) consists of upper triangular matrices in GLg(R). For matrices
B ∈ Symg(R) and G ∈ Mg,m(R) we use the abbreviation B[G] = tGBG,

where tG is the transpose of G. If A1, . . . , Ar are square matrices, then
diag[A1, . . . , Ar] denotes the matrix with A1, . . . , Ar in the diagonal blocks
and 0 in all other blocks. Let 1g be the identity matrix of degree g. When
G is a reductive algebraic group and Z is its center, we write PG for the
adjoint group G/Z.

Let D be a quaternion algebra over a field F . We denote by x 7→ x̄
the main involution of D and by tĀ the conjugate transpose of a matrix
A ∈ Mn(D). Let ND

F (x) = xx̄ and TrDF (x) = x+ x̄ denote the reduced norm
and the reduced trace of x ∈ D. Put D− = {z ∈ D | z̄ = −z}. We frequently
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regard D as an algebraic variety over F and consider the algebraic group
GUD

2 which associates to any F -algebra R the group

GUD
2 (R) =

{
h ∈ GL2(D ⊗F R)

∣∣∣∣ h(0 1
1 0

)
t̄h = λ(h)

(
0 1
1 0

)
, λ(h) ∈ R×

}
,

where λ is called the similitude character of GUD
2 . We define homomor-

phisms m, t : D× → GUD
2 , n : D− → GUD

2 and d : F× → GUD
2 by

m(A) =

(
A 0
0 Ā−1

)
, t(A) =

(
A 0
0 A

)
, n(z) =

(
1 z
0 1

)
, d(λ) =

(
1 0
0 λ

)
and denote the parabolic subgroup of GUD

2 with a Levi factor d(F×)m(D×)
and the unipotent radical n(D−) by P.

Fix S ∈ D− with d0 = S2 6= 0. Put K = F + FS ⊂ D. We choose an
element J ∈ D− such that JtJ−1 = t̄ for t ∈ K. Then K ' F (

√
d0) and

D = K +KJ. Let RS = t(K×)n(D−) ' K× nD− be a subgroup of P.
Let GSp2g be the symplectic similitude group of rank g defined by

GSp2g = {h ∈ GL2g | hJg th = λg(h)Jg, λg(h) ∈ GL1}, Jg =

(
0 1g
−1g 0

)
.

Put UD
2 = kerλ and Spg = kerλg. We define the homomorphisms

m : GLg ×GL1 → GSp2g, n : Symg → GSp2g

similarly by

m(A, λ) =

(
A 0
0 λ tA−1

)
, n(z) =

(
1g z
0 1g

)
.

We write

m(A) = m(A, 1), t(A) = m(A,detA), d(λ) = m(1g, λ).

Define a maximal parabolic subgroup Pg =MgNg of GSp2g by

Mg = {m(A, λ) | A ∈ GLg, λ ∈ GL1}, Ng = {n(z) | z ∈ Symg}

and a Borel subgroup of GSp2g by

Bg = {m(A, λ)n(z) | A ∈ Bg, λ ∈ GL1, z ∈ Symg}.

Note that

PGSp2 ' SO(2, 1), PGSp4 ' SO(3, 2), PGUD
2 ' SO(4, 1), B1 ' B2.

We write Ug and Ug for the unipotent radicals of Bg and Bg, respectively.
We include the case in which D is the matrix algebra M2(F ). In this case

GUD
2 ' GSp4, D− ' Sym2, P ' P2.



11

2.3. Abstract Bessel integrals for GUD
2 . Let F be a local field and (π, V )

an irreducible admissible representation of PGUD
2 (F ). Since π ' π∨, we

have a GUD
2 (F )-invariant bilinear perfect pairing b : V × V → C. Given a

pair φ1, φ2 ∈ V , we define the matrix coefficient Φφ1,φ2 : GUD
2 (F )→ C by

Φφ1,φ2(g) = ΦJ
φ1,φ2

(g) = b(π(g)φ1, π(m(J,−1))φ2).

Definition 2.1. Let U be a unipotent algebraic group over a p-adic field F
and f a smooth function on U(F ). We say that f has a stable integral over
U(F ) if there is a compact open subgroup U of U(F ) such that for any open
compact subgroup U ′ containing U∫

U ′
f(z) dz =

∫
U
f(z) dz.

In this case we write
∫ st
U(F ) f(z) dz =

∫
U f(z) dz.

We associate to S ∈ D− and Λ the character ΛS of RS by ΛS(t(t)n(z)) =
Λ(t)ψ(TrDF (Sz)). By [23, 26, 11] the following stable integral of a matrix
coefficient exists for each t ∈ K×:

Bψ
S (φ1, φ2, t) =

∫ st

D−

Φφ1,φ2(n(z)t(t))ψ(TrDF (Sz)) dz.

Definition 2.2 (abstract Bessel integrals relative to S and Λ). We define

BΛ
S (φ1, φ2) =

∫
F×\K×

∫ st

D−

Φφ1,φ2(n(z)t(t))ψ(TrDF (Sz))Λ(t)−1 dzdt

for Λ ∈ Ω(F×\K×) and φ1, φ2 ∈ V whenever the integral above converges.

When π is tempered and Λ is unitary, the iterated integral on the right-
hand side converges. We give a direct proof for representations of our interest
in Lemma 3.3 below. We know that

dimC HomRS (π,ΛS) ≤ 1

by Corollary 15.3 of [16]. It is important to note that

HomRS×RS (π � π,ΛS � ΛS) = CBΛ
S ,

i.e., BΛ
S is a basis vector of this zero or one-dimensional space.

Remark 2.3. When π is not square-integrable, the Bessel integral may di-
verge and is defined via regularization. Yifeng Liu [26] has constructed a
regularization of the archimedean Bessel integral in general. In §5.4 we will
regularize the Bessel integrals of matrix coefficients of lowest weight repre-
sentations of GSp4(R) of scalar weight via a different way.

When D = M2(F ), we associate to S ∈ Sym2(F ) with detS 6= 0 the
Bessel integral BΛ

S in a similar manner.
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Remark 2.4. Let A ∈ GL2(F ), λ ∈ F× and t ∈ T . Put

S′ = λ−1S[A], T ′ = A−1TA, t′ = A−1tA, J′ = A−1JA.

We define Λ′ ∈ Ω(T ′) by Λ′(t′) = Λ(At′A−1). Since

ΦJ
π(m(A,λ))φ1,π(m(A,λ))φ2

(n(z)t(t)) = ΦJ′
φ1,φ2

(n(λA−1z tA−1)t(t′)),

it follows that

BΛ
S (π(m(A, λ))φ1, π(m(A, λ))φ2, t) = |λ|−3|detA|3BΛ

S′(φ1, φ2, t
′).

In particular, if we define the additive character ψλ by ψλ(x) = ψ(λx), then

Bψ
S (π(d(λ))φ1, π(d(λ))φ2, t) = |λ|−3B

ψλ−1

S (φ1, φ2, t),

BΛ
S (π(m(A, λ))φ1, π(m(A, λ))φ2) = |λ|−3| detA|3BΛ′

S′ (φ1, φ2).

2.4. Hypotheses. We switch to the global setting. Let π ' ⊗′vπv be a uni-
tary irreducible cuspidal tempered automorphic representation of PGSp4(A)
generated by a scalar valued degree two Siegel cuspidal Hecke eigenform f
of weight κ ≥ 2 and square-free paramodular level N .

Fix an imaginary quadratic field K. We decompose N as N = N+N−,
where each prime factor of N+ is split in K and each prime factor of N− is
inert or ramified in K. We assume the following Heegner hypothesis:

(Heeg) N− is the product of an even number of primes.

Then there is an indefinite quaternion algebra D that is ramified precisely
at the prime factors of N−. We consider the following inner form of GSp4:

GUD
2 =

{
g ∈ GL2(D)

∣∣∣∣ g(0 1
1 0

)
tḡ = λ(g)

(
0 1
1 0

)}
,

where ·̄ denotes the main involution of D. Furusawa and Morimoto [15] have
established the Böcherer conjecture more generally for GUD

2 (see Theorem
9.1).

When ρ is a discrete series representation of GL2(Qq), we write ρD for its
Jacquet-Langlands lift to D×(Qq). We define the representation πD ' ⊗′vπDv
of PGUD

2 (A) by πDv ' πv for v - N− and by πDq ' ρDq o σq for prime factors

q of N−, where we write πq ' ρq o σq (cf. Remark 4.3). When N− 6= 1,
we will make use of the inner form transfer on PGSp4 established in [39,
Theorem 11.4], namely Jacquet-Langlands correspondence between PGSp4

and PGUD
2 (cf. [39, Proposition 12.3] and Remarks 4.3 and 5.1):

(JL) The representation πD occurs in the space of cusp forms on PGUD
2 (A)

with multiplicity one.
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2.5. Main theorem. Put wK = ]o×K . To each character ν̂ : Γ− → Q̄×p
we associate a Hecke character ν = ι∞ ◦ ι−1

p ◦ ν̂ ◦ recK of K, where recK :

K×\A×K → Gal(Kab/K) is the geometrically normalized reciprocity law
map. We write c(ν) for the smallest non-negative integer n such that νp is

trivial on o×Kp ∩ (1+pnoKp). Fix a decomposition N+oK = N+
0 N

+
0 . For each

prime factor ` of N we write ε`(f) = ε
(

1
2 , Spn(π`)

)
for the eigenvalue of the

Atkin-Lehner involution at `. Put εN−(f) =
∏
`|N− ε`(f).

Theorem 2.5. Assume the hypotheses (Heeg) and (Q-ord) are true for π,
K and p. Then there exist an explicitly given complex number Ωπ,N− ∈ C×
and an element Θf ∈ oEJΓ−K with the following interpolation formula

ν̂(Θf )2 =
Λ
(

1
2 ,Spn(π)K ⊗ ν

)
Ωπ,N−

· e(πp, νp)2 · ν−1(N+
0 ) · α6

P

× 22κ−3−`(π) · w2
K∆κ−1

K εN−(f) ·N−1
∏

`|(N−,∆K)

(1− ε`(f))

for every finite-order character ν̂ : Γ− → Q̄×p , where e(πp, νp) is the p-adic
multiplier defined by

e(πp, νp) = (pκ−1α−1
Q )c(ν),(c(ν) > 0)

e(πp, νp) =
2∏
i=1

(1− α−1
P λpip

κ−2)(1− β−1
P λpip

κ−2),(c(ν) = 0, p = p1p2)

e(πp, νp) = (1− α−2
P p2κ−4)(1− β−2

P p2κ−4),(c(ν) = 0, p = p)

e(πp, νp) = (1− α−1
P λpp

κ−2)(1− β−1
P λpp

κ−2).(c(ν) = 0, p = p2)

Remark 2.6. (1) The complex number Ωπ,N− is given in Definition 10.13.

(2) Assume that ε`(f) = −1 for every prime factor ` of (DK , N
−).

Then ε
(

1
2 , Spn(π)K ⊗ ν

)
= (−1)t(N

−), where t(N−) is the number
of prime factors of N−. In particular, if (Heeg) is not true, then
L
(

1
2 , Spn(π)K ⊗ ν

)
= 0.

(3) We will construct the element Θf ∈ EJΓ−K with the interpola-
tion property without (Q-ord) more generally for Hilbert-Siegel cusp
forms.

(4) If ν has infinite order, then so does ν∞ and so by Theorem 3.10 of

[30] Bν
S(φ) = α\S,ν∞(ϕ,ϕ′) = 0 for all φ ∈ πD and ϕ,ϕ′ ∈ πD∞.

(5) If Conjectures 9.4.2 and 9.5.4 of [1] hold for GUD
2 , then 2`(π) coincides

with the order of S-group of the Arthur parameter of πD.
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3. Local Bessel integrals for GSp4

3.1. Explicit Bessel integrals. Fix S =

(
a0

b0
2

b0
2 c0

)
∈ Sym2(F ). Assume

that detS 6= 0. Put

d0 = −4 detS = b20 − 4a0c0,

K = KS = F (
√
d0),

T = TS = {A ∈ GL2(F ) | tASA = (detA)S}.

We denote the nontrivial automorphism of K over F by t 7→ t̄. Put
Tr(t) = TrKF (t) = t+ t̄ and N(t) = NK

F (t) = tt̄ for t ∈ K. We write r for the
maximal order of K and τK/F : F× → {±1} for the character of F× whose

kernel is N(K×). One can verify that

T =

{(
x− y b02 −yc0

ya0 x+ y b02

) ∣∣∣∣ x, y ∈ F, x2 − d0

4
y2 6= 0

}
.

We identify T with K× via the map

x+
y

2

√
d0 7→

(
x− y b02 −yc0

ya0 x+ y b02

)
.

We regard characters of K× as those of T .
Let π0 be an irreducible admissible unitary infinite dimensional represen-

tation of PGL2(F ). It possesses a Whittaker model, i.e., there is a functional

0 6=W ∈ HomU2(π0, ψ) = HomGL2(F )(π0, Ind
GL2(F )
U2

ψ),

which is unique up to scalar multiple. LetW(π0, ψ) be the space of functions
of the form Wf (g) = W(π0(g)f) with f ∈ π0. We sometimes identify Vπ
with W(π0, ψ). Since π0 ' π∨0 , we can define the GL2(F )-invariant pairing

bW : π0 × π0 → C, bW(f, f ′) =

∫
F×
Wf (t(a))Wf ′(t(−a)) d×a.

For σ ∈ Ω(F×) we consider the induced representation

π = I(π0, σ) := Ind
GSp4(F )
P2

(π0 ⊗ σ−1) � σ = π0 ⊗ σ−1 o σ.

It is noteworthy that π has trivial central character and can be viewed as a
representation of PGSp4(F ) ' SO(2, 3).

We normalize the Haar measure dz on Sym2(F ) so that Sym2(oF ) has
volume 1. Choose a right invariant measure dg on P2\GSp4(F ) such that

(3.1)

∫
P2\GSp4(F )

f(g) dg =

∫
Sym2(F )

f(wsn(z)) dz

for all f ∈ Ind
GSp4(F )
P2

δ
1/2
P2

. We associate to any GL2(F )-invariant pairing

B : π0 × π0 → C



15

the GSp4(F )-invariant pairing B] : I(π0, σ)× I(π0, σ
−1)→ C by

(3.2) B](φ, φ′) =

∫
P2\GSp4(F )

B(φ(g), φ′(g)) dg.

We use b]W to identify I(π0, σ
−1) with the contragredient representation π∨.

We shall study the Bessel integral for the representations of the form
I(π0, σ), and in addition, we will explicitly factorize it into a product of two
appropriate local Bessel periods when K is split or π0 is a principal series

representation. In what follows, we fix D′ ∈ oF and put θ = D′+
√
d0

2 ∈ r.
Fix an element J ∈ GL2(F ) such that tJ = Jt̄ for t ∈ T . There is no loss of
generality by letting

S =

(
1 −Tr(θ)

2

−Tr(θ)
2 N(θ)

)
, J =

(
−1 Tr(θ)
0 1

)
(3.3)

thanks to Remark 2.4. The embedding ι : K ↪→ M2(F ) attached to this S
is

t = aθ + b 7→ ι(t) =

(
b+ aTr(θ) −aN(θ)

a b

)
(a, b ∈ F ).(3.4)

We introduce the intertwining operator

M(π0, σ) : I(π0, σ)→ I(π0, σ
−1),

defined for <σ � 0 by the convergent integral

[M(π0, σ)φ](g) =

∫
Sym2(F )

φ(J2n(z)g) dz,

and by meromorphic continuation otherwise. A normalized intertwining
operator is defined by setting

M∗(π0, σ) = γ(0, π0 ⊗ σ−1, ψ)γ(0, σ−2, ψ)M(π0, σ).

The character ψS : Sym2(F )→ C× is defined by ψS(n(z)) := ψ(tr(Sz)).

Definition 3.1 (explicit Bessel integrals relative to S and Λ). We define

JWS,Λ ∈ HomRS×RS (I(π0, σ) � I(π0, σ
−1),ΛS � ΛS)

as in Definition 2.2 by the integral

JWS,Λ(φ, φ′) =

∫
F×\K×

∫ st

Sym2(F )
b]W(π(t(t)n(z))φ, π∨(t(J))φ′)ψS(z)Λ(t)dzdt

for φ ∈ I(π0, σ) and φ′ ∈ I(π0, σ
−1). Furthermore we define

BWS,Λ ∈ HomRS×RS (I(π0, σ) � I(π0, σ),ΛS � ΛS)

by

BWS,Λ(φ1, φ2) := JWS,Λ(φ1,M
∗(π0, σ)φ2), φ1, φ2 ∈ I(π0, σ).

Clearly, Definition 3.1 is independent of the choice of J.
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3.2. Bessel periods. We have introduced the symmetric matrix S in (3.3).
Define matrices ς ∈ GL2(F ) and S′ ∈ Sym2(F ) by

ς =

(
1 −θ
−1 θ

)
, S′ =

(
0 −1

2
−1

2 0

)
Then

ις(t) := ςtς−1 = diag[t, t], tςS′ς = S.

If K/F is not split, then we set

ς = 12, S′ = S, ις = ι.

Fix a ψ-Whittaker functional W on π0. In order to investigate the Bessel
integral JWS,Λ we will explicitly construct toric and Bessel periods

TWΛ ∈ HomςT ς−1(π0,Λ), BW,σ
S′,Λ ∈ HomRS′ (I(π0, σ),ΛS′).

We define the toric period of f ∈ π0 by

TWΛ (f) =

∫
F×\K×

W(π0(ις(t))f)Λ(t)−1 dt.

This integral is absolutely convergent and gives rise to a nonzero K×-
invariant functional on π0 for any unitary generic representation π0.

Let ws be the Weyl element given by

(3.5) ws =


0 1
−1 0

0 −1
1 0

 = m

((
1 0
0 −1

))
s2s1s2 ∈ GSp4(F ).

It is important to note that

wst(A) = t(A)ws.

Definition 3.2. We define the Bessel period of φ ∈ I(π0, σ) by

BW,σ
S′,Λ(φ) =

∫
F×\K×

∫ st

Sym2(F )
W(φ(wsn(z)t(ις(t))))ψS′(−z)Λ(t)−1 dzdt.

For i ∈ N we put

Symi
2 =

{(
x y
y w

) ∣∣∣∣ x,w ∈ F, y ∈ p−i
}
.

Lemma 3.3. Assume that K/F is split. Write Λ = (Λ0,Λ
−1
0 ). Let φ ∈ π.

Take i ∈ N such that π(k)φ = φ for elements k ∈ I which satisfy k − 14 ∈
M4(pi). Suppose that ψ has order 0. If <σ < 1

2 , then the double integral∫
F×

∫
Symi

2

W(φ(wsn(z)t(diag[a, 1])))ψS′(−z)Λ0(a)−1 dzd×a

is absolutely convergent and equal to BW,σ
S′,Λ(φ).
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Proof. Conjugating φ by d(λ) with λ ∈ 1 + pi and making a change of

variables, we see that BW,σ
S′,Λ(φ) is equal to∫

F×

∫ st

F 3

W
(
φ

(
wsn

((
x y
y w

))
t(diag[a, 1])

))
ψ(λy)Λ0(a)−1 dxdydwda.

Integrating both sides of this equality over λ ∈ 1 + pi, we get∫
F×

∫
p−i

∫ st

F 2

W
(
φ

(
wsn

((
x y
y w

))
t(diag[a, 1])

))
ψ(y)

Λ0(a)
dxdwdyd×a.

The set Symi
2 is stable under the action of elements diag[a, 1]. It suffices to

check that the double integral∫
F 2

∫
F×

∣∣∣∣W (φ(t(diag[a, 1])wsn

((
x y
y w

)))) ∣∣∣∣d×adxdw

is convergent for every y ∈ p−i.
Observe that

n(z) =

(
12

z−1 12

)(
z

z−1

)(
12

−12

)(
12

z−1 12

)
.

Since wst(A)w−1
s = t(A), we get

(3.6) wsn(z) ∈ N2Z2d(det z)t(z)ws

(
12

−12

)(
12

z−1 12

)
.

Let z =

(
x y
y w

)
. The inner integral converges as π0 is unitary and generic.

Clearly, it depends only on x+pi and w+pi. We may therefore assume that
x,w /∈ pi+1. If x /∈ p−3i, then since ordx < −3i, ord y ≥ −i and ordw ≤ i,

cz = −z−1 = −(det z)−1

(
w −y
−y x

)
∈
(
p3i+1 p2i+1

p2i+1 p−i

)
,

c′z = diag[x−1, w−1]z =

(
1 y

x
y
w 1

)
∈
(

1 p2i+1

p−2i 1

)
and hence

|W(φ(t(diag[a, 1])wsn(z)))| = |xw|<σ−3/2
F |W(φ(t(diag[ax,w]c′z)wsn(cz)J2))|

where there is a compact set Ki of GL2(F ) such that c′z ∈ Ki. Put

Ci = sup
c∈Sym2(p−i), c′∈Ki

∫
F×
|W(φ(t(diag[a, 1]c′)wsn(c)J2))|d×a.

We therefore conclude that∫
F\p−3i

∫
F

∫
F×

∣∣∣∣W (φ(t(diag[a, 1])wsn

((
x y
y w

)))) ∣∣∣∣d×adwdx

≤Ci
∞∑
n=3i

∞∑
m=−i

q(n+m)(2<σ−1)/2.
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The last summation clearly converges. �

It is easy to see that BW,σ
S′,Λ is RS′-invariant and

(3.7) BW,σ
S′,Λ(φ) = lim

i→∞

∫
Symi

2

TWΛ (φ(wsn(z)))ψS′(−z) dz.

3.3. Factorization of JWS,Λ.

Proposition 3.4. If K/F is split, then

JWS,Λ(φ, φ′) = Λ0(−1)BW,σ
S′,Λ(π(m(ς))φ)BW,σ−1

−S′,Λ−1(π∨(m(ς)t(J))φ′)

for any φ ∈ π = I(π0, σ) and φ′ ∈ π∨ = I(π0, σ
−1).

Proof. For our choice of the measure dg on P2\GSp4(F ) we have∫ st

Sym2(F )
B](π(n(z))φ1, π

∨(t(J))φ2)ψS(−z) dz

=

∫ st

Sym2(F )

∫
Sym2(F )

B(φ1(wsn(z′ + z)), φ2(wsn(z′)t(J)))ψS(−z) dz′dz

(see (3.1) and (3.2)). Set φ′1 = π(m(ς))φ1 and φ′2 = π∨(m(ς)t(J))φ2. Take
sufficiently large i. Then the right hand side is equal to∫

Symi
2

∫
Symi

2

B(φ′1(wsn(z1)), φ′2(wsn(−z2)))ψS′(−z1 − z2) dz1dz2

(see the proof of Lemma 3.3). The triple integral∫
F×\K×

∫
Symi

2

∫
Symi

2

|bW(π0(ις(t))φ
′
1(wsn(z1)), π0(J)φ′2(wsn(z2)))| dz1dz2dt

=
2∏
j=1

∫
Symi

2

∫
F×
|W(π0(diag[a, 1])φ′′j (wsn(zj)))| dadzj

is convergent in view of Lemma 3.3, which justifies our formal manipulation.
Here we put φ′′1 = φ′1 and φ′′2 = π0(J)φ′2.

Now we have the identity∫ st

Sym2(F )
b]W(π(t(t)n(z))φ1, π

∨(t(J))φ2)ψS(−z) dz

=

∫
Symi

2

∫
Symi

2

bW(π0(ις(t))φ
′
1(wsn(z1)), φ′2(wsn(z2)))ψS′(−z1 + z2) dz1dz2.

Integrating over t ∈ F×\K× and changing the order of integration, we get

JWS,Λ(φ1, φ2) =

∫
Symi

2

∫
Symi

2

dz1dz2 ψS′(z2 − z1)

×
∫
F×\K×

bW(π0(ις(t))φ
′
1(wsn(z1)), φ′2(wsn(z2))) dt.
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Put f ′1 = φ′1(wsn(z1)) and f ′2 = φ′2(wsn(z2)). Then the inner integral equals∫
F×

∫
F×
Wf ′1

(t(ba))Wf ′2
(t(−b))Λ0(a)−1 d×bd×a = Λ0(−1)TWΛ (f ′1)TWΛ−1(f ′2).

We conclude that Λ0(−1)JWS,Λ(φ1, φ2) is equal to∫
Symi

2

∫
Symi

2

TWΛ (φ′1(wsn(z1)))TWΛ−1(φ′2(wsn(z2)))ψS′(−z1 + z2) dz1dz2,

which completes our proof by (3.7). �

Remark 3.5. Let K/F be split. Then TWΛ (f) = Z
(
Wf ⊗Λ−1

0 , 1
2

)
is the zeta

integral for π0 ⊗ Λ−1
0 . Since ςJς−1 =

(
0 1
1 0

)
, for every f ∈ π0

TWΛ−1(π0(ςJς−1)f) = Λ0(−1)γ

(
1

2
, π0 ⊗ Λ−1

0 , ψ

)
TWΛ (π0(diag[−1, 1])f)

by the functional equation in Hecke’s theory and hence

BW,σ
S′,Λ−1(π(m(ςJς−1))φ) =

BW,σ
S′,Λ(π(m(diag[−1, 1]))φ)

Λ0(−1)γ
(

1
2 , π0 ⊗ Λ0, ψ

) , φ ∈ π = I(π0, σ).

4. Explicit calculations of Bessel integrals I: new vectors

Let π be an irreducible admissible representation of the form I(π0, σ),
where π0 is an irreducible unramified unitary principal series representation
of PGL2(F ) or the Steinberg representation twisted by an unramifiend qua-
dratic character of F× and σ ∈ Ω(F×)◦. Let φσ ∈ π be a new vector, i.e.,
φσ is a spherical vector in the former case and φσ is a paramodular vector
in the latter case. Our task in Sections 4, 5 and 8 is to compute

BΛ
S(H) :=

BS
Λ(Hφσ, Hφσ)

b(φσ, φσ)
=

BWS,Λ(Hφσ, Hφσ)

b]W(φσ,M∗(π0, σ)φσ)

for some Hecke operator H on GSp4(F ), where BΛ
S and BWS,Λ are the Bessel

integrals defined in Definitions 2.2 and 3.1. Since there exists a constant
m(π0, σ) such that

M∗(π0, σ)φσ = m(π0, σ)φσ−1 ,

it follows from Proposition 3.4 that

BΛ
S(π(m(ς−1))) = Λ0(−1)

BW,σ
S′,Λ(φσ)BW,σ−1

−S′,Λ−1(π∨(t(ςJς−1))φσ−1)

b]W(φσ, φσ−1)
.(4.1)

Remark 4.1. Proposition 6.9 below gives

m(π0, σ) = γ

(
1

2
, σ−1

K Λ, ψK

)
BW,σ
S′,Λ(φσ)

BW,σ−1

S′,Λ (φσ−1)
.
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4.1. The unramified case. The ratio
JWS,Λ(φσ ,φσ−1 )

b]W (φσ ,φσ−1 )
has been computed by

Liu in Theorem 2.2 of [26] for split or unramified extensions K of F , and

extended to ramified extensions in [10]. Since BΛ
S(Id) =

JWS,Λ(φσ ,φσ−1 )

b]W (φσ ,φσ−1 )
, we

obtain the following result:

Theorem 4.2 ([26, 10]). Assume the following conditions

• both π and Λ are unramified, unitary and generic;
• a0, b0 ∈ oF ; c0 ∈ o×F ; −4 detS generates dF ; ψ has order 0;
• When the residual characteristic of F is 2, we suppose that F = Q2;

If φ0 ∈ V is GSp4(oF )-invariant, then

BΛ
S(Id) =

|dK |1/2K ζ(2)ζ(4)L
(

1
2 ,Spn(π)K ⊗ Λ

)
|dF |1/2L(1, τK/F )L(1, π, ad)

.

4.2. The paramodular case. The paramodular group K(p) is the sub-
group of k ∈ GSp4(F ) such that λ(k) is in o×F and

(4.2) k ∈


oF oF p−1 oF
p oF oF oF
p p oF p
p oF oF oF

 .

Proposition 5.1.2 of [31] gives the Iwasawa decomposition relative to K(p)

GSp4(F ) = P2(F )K(p).

Define the Iwahori subgroup of GL2(oF ) by

I =

{
A ∈ GL2(oF )

∣∣∣∣ A ≡ (∗ ∗0 ∗

)
(mod p)

}
.

Given µ ∈ Ω(F×), we denote by I1(µ) = µ× µ−1 the principal series repre-

sentation of PGL2(F ). We write St ⊂ I1(ω
1/2
F ) for the Steinberg representa-

tion. As is well-known, its subspace of I-invariant vectors is one-dimensional.
Take σ ∈ Ω1(F×)◦ and an unramified quadratic character ε of F×. Let

π0 ' St⊗ ε, π ' I(π0, σ).

Put µ = εω
1/2
F . Then

π0 ⊂ I1(µ), π ⊂ I(I1(µ), σ).

Remark 4.3. The representations I(St ⊗ ε, σ) are called type IIa in [31].
Their minimal paramodular level is p by Table A.12 of [31], namely, the

K(p)-invariant subspace πK(p) is one-dimensional. Representations of type
IIa (with unramified ε and σ) are only the tempered representations of
paramodular level p by Tables A.12, A.13 in loc. cit.
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Let fπ0 ∈ πI0 be such that

Wfπ0
(t(a)) = ε(a)|a|F 1loF (a).

The Iwasawa decomposition allows us to define φσ ∈ πK(p) by

φσ(n(z)d(λ)t(A)k) = σ(λ)|λ|−3/2
F fπ0(A)

for z ∈ Sym2(F ), λ ∈ F×, A ∈ GL2(F ) and k ∈ K(p).
Since π has no Bessel model relative to the trivial character of K× if K/F

is the unramified quadratic extension, we assume that K = Fe1 ⊕ Fe2 is

split and let S′ = −
(

0 1
2

1
2 0

)
throughout this subsection. Let Λ = (Λ0,Λ

−1
0 )

be an unramified character of K× = F× × F×. Put

γ = σ($), ε = −ε($), δ = Λ0($).

Define a function T′ : PGL2(F )→ C by

T′(A) = TΛ(π0(t(A))fπ0).

Observe that for A ∈ GL2(F ), a, b ∈ F× and k ∈ I

T′(Aη0) = εT′(A), T′(diag[a, b]Ak) = Λ0(ab−1)T′(A).(4.3)

In particular, the value T′(n(x)) depends only on o×Fx+ oF . We will write

T ′(m) = T′(n($−m))

for non-negative integers m. For x, y, w ∈ F we put

T(x, y, w) = TΛ

(
φσ

(
wsn

((
x y
y w

))))
.

Recall the Bessel period

Bσ
S′,Λ(φ) =

∫
Sym2(F )

TΛ(φ(wsn(z)))ψS′(−z) dz.

Conjugating φσ by d(λ) with λ ∈ o×F , we get

Bσ
S′,Λ(φσ) =

∫
F 3

T(x, y, w)ψ(−λy) dxdydz

by a change of variables. Choosing λ = 1 + u with u ∈ p and integrating
both sides of this equality over u ∈ p, we see that

Bσ
S′,Λ(φσ) =

∫
p−1

∫
F 2

T(x, y, w)ψ(−y) dxdwdy.

We define the function v : F → N ∪ {0} via

qv(x) = [xoF + oF : oF ].

Lemma 4.4. Let z =

(
x y
y w

)
∈ Sym2(F ). Assume that the following

conditions are satisfied:

• v(y) ≤ 1.
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• When v(y) = 0, we suppose that x /∈ oF and w /∈ p.
• When v(y) = 1 and v(w) = 0, we suppose that if v(x) ≥ 3, then
w ∈ o×F , while if v(x) ≤ 2, then w = 0.
• When v(y) = 1 and v(x) ≤ 1, we suppose that if v(w) ≥ 2, then

v(x) = 1, while if v(w) ≤ 1, then x = 0.

Then z ∈ GL2(F ) and

wsn(z) ∈ N2Z2d(det z)t(zJ1)K(p).

Remark 4.5. Let a, b, c ∈ F . Since

(4.4) T(a+ p−1, b+ oF , c+ oF ) = T(a, b, c),

if v(b) ≤ 1, then we can find a triplet x, y, w ∈ F which satisfies the condi-
tions above and such that T(a, b, c) = T(x, y, w).

Proof. Note that

z−1 = (det z)−1

(
w −y
−y x

)
∈
(
p p
p oF

)
by assumption. Now the lemma follows from (3.6). �

Lemma 4.6. If v(y) ≤ 1, then the value T(x, y, w) depends only on v(x),
v(y) and v(w). We may therefore write

T(x, y, w) = Tv(y)(v(x),v(w)).

(1) If i ≥ 1, then

T0(i, j) = εγ−i−jq−3(i+j)/2δj−i+1T ′(0).

(2) If i ≥ 2 and j ≥ 1, then

T1(i, j) = εγ−i−jq−3(i+j)/2δj−i+1T ′(0).

(3) If i ≥ 2, then

T1(i, 0) = γ−iq−3i/2δ2−iT ′(1), T1(1, 0) = γ−2q−3T ′(0).

(4) If j ≥ 1, then

T1(1, j) = εγ−j−1q−3(j+1)/2δjT ′(1).

Proof. In view of Remark 4.5 we may assume that x, y, w satisfy the as-
sumptions of Lemma 4.4. Then

T(x, y, w) = σ(det z)|det z|−3/2T′(zJ1)

= εσ(det z)|det z|−3/2T′(zdiag[$, 1])

by (4.3). If y = 0 or if v(x) ≥ 2 and v(w) ≥ 1, then since

zdiag[$, 1] =

(
$x y
$y w

)
= diag[$x,w]

(
1 y

$x
$y
w 1

)
∈ diag[$x,w]I,

we get

T(x, y, w) = εσ(det z)| det z|−3/2Λ0($xw−1)T′(12).
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If v(x) ≤ 1 or v(w) = 0, then we can use (4.4) to verify that T(x, y, w)
depends only on v(x), v(y) and v(w) by conjugating φσ by t(diag[u, 1]),
t(diag[1, v]) and d(λ) with u, v, λ ∈ o×F . We have proved (1) and (2).

Next we shall prove (3). Let j = 0. If i ≥ 3, then since(
$1−i $−1

1 1

)
=

(
$−1 −$1−i $1−i

0 1

)(
0 1
1 0

)(
1 1
0 1

)
,

we get

T($−i, $−1, 1) =
εδ1−i

γiq3i/2
T′
((

1 1
0 1

)(
0 1
1 0

))
=

δ1−i

γiq3i/2
T′
((

$ 1
0 1

))
.

We can easily prove the case i = 1 as T($−1, $−1, 0) = T(0, $−1, 0). Since(
$−2 $−1

$−1 0

)(
0 1
1 0

)
=

(
$−1 $−2

0 $−1

)
,

we get T($−2, $−1, 0) = γ−2q−3T′(n($−1)).
If j ≥ 2, then we can prove (4) by observing that(

1 $−1

1 $−j

)
=

(
1 $−1

0 $−j

)(
1−$j−1 0

$j 1

)
.

From the computation(
0 $−1

1 $−1

)
=

(
1 $−1

0 $−1

)(
−1 0
$ 1

)
we can deduce the remaining case i = j = 1. �

Now we are led to

Bσ
S′,Λ(φσ) =

∫
p−1

∫
F 2

Tv(y)(v(x),v(w))ψ(y) dxdwdy

=
∞∑
i=1

∞∑
j=0

qi+j(1− q−1)min{1,i−1}+min{1,j}(T0(i, j)−T1(i, j)).

If i ≥ 2 and j ≥ 1, then T0(i, j) = T1(i, j) by Lemma 4.6(1), (2). Hence

Bσ
S′,Λ(φσ) =q(T0(1, 0)−T1(1, 0))

+ (1− q−1)

∞∑
i=2

qi(T0(i, 0)−T1(i, 0))

+ (1− q−1)

∞∑
j=1

qj+1(T0(1, j)−T1(1, j))

=q(T0(1, 0)−T1(1, 0)) + (1− q−1)(I0 + J0) + I1 + J1,

where

I0 =
∞∑
i=2

qiT0(i, 0), I1 = −(1− q−1)

∞∑
i=2

qiT1(i, 0),
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J0 =

∞∑
j=1

qj+1T0(1, j), J1 = −(1− q−1)

∞∑
j=1

qj+1T1(1, j).

Lemma 4.6(1) gives

I0 =
∞∑
i=2

qiεγ−iq−3i/2δ−i+1T ′(0) =
εγ−2q−1δ−1

1− γ−1δ−1q−1/2
T ′(0),

J0 =
∞∑
j=1

qj+1εγ−1−jq−3(1+j)/2δjT ′(0) =
εγ−2q−1δ

1− γ−1δq−1/2
T ′(0).

Lemma 4.6(3) gives

I1 = −(1− q−1)

∞∑
i=2

qiγ−iq−3i/2δ2−iT ′(1) = −γ
−2q−1(1− q−1)

1− γ−1δ−1q−1/2
T ′(1).

Lemma 4.6(4) gives

J1 = −(1− q−1)

∞∑
j=1

qj+1ε
δjT ′(1)

γj+1q3(j+1)/2
= −εγ

−2q−1δ(1− q−1)

1− γ−1δq−1/2
T ′(1).

Proposition 4.7. If m ≥ 1, then

T ′(m) = (1 + εδ)
(−εδ−1)m

qm(1− q−1)
T ′(0), T ′(0) = L(1, εΛ−1

0 ).

Proof. Since π0 has no GL2(oF )-invariant vector,∑
x∈oF /p

T′
(
A

(
1 0
x 1

))
= −T′(AJ1) = −εT′(Adiag[$, 1])

by (4.3). Observe that

n(y)

(
1 0
x 1

)
=

(
1 + yx y
x 1

)
=

(
−x−1 1 + yx

0 x

)(
0 1
1 0

)(
1 x−1

0 1

)
for x ∈ o×F . If m ≥ 2, then we get

T′(n($1−m))+ε(q−1)T′(n($1−m)diag[$, 1]) = −εT′(n($1−m)diag[$, 1]),

letting A = n(y) and y = $1−m. It follows that

T ′(m) = −q−1εδ−1T ′(m− 1) = · · · = (−q−1εδ−1)m−1T ′(1).

Letting y = 0, we get

T′
((

1 0
x 1

))
= εT′(n(−x)diag[$, 1]) = εδT′(n($−1)) = εδT ′(1)

for every x ∈ o×F . We obtain

T ′(1) = −(1 + εδ−1)(q − 1)−1T ′(0).

Since Wfπ0
(diag[a, 1]) = ε(a)|a|F 1loF (a), one can easily compute T ′(0).

�
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Proposition 4.8.

Bσ
S′,Λ(φσ) = εγ−1q−1/2 L

(
1
2 , σ
−1
K Λ

)
L
(

3
2 , εσ

)
L(1, σ−2)

L(1, εΛ−1
0 ).

Proof. Proposition 4.7 gives

I1 = −γ
−2q−1(1− q−1)

1− γ−1δ−1q−1/2
(1 + εδ)

−εδ−1

q(1− q−1)
T ′(0) =

γ−2q−2(1 + εδ−1)

1− γ−1δ−1q−1/2
T ′(0),

J1 = −εγ
−2q−1δ(1− q−1)

1− γ−1δq−1/2
(1 + εδ)

−εδ−1

q(1− q−1)
T ′(0) =

γ−2q−2(1 + εδ)

1− γ−1δq−1/2
T ′(0).

Now we have

I :=
(1− q−1)I0 + I1

T ′(0)
= (1− q−1)

εγ−2q−1δ−1

1− γ−1δ−1q−1/2
+
γ−2q−2(1 + εδ−1)

1− γ−1δ−1q−1/2

=
εγ−2q−1δ−1 + γ−2q−2

1− γ−1δ−1q−1/2
,

J :=
(1− q−1)J0 + J1

T ′(0)
=
εγ−2q−1δ + γ−2q−2

1− γ−1δq−1/2
.

By Lemma 4.6(1), (3) we have

q
T0(1, 0)−T1(1, 0)

T ′(0)
+ J = εγ−1q−1/2 − γ−2q−2 +

εγ−2q−1δ + γ−2q−2

1− γ−1δq−1/2

=
εγ−1q−1/2 + δγ−3q−5/2

1− γ−1δq−1/2
.

We conclude that

Bσ
S′,Λ(φσ)

T ′(0)
=
εγ−2q−1δ−1 + γ−2q−2

1− γ−1δ−1q−1/2
+
εγ−1q−1/2 + δγ−3q−5/2

1− γ−1δq−1/2

= εγ−1q−1/2 (1 + εγ−1q−3/2)(1− γ−2q−1)

(1− γ−1δ−1q−1/2)(1− γ−1δq−1/2)
.

The proof is complete by Proposition 4.7. �

We use the Iwasawa decomposition to define φpa ∈ I(Id, 1) by

φpa(d(λ)t(A)n(z)k) = |λ|−3/2,

where λ ∈ F×, A ∈ GL2(F ), z ∈ Sym2(F ) and k ∈ K(p). The elements

φw ∈ I(I1(ω
−1/2
F ), 1) are defined in Section 7 below. The pairing q : I(Id, 1)×

I(Id, 1)→ C will be defined in (5.2).

Lemma 4.9. We have

φpa = φ14 + φs1 + φs2 + φs1s2 + q−3/2(φs2s1 + φs1s2s1 + φ† + φs2s1s2),

q(φpa, φpa) = q−2ζ(1)2ζ(2)−2.
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Proof. Since s2 ∈ K(p), it is clear that

φpa(14) = φpa(s1) = φpa(s2) = φpa(s1s2) = 1,

φpa(s2s1) = φpa(s1s2s1) = φpa(s2s1s2) = φpa(s1s2s1s2).

Since m(diag[$−1, 1])s1s2s1s2 ∈ K(p), we get φpa(s1s2s1s2) = q−3/2. The
Iwasawa decomposition relative to GSp4(oF ) gives

q(φpa, φpa) =

∫
GSp4(oF )

φpa(k)2 dk =
∑
w∈W

φpa(w)2vol(IwI).

Clearly, vol(IwI) = qwvol(I) (see Definition 2.1). Since vol(Is1s2s1s2I) +
vol(Is2s1s2I) = 1 for our choice of the measure, vol(I) = q−4(1 + q−1)−1 and

q(φpa, φpa) = (1 + q−1)−1
∑
w∈W

φpa(w)2q−4qw

= (1 + q−1)−1{q−4 + 2q−3 + q−2 + q−3(q−2 + 2q−1 + 1)},

which proves the second identity. �

Proposition 4.10. Let σ,Λ0 ∈ Ω1(F×)◦. Fix a quadratic unramified char-
acter ε : F× → {±1}. Put π = I(St⊗ ε, σ). Then

BΛ
S(π(m(ς−1))) = −εq(1+q−2)Λ0($)−1 |dK |

1/2
K ζ(2)ζ(4)L

(
1
2 ,Spn(π)K ⊗ Λ

)
|dF |1/2L(1, τK/F )L(1, π, ad)

.

Proof. We know that

L(s, Spn(π)K ⊗ Λ) = L(s, σ−1
K Λ)L(s, σKΛ)L(s, ω

1/2
K εKΛ),(4.5)

L(s, π, ad) = ζ(s)ζ(s+ 1)L(s, σ−2)L(s, σ2)L(s, ω
1/2
F εσ)L(s, ω

1/2
F εσ−1)

(see [31, Table A.8] and [3, (13)]). We also remark that

ε(1/2,St⊗ εΛ−1
0 ) = Λ0($)−1(−ε),

(cf. [8, Lemma 3.1, Proposition 3.8]). By (4.1) and Remark 3.5

b]W(φσ, φσ−1)BΛ
S(π(m(ς−1))) = γ

(
1

2
,St⊗ εΛ−1

0 , ψ

)
Bσ
S′,Λ(φσ)Bσ−1

S′,Λ(φσ−1).

By Proposition 4.8 the right hand side is equal to

L(1, εΛ0)

L(1, εΛ−1
0 )

(−ε)Λ0($)−1 L
(

1
2 , σ
−1
K Λ

)
L
(

1
2 , σKΛ

)
L(1, εΛ−1

0 )2

qL
(

3
2 , εσ

)
L(1, σ−2)L

(
3
2 , εσ

−1
)
L(1, σ2)

=(−ε)Λ0($)−1ζ(1)ζ(2)
L
(

1
2 , Spn(π)K ⊗ Λ

)
qL(1, π, ad)

.

Since Wφσ(t(diag[a, 1])) = ε(a)|a|F 1loF (a) for a ∈ F×, we have

bW(π(g)φσ, π
∨(g)φσ−1) = ζ(2)φpa(g)2

and hence b]W(φσ, φσ−1) = ζ(2)q(φpa, φpa) = q−2ζ(1)2ζ(2)−1. �
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5. Explicit calculations of Bessel integrals II: degenerate
vectors

5.1. Degenerate principal series. Let D be a quaternion algebra over a
local field F of characteristic zero. We retain the notation in Section 2. Fix
a quadratic character ε of F×. For σ ∈ Ω(F×) we consider the normalized
induced representation π = I(ε ◦ ND

F , σ), which is realized on the space of

smooth functions φ : GUD
2 (F )→ C satisfying

φ(d(λ)t(A)n(z)g) = σ(λ)|λ|−3/2ε(ND
F (A))φ(g)

for A ∈ D×, z ∈ D−, λ ∈ F× and g ∈ GUD
2 (F ).

In the p-adic case we fix a maximal compact subring oD of D and set
K = GUD

2 (F )∩GL2(oD). In the archimedean case we fix a maximal compact
subgroup K of GUD

2 (F ). For g ∈ GUD
2 (F ) the quantity |a(g)| is defined by

setting |a(g)| = |λ|−1
F , where we write g = pk with p = d(λ)t(A)n(z) ∈ P

and k ∈ K. For φ ∈ π and s ∈ C we define φ(s) ∈ I(ε ◦ ND
F , σω

s
F ) by

φ(s)(g) = φ(g)|a(g)|−s. We define the intertwining operator

M(ε ◦ND
F , σ) : I(ε ◦ND

F , σ)→ I(ε ◦ND
F , σ

−1)

by

[M(ε ◦ND
F , σ)φ](g) = lim

s→0

∫
D−

φ(s)

((
0 1
1 0

)
n(z)g

)
dz.

The integral converges for <s+ <σ < −3
2 and admits meromorphic contin-

uation to whole s-plane.

5.2. Degenerate Whittaker model. Fix S ∈ D−. Put

d0 = −ND
F (2S), K = F (

√
d0).

We identify K with the subalgebra F + FS of D. Put

RS = {t(t)n(z) | z ∈ D−, t ∈ K×}.
We define an additive character ψS on D− by ψS(z) = ψ(TrDF (Sz)) and
associate a character ΛS of RS by ΛS(t(t)n(z)) = Λ(t)ψS(z) to a character
Λ of F×\K×. The integral

B
σωsF
S (φ(s)) =

∫
D−

φ(s)

((
0 1
1 0

)
n(z)

)
ψS(z) dz

is absolutely convergent for <s + <σ < −3
2 and makes sense for all s by

an entire analytic continuation. In the nonarchimedean case the integral
stabilizes. The reader who are interested in the archimedean case can consult
[37]. One can easily see that

(5.1) Bσ
S ◦ π(t(t)) = ε(NK

F (t))Bσ
S

for t ∈ K×. Thus Bσ
S is a Bessel functional on π relative to S and εK .

We introduce the GUD
2 (F )-invariant pairing

q : I(ε ◦ND
F , σ)× I(ε ◦ND

F , σ
−1)→ C
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by

q(φ1, φ2) =

∫
P\GUD2 (F )

φ1(g)φ2(g) dg(5.2)

=

∫
D−

φ1

((
0 1
1 0

)
n(z)

)
φ2

((
0 1
1 0

)
n(z)

)
dz

for φ1 ∈ I(ε ◦ND
F , σ) and φ2 ∈ I(ε ◦ND

F , σ
−1). Define the Bessel integral by

JS(φ1, φ2) =

∫
D−

q(π(n(z))φ1, π(d(−1))φ2)ψS(z) dz

:= lim
s→0

σ(−1)

∫ 2

D−

φ
(s)
1

((
0 1
1 0

)
n(z − z′)

)
φ

(s)
2

((
0 1
1 0

)
n(z′)

)
dz′ψS(z)dz.

The double integral absolutely converges for <s � 0 and can be continued
as an entire function to the whole complex plane. We have the factorization

(5.3) JS(φ, φ′) = Bσ
S(φ)Bσ−1

−S (π∨(d(−1))φ′).

It follows that

JS ∈ HomRS×RS (I(ε ◦ND
F , σ) � I(ε ◦ND

F , σ
−1), εSK � εSK).

If I(ε ◦ND
F , σ) has a new vector φσ, then we have a functional equation

M(ε ◦ND
F , σ)φσ = c(ε, σ)φσ−1

with factor c(ε, σ) of proportionality. We set

BS(φ, φ′) = JS(φ,M(ε ◦ND
F , σ)φ′).

Then

(5.4)
BS(φσ, φσ)

q(φσ,M(ε ◦ND
F , σ)φσ)

=
Bσ
S(φσ)Bσ−1

−S (π∨(d(−1))φσ−1)

q(φσ, φσ−1)
.

5.3. The quaternion case. Let D be a quaternion division algebra over a
p-adic field F of characteristic 0. We denote by oD the maximal compact
subring of D and by P the maximal proper two-sided ideal of oD. Put
o−D = oD ∩D−. Define a maximal compact subgroup K(P) of GUD

2 (F ) by

(5.5) K(P) =

{(
α β
γ δ

)
∈ GUD

2 (F )

∣∣∣∣ α, δ ∈ oD, β ∈ P−1, γ ∈ P

}
.

Then GUD
2 (F ) = PK(P). Let σ = ωsF be an unramified character of F×

and ε = ωtF an unramified quadratic character of F×. Put π = I(ε ◦ND
F , σ).

We define its L-factors as those of I(ε ◦ St, σ).

Remark 5.1. The representations I(ε ◦ ND
F , σ) are called type IIaG in [39].

The subgroup K(P) is considered in [20, 29]. Appendix of [29] shows that
representations of type IIaG (with unramified ε and σ) are only the tempered
representations having a non-zero K(P)-fixed vector, which is up to scalar.
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It follows from [3] that

L
(

1
2 , Spn(π)K ⊗ εK

)
L(1, π, ad)

=
L
(

1
2 , (σ

−1ε)K
)
L
(

1
2 , (σε)K

)
L(1, τK/F )

ζ(2)L(1, σ−2)L(1, σ2)L
(

3
2 , εσ

−1
)
L
(

3
2 , εσ

) .
For g ∈ GUD

2 (F ) the quantity |α(g)| is defined via

|α(d(λ)m(A)n(z)k)| = |ND
F (A)|F ,

where λ ∈ F×, A ∈ D×, z ∈ D− and k ∈ K(P). We define φσ ∈ π by

φσ(g) = |λ(g)|(2s−3)/2
F |α(g)|(−2s+2t+3)/2.

Proposition 5.2 (Hirai [20]). Let S ∈ o−D and K = F +FS. Take the Haar
measure dz on D− which gives D− ∩P the volume 1.

(1) If $−1S /∈ o−D, then

Bσ
S(φσ) =

q3/2(εσ)($)−1L
(

1
2 , (εσ

−1)K
)

L(1, σ−2)L
(

3
2 , εσ

−1
) .

(2) q(φσ, φσ−1) = ζ(2)ζ(4)−1.

Proof. Put K(P)′ = d($)−1K(P)d($). Observe that

K(P)′ =

{(
α β
γ δ

)
∈ GUD

2 (F )

∣∣∣∣ α, δ ∈ oD, β ∈ P, γ ∈ P−1

}
.

Define the function Ap : GUD
2 (F )→ C by Ap(g) = |α(gd($)−1)|. Set

αp(η, x) =

∫
D−

Ap

((
0 1
1 0

)
n(z)

)(2x+3)/2

ψη(z) dz

for η ∈ $−1o−D and x ∈ C. Put

φ′σ = π(d($)−1)φσ, S′ = $−1S.

By a change of variables we have

Bσ
S(φσ) =

∫
D−

φ′σ

((
0 1
1 0

)
n(z)d($)

)
ψS(z) dz

= q(2s−3)/2 · q3Bσ
S′(φ

′
σ)

= q(2s+3)/2 · q(2s−3)/2αp(S
′, t− s).

Theorem 2.3 of [20] explicitly computes αp(η, s). By the assumption on S′

αp(S
′, s) = q(2s+3)/2 ζK

(
s+ 1

2

)
ζ(2s+ 1)ζ(s+ 3

2

) .
We remind the reader that the measure in [20] gives P∩D− volume 1. The
second part follows from the obvious equality q(φσ, φσ−1) = q−3αp

(
0, 3

2

)
. �

Now we have the following conclusion by (5.4) and Proposition 5.2.
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Corollary 5.3.

BS(φσ, φσ)

q(φσ,M(ε ◦ND
F , σ)φσ)

= q3(1− q−2)
ζ(4)L

(
1
2 ,Spn(π)K ⊗ εK

)
ζ(2)L(1, τK/F )L(1, π, ad)

.

5.4. The archimedean case. We discuss the case in which F = R and
K = C. Put ζF (s) = π−s/2Γ

(
s
2

)
. We define the character of C by e(z) =

e2π
√
−1z for z ∈ C. Its restriction to F is denoted by ψF . The measure dx on

R is the Lebesgue measure and d×x = dx
|x|R . Let dz be the standard measure

on Sym2(R) defined by viewing Sym2(R) as R3 in an obvious fashion.
Denote by Symg(R)+ the set of positive definite symmetric matrices of

rank g over R. Let

GSp2g(R)◦ = {h ∈ GSp2g | λ(h) > 0}

be the identity component of the real reductive group GSp2g(R). We can
define the action of the connected component GSp2g(R)◦ on the space

Hg = {Z ∈ Symg(C) | =Z ∈ Symg(R)+}

and the automorphy factor on GSp2g(R)◦ × Hg by

hZ = (AZ +B)(CZ +D)−1, j(h, Z) = (deth)−1/2 det(CZ +D)

for Z ∈ Hg and h =

(
A B
C D

)
∈ GSp2g(R)◦ with matrices A,B,C,D of size

g. Put ig =
√
−11g. Define the maximal compact subgroup of GSp2g(R)◦

by

Un = {h ∈ GSp2g(R)◦ | h(ig) = ig}.

Definition 5.4. For each positive integer κ we denote the lowest weight

representation of GSp2g(R)◦ with lowest Ug-type k 7→ j(k, ig)
−κ by D

(g)
κ

and the highest weight representation with highest Ug-type k 7→ j(k, ig)
κ

by D
(g)
−κ. The direct sum D

(g)
κ = D

(g)
κ ⊕ D

(g)
−κ extends to an irreducible

representation of GSp2g(R).

Remark 5.5. If S ∈ Sym2(R) is positive or negative definite, then Theorem

3.10 of [30] says that D
(2)
κ admits a Bessel model relative to (Λ, S) if and

only if Λ is trivial. This fact is compatible with our observations in the
previous subsection.

To simplify notation, we set

J(m) = I(sgnm ◦ det, ω
(3−2m)/2
R ), N(m) = M(sgnm ◦ det, ω

(3−2m)/2
R )

for m ∈ Z. As is well-known, D
(2)
±κ are subrepresentations of the degenerate

principal series J(κ) which is here viewed as a representation of GSp4(R)◦.

The representation D
(2)
κ (resp. D

(2)
−κ) is generated by the function φκ(h) =

j(h, i2)−κ (resp. φ−κ(h) = j(h, i2)
−κ

). These functions φ±κ are extended



31

uniquely to elements of J(κ). Since φκ(hd(−1)) = φ−κ(h), we can view D
(2)
κ

as a subrepresentation of J(κ).

Put ϕκ = φ
(2κ−3)
κ ∈ J(3− κ) and Bs

S = B
ωsR
S . Observe that

B
(2s+3−2κ)/2
S (φ(s)

κ ) =

∫
Sym2(R)

φ(s)
κ (J2n(z))e(−tr(Sz)) dz

=

∫
Sym2(R)

| det(z + i2)|s det(z + i2)−κe(−tr(Sz)) dz

= ξ
(
12, S;κ− s

2
,−s

2

)
.

The confluent hypergeometric function ξ(Y, S;α, β) is extensively studied in
[34]. By Lemma 3.1 of [40] the operator

M(sgnκ ◦ det, ω−sR )

L(−s− 1
2 , sgnκ

)
Γ (−s)

is entire. In particular, M(sgnκ ◦ det, ω−sR ) is holomorphic at s = κ − 3
2 .

Letting S = 0, s = 2κ− 3 + t and t→ 0, we get

N(3− κ)ϕκ = lim
t→0

ξ

(
12, 0;

3− t
2

,
3− t

2
− κ
)
φ(−t)
κ

= lim
t→0

(−1)κ2−1(2π)3 Γ2

(
3
2 − t− κ

)
Γ2

(
3−t

2

)
Γ2

(
3−t

2 − κ
)22κ+2t−3φκ

= (−1)κ4−1(2π)3Γ2(3/2)−122κ−3φκ = 2−1(−4)κπ2φκ

by (1.31) of [34], where Γ2(s) =
√
πΓ (s)Γ

(
s − 1

2

)
. We write D(2)

κ for the

subrepresentation of J(3 − κ) generated by ϕκ. It has the module D
(2)
κ

as a quotient. The quotient map D(2)
κ � D

(2)
κ is realized by the operator

N(3− κ). Since J(3− κ) is multiplicity free even as a representation of U2,

any GSp4(R)-invariant pairing D(2)
κ ×D(2)

κ → C factors through the quotient

map. We construct a GSp4(R)-invariant pairing r : D
(2)
κ ×D(2)

κ → C in the

following way: for φ, φ′ ∈ D
(2)
κ we set

r(φ, φ′) = q(ϕ, φ′),

where we take ϕ ∈ D(2)
κ so that N(3− κ)ϕ = φ.

Definition 5.6 (Bessel integrals for D
(2)
κ ). We define

Aκ
S(φ, φ′) =

∫
Sym2(R)

r(D(2)
κ (n(z))φ,D(2)

κ (d(−1))φ′)e(tr(Sz)) dz

for κ ∈ N, S ∈ Sym2(R)+ and φ, φ′ ∈ D(2)
κ .

Remark 5.7. We make the integral above meaningful by analytic continua-

tion (see the previous subsection). If κ ≥ 2, then D
(2)
κ is a discrete series

and this integral converges absolutely by Proposition 3.15 of [26].
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Proposition 5.8. For every positive integer κ and S ∈ Sym2(R)+ we have

Aκ
S(φκ, φκ)

r(φκ, D
(2)
κ (d(−1))φκ)

= 24κ−2(2π)2κ−1 (detS)(2κ−3)/2

Γ (2κ− 1)
e−4πtr(S).

Proof. In view of (5.3) we arrive at

Aκ
S(φ, φ′) =

∫
Sym2(R)

q(D(2)
κ (n(z))ϕ,D(2)

κ (d(−1))φ′)e(tr(Sz)) dz

= B
(2κ−3)/2
S (ϕ)B

(3−2κ)/2
−S (D(2)

κ (d(−1))φ′).

Let φ = φ′ = φκ and ϕ = 2(−4)−κπ−2ϕκ. Then

r(φκ, D
(2)
κ (d(−1))φκ) = 2(−4)−κπ−2q(ϕκ, D

(2)
κ (d(−1))φκ)

= 2(−4)−κπ−2

∫
Sym2(R)

ϕκ(J2n(z))φ−κ(J2n(z)) dz

= 2(−4)−κπ−2ξ

(
12, 0;

3

2
,
3

2

)
= 2(−4)−κ.

From (4.34.K) and (4.35.K) of [34]

B
(3−2κ)/2
S (φκ) = ξ(i2, S;κ, 0) = (−1)κ4π(4κ−1)/2 (4 detS)(2κ−3)/2

Γ (κ)Γ
(
κ− 1

2

) e−2πtr(S),

B
(2κ−3)/2
S (ϕκ) = ξ

(
i2, S;

3

2
,
3

2
− κ
)

= (−4)κπ2e−2πtr(S).

We get B
(2κ−3)/2
S (ϕ) = 2e−2πtr(S) and conclude that

Aκ
S(φκ, φκ)

r(φκ, D
(2)
κ (d(−1))φκ)

= 2−1(−4)κB
(2κ−3)/2
S (ϕ)B

(3−2κ)/2
−S (D(2)

κ (d(−1))φκ)

= 2−1(−4)κ2e−2πtr(S)B
(3−2κ)/2
S (φκ),

which completes our proof. �

6. Bessel periods on principal series representations

6.1. Tate’s local zeta integral. Let us recall Tate’s theory for local factors
of quasi-characters of the multiplicative group of a local field L. Denote by
S(L) the space of Bruhat-Schwartz functions on L. Fix a non-trivial additive
character ψL of L. Tate’s local zeta integral is defined by

Z(Φ, σ) =

∫
L×

Φ(x)σ(x) d×x

for σ ∈ Ω(L×) and Φ ∈ S(L). The gamma factor

γ(s, σ, ψL) = ε(s, σ, ψL)
L(1− s, σ−1)

L(s, σ)
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is defined as the proportionality constant of the functional equation

Z(Φ̂, σ−1ω1−s
L ) = γ(s, σ, ψL)Z(Φ, σωsL),

where

Φ̂(y) =

∫
L

Φ(x)ψL(yx) dx

is the Fourier transform with respect to ψL. We repeatedly use the equation

(6.1) γ(s, σ, ψL)γ(1− s, σ−1, ψL) = σ(−1),

Define the additive character ψK on K by ψK(x) = ψ(TrKF (k−1x)), where

k =

{
e1 − e2 if K = Fe1 ⊕ Fe2 is split,

θ − θ if K is not split.

6.2. Principal series representations. Let χ1, χ2, σ ∈ Ω(F×) be such
that χ1χ2 = σ−2. We consider the principal series representation

π = I2(χ) = χ1 × χ2 o σ := Ind
GSp4(F )
B2

χ,

where the character χ of B2 is defined by

χ(m(diag[a, d], λ)u) = χ1(a)χ2(d)σ(λ) (a, d, λ ∈ F×, u ∈ U2(F )).

The induction is always normalized, i.e., the space V of π consists of C-
valued functions on GSp4(F ) with the transformation property

φ(m(diag[a, d], λ)ug) = χ1(a)χ2(d)σ(λ)|a|2|d||λ|−3/2φ(g).

If χ1 and χ2 are unitary, then π is irreducible by Lemma 3.2 of [32].
Then π is equivalent to the induced representation I(π0, σ), where we put

π0 = I1(χ1σ). A ψ-Whittaker functional W on I1(χ1σ) is constructed by
the Jacquet integral

Wf (g) = W(π(g)f) :=

∫ st

F
f(J1n(x)g)ψ(−x) dx.

We define the GL2(F )-invariant pairing bW : π0 × π∨0 → C by

bW(f, f ′) =

∫
F×

Wf (diag[a, 1])Wf ′(diag[−a, 1]) da

and identify π∨ with I(π∨0 , σ
−1) ' χ−1

1 × χ
−1
2 o σ−1 via the pairing

b]W(φ, φ′) =

∫
Sym2(F )

bW(φ(wsn(z)), φ′(wsn(z))) dz.

For a Weyl element w of GSp4(F ) we define χw ∈ Ω(T2) by χw(t) =
χ(w−1tw) and define the intertwining operator Mw(χ) : I2(χ) → I2(χw) by
the integral

[Mw(χ)φ](g) =

∫
U2∩wU2w−1\U2

φ(w−1ug)du.

This integral is absolutely convergent if χ lies in some open set, and can be
meromorphically continued to all χ. Let Σ+ be the set of positive roots of
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GSp4. For each α ∈ Σ, let Gα be the derived group of the centralizer in
GSp4 of the kernel of α. Then Gα has relative semi-simple rank one. Letting
ια : SL2 → Gα be the relevant homomorphism, we define χα ∈ Ω(F×) by
χα(a) = χ(ια(diag[a, a−1])) for a ∈ F×. Now we define the normalized
intertwining operator

M∗w(χ) =
∏

α∈Σ+, αw /∈Σ+

γ(0, χα, ψ) ·Mw(χ).

For example,

M∗w†(χ) = γ(0, χ1χ
−1
2 , ψ)γ(0, χ1χ2, ψ)γ(0, χ1, ψ)γ(0, χ2, ψ)Mw†(χ),

M∗ws(χ) = γ(0, χ1χ2, ψ)γ(0, χ1, ψ)γ(0, χ2, ψ)Mws(χ).

6.3. Toric periods on principal series representations. Let π0 = I1(µ).
We define the toric period of f ∈ I1(µ) in the split case by

Tµ
Λ(f) =

∫
F×

f(גdiag[a, 1])Λ0(a)−1d×a, ג =

(
0 −1
1 1

)
,

where we have written Λ = (Λ0,Λ
−1
0 ), and in the non-split case by

Tµ
Λ(f) =

∫
F×\K×

f(ι(t))Λ(t)−1 dt

otherwise. The former integral is convergent if <µ > −1
2 .

Lemma 6.1. If K/F is split, then for f ∈ I1(µ)

Tµ
Λ = γ

(
1

2
, µ−1Λ−1

0 , ψ

)
TW

Λ (f).

Proof. For each Φ = Φ1 ⊗ Φ2 ∈ S(F ⊕ F ) we define the Godement section
f = fΦ

µ as in (6.2). The left hand side equals∫
F×

µ(a)|a|1/2F

∫
F×

Φ

(
(0, b)

(
0 −1
a 1

))
µ(b)2|b|FΛ0(a)−1 d×bd×a

= Z(Φ1, µΛ−1
0 ω

1/2
F )Z(Φ2, µΛ0ω

1/2
F ).

The right hand side equals the product of γ
(

1
2 , µ
−1Λ−1

0 , ψ
)

and∫
F×

∫ st

F
µ(a)|a|1/2F

∫
F×

Φ

(
(0, b)

(
0 −1
a x

))
µ(b)2|b|F

ψ(−x)

Λ0(a)
d×bdxd×a

= Z(Φ1, µΛ−1
0 ω

1/2
F )Z(Φ̂2, µ

−1Λ−1
0 ω

1/2
F )(µΛ0)(−1).

The lemma follows from the functional equation for Tate’s local integral. �

We associate to Λ ∈ Ω1(F×\K×) the toric integral

PΛ ∈ HomK××K×(I1(µ) � I1(µ−1),Λ � Λ)
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by the convergent integral

PΛ(f, f ′) = L(1, τK/F )

∫
F×\K×

bW(π0(t)f, π0(J)f ′)Λ−1(t) dt.

The normalized intertwining operator M(µ1, µ2) : I(µ1, µ2) → I(µ2, µ1)
is defined by the integral

[M(µ1, µ2)f ](g) := γ(0, µ1µ
−1
2 , ψ)

∫
F
f(J1n(x)g) dx

if <(µ1µ
−1
2 ) > 1, and by meromorphic continuation otherwise. To simplify

notation, we will write M(σ) =M(σ, σ−1).

Lemma 6.2.

Tσ−1

Λ ◦M(σ) = γ

(
1

2
, σKΛ, ψK

)
Tσ

Λ.

Proof. Since W(M(σ)f) = W(f) for the choice of a normalization of the
intertwining operator, if K/F is split, then Lemma 6.1 gives

Tσ−1

Λ ◦M(σ) =
γ
(

1
2 , σΛ−1

0 , ψ
)

γ
(

1
2 , σ
−1Λ−1

0 , ψ
)Tσ

Λ = γ

(
1

2
, σKΛ, ψK

)
Tσ

Λ.

Let K be a field. To each Φ ∈ S(F ⊕F ) we associate the Godement section

(6.2) fΦ
σ (g) = σ(det g)|det g|1/2F

∫
F×

Φ((0, b)g)σ(b)2|b|F d×b ∈ I1(σ).

We shall identify Φ with a Bruhat-Schwartz function on K in such a way
that Φ(aθ + b) = Φ(a, b). Define the Fourier transforms of Φ by

Φ̂(z) =

∫
K

Φ(x)ψK(xz) dx, Φ̃(z) =

∫
K

Φ(x)ψK(xz) dx.

The proof of Lemma 14.7.1 of [22] tells us that

(6.3) M(σ)fΦ
σ = f Φ̃

σ−1 .

Notice that ψK((aθ + b)(xθ̄ + y)) = ψ(ay − bx).
Observe that

Tσ
Λ(fΦ

σ ) =

∫
F×\K×

∫
F×

Φ(bt)
σ(b2tt)|b2tt|1/2F

Λ(t)
d×bd×t = Z(Φ, σKΛ−1ω

1/2
K ).

We define Φτ ∈ S(K) by Φτ (x) = Φ(x̄). Since Φ̃(z) = Φ̂τ (−z) and Λ(−t̄) =
Λ(t)−1 for t ∈ K×, the lemma follows again from (6.3) and the functional
equation for GL1(K). �
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6.4. Factorizations. Given φ ∈ π = I2(χ) and φ′ ∈ I2(χ−1), we define

JΛ
S (φ, φ′) =

∫
F×\K×

∫ st

Sym2(F )
b]W(π(n(z)t(t))φ, φ′)ΛS(n(z)t(t))) dtdz.

Put χ1 = µσ−1 and χ2 = µ−1σ−1. Then I(π0, σ) is equivalent to I2(χ).
Let π′0 be a generic irreducible subrepresentation of I1(µ). Since Tµ

Λ is

necessarily proportional to TWΛ on π′0 by uniqueness, Lemma 3.3 allows us
to define the Bessel period Bχ

S′,Λ ∈ HomRS′ (I(π′0, σ),ΛS′) by

Bχ
S′,Λ(φ) = lim

i→∞

∫
Symi

2

Tµ
Λ(φ(wsn(z)))ψS′(−z) dz.

If K is a field, then the pairing

I1(µ)⊗ I1(µ−1) 3 f ⊗ f ′ 7→
∫
F×\K×

f(c)f ′(c) dc

is also GL2(F )-invariant as GL2(F ) = B1K
×.

Lemma 6.3. If K/F is not split, then for f ∈ I1(µ) and f ′ ∈ I1(µ−1)

bW(f, f ′) = µ(−1)
|dF |1/2ζ(1)

|dK |1/2L(1, τK/F )

∫
F×\K×

f(c)f ′(c) dc.

Proof. Define f †µ ∈ I1(µ) by f †µ(B1) = 0 and f †µ(J1n(z)) = 1loF (z). Then

W
f†µ

(diag[a, 1]) = µ(a)−1|a|1/21loF (a)

and hence bW(hµ , f
†
µ−1) = µ(−1)ζ(1). Since

(6.4) ι(x) =

(
x+ Tr(θ) −N(θ)

1 x

)
=

(
N(x+ θ) x+ Tr(θ)

0 1

)
J1n(x),

we have

f †µ(ι(x+ θ)) = µK(x+ θ)|x+ θ|1/2K 1loF (x)

for x ∈ F . Since f †µ(F×) = 0,∫
F×\K×

f †µ(c)f †
µ−1(c) dc =

|dK |1/2

|dF |1/2

∫
F×

(f †µf
†
µ−1)(ι(x+ θ))

L(1, τK/F )

|x+ θ|K
dx

The identity therefore holds if f = f †µ and f ′ = f †
µ−1 . Since the GL2(F )-

invariant pairings must be proportional, it holds in general. �

Proposition 6.4. For f ∈ I1(µ) and f ′ ∈ I1(µ−1)

PΛ(f, f ′) = µ(−1)ζ(1)|dF |1/2|dK |−1/2Tµ
Λ(π0(ς)f)Tµ−1

Λ−1(π0(ςJ)f ′).

Proof. Set h = π0(ς)f and h′ = π0(ςJ)f ′. In the split case we have

ζ(1)−1PΛ(f, f ′) =

∫
F×\K×

bW(π0(ις(t))h, h
′)Λ(t)−1 d×t
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=

∫
F×

∫
F×

Wh(t(ba))Wh′(t(−b))Λ0(a)−1 d×bd×a.

Lemma 6.1 now proves the declared identity.
Next we shall prove the non-split case. Lemma 6.3 gives

PΛ(f, f ′) =µ(−1)ζ(1)
|dF |1/2

|dK |1/2

∫
F×\K×

∫
F×\K×

f(ct)f ′(cJ)Λ(t)−1 dcdt.

The double integral above is clearly equal to Tµ
Λ(f)Tµ−1

Λ−1(π0(J)f ′). �

Proposition 6.5. For φ ∈ I2(χ) and φ′ ∈ I2(χ−1)

JΛ
S (φ, φ′) =

µ(−1)ζ(1)|dF |1/2

L(1, τK/F )|dK |1/2
Bχ
S′,Λ(π(m(ς))φ)Bχ−1

−S′,Λ−1(π(m(ς)t(J))φ′).

Proof. One can prove Proposition 6.5 in the same way as in the proof of
Proposition 3.4, using Proposition 6.4. �

6.5. Functional equations for Bχ
S,Λ. Our goal is to prove the following

functional equation:

Proposition 6.6.

Bχ−1

S′,Λ ◦M
∗
w†

(χ) = γ

(
1

2
, µKΛ, ψK

)
γ

(
1

2
, σ−1

K Λ, ψK

)
Bχ
S′,Λ.

By uniqueness we arrive at a functional equation

Bχw

S′,Λ ◦M
∗
w(χ) = c(w,χ,Λ, ψ)Bχ

S′,Λ.

When both χ and Λ are unramified, the factor c(w,χ,Λ, ψ) and Lemma 6.2
were calculated in [7]. We will generalize these results to ramified characters.

Proposition 6.7.

c(s1, χ,Λ, ψ) =γ

(
1

2
, (χ1σ)KΛ, ψK

)
, c(s2, χ,Λ, ψ) =1.

Proof. Let φ ∈ I2(χ). From the expression

Bχs1
S′,Λ(M∗s1(χ)φ) = lim

i→∞

∫
Symi

2

T
(χ1σ)−1

Λ (M(χ1σ)φ(wsn(z)))ψS′(−z) dz.

We deduce the assertion for s1 from Lemma 6.2.
To prove the assertion for s2, we consider the following embedding

ι : GL2 → GSp4, ι

((
a b
c d

))
=


ad− bc

a b
1

c d


and the subgroup U ′′2 of N2 given by

U ′′2 =

{
n

((
0 y
y w

)) ∣∣∣∣ y, w ∈ F}
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Then ι(J1) = s2, and we can write a unique expression

wsnt(t) = ι(J1n(x))g′, g′ = s2wsu
′′t(t), u′′ ∈ U ′′2 .

Put Bχ
S,Λ = Bχ

S′,Λ◦π(m(ς)) with π = I2(χ). Recall that the upper left entry

of S is 1. If <σ > −1
2 , then Bχs2

S,Λ(M∗s2(χ)φ) is equal to∫
F×\K×

∫
U ′′2

∫
F

[M∗s2(χ)φ](ι(J1n(x))g′)ψ(−x) dxψS(u′′)Λ−1(t) du′′dt.

Note that χs2 = (χ1, χ
−1
2 , χ2σ). We define the function f : GL2(F )→ C via

f(A) = φ(ι(A)g′). Clearly,

f ∈ I(σ−1, χ1σ), [M∗s2(χ)φ](ι(A)g′) = [M(σ−1, χ1σ)f ](A).

Since W(M(σ−1, χ1σ)h) = W(h) for any h ∈ I(σ−1, χ1σ), we find that

Bχs2
S,Λ(M∗s2(χ)φ)

=

∫
F×\K×

∫
U ′′2

∫
F
φ(ι(J1n(x))g′)ψ(−x)dxψS(u′′)Λ(t) du′′dt = Bσ

S,Λ(φ),

which proves the assertion for s2. �

Now we will prove Proposition 6.6. Observe that

χs2 = (χ1, χ
−1
2 , χ2σ), χs1s2 = (χ−1

2 , χ1, χ2σ), χs2s1s2 = (χ−1
2 , χ−1

1 , σ−1)

and χs1s2s1s2 = χ−1. Proposition 6.7 gives

c(w†, χ,Λ, ψ)

=c(s1, χ
s2s1s2 ,Λ, ψ)c(s2, χ

s1s2 ,Λ, ψ)c(s1, χ
s2 ,Λ, ψ)c(s2, χ,Λ, ψ)

=γ

(
1

2
, (χ2σ)−1

K Λ, ψK

)
· 1 · γ

(
1

2
, (χ1χ2σ)KΛ, ψK

)
· 1.

6.6. Local coefficients. The factor c(w,χ,Λ, ψ) is an analogue of the local
coefficients for Bessel models instead of Whittaker models and have been
studied in [11] in more general situations. We will discuss a functional

equation for the Bessel periods BW,σ
S′,Λ introduced in Definition 3.2, which is

of interest in its own right. This result is not used in our later discussion
and the reader can skip the rest of this section and continue reading from
the next section onwards.

Conjecture 6.8. Let π0 be an irreducible admissible unitary generic rep-
resentation of PGL2(F ) and σ ∈ Ω(F×). Then

BW,σ−1

S′,Λ ◦M∗(π0, σ) = γ

(
1

2
, σ−1

K Λ, ψK

)
BW,σ
S′,Λ.

We will prove this conjecture, provided that π0 is not supercuspidal. One
will be able to prove the supercuspidal case by the global method.
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Proposition 6.9. Conjecture 6.8 is true if π0 is not supercuspidal and −1
2 <

<σ < 1
2 .

Proof. By uniqueness the Bessel period admits a functional equation

BW,σ−1

S′,Λ ◦M∗(π0, σ) = c(π0, σ,Λ, ψ)BW,σ
S′,Λ.

Take µ ∈ Ω(F×) with <µ > −1
2 such that π0 is equivalent to the (unique)

irreducible subrepresentation of the principal series representation I1(µ) of
GL2(F ). Since χws = (χ−1

2 , χ−1
1 , σ−1), we have I2(χws) = I(π0, σ

−1). The
restriction of M∗ws(χ) to I(π0, σ) agrees with the normalized intertwining
operator M∗(π0, σ), and consequently

c(π0, σ,Λ, ψ) = c(ws, χ,Λ, ψ).

Since c(π0, σω
s
F , ψ) is a meromorphic function in s, it suffices to prove

the equality for σ in a general position. We may therefore suppose that
γ(s, σΛ−1

0 , ψ) and γ(s, σ−1χ−1
1 Λ−1

0 , ψ) have no pole or zero at s = 1
2 . Then

c(ws, χ,Λ, ψ) = 1 · c(s1, χ
s2 ,Λ, ψ) · 1 = γ

(
1

2
, σ−1

K Λ, ψK

)
by Proposition 6.7. �

7. The Iwahori Hecke algebras and the ordinary projector e0
ord

We introduce the ordinary projector on principal series representations of
GSp4(F ). Define the Iwahori subgroup of GSp4(oF ) by

I =

g ∈ GSp4(oF )

∣∣∣∣∣∣∣∣ g ≡

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 ∗ ∗

 (mod p)

 .

We define elements of GSp4(F ) by

δ1 = diag[$, 1, $−1, 1], δ2 = diag[−$,−$, 1, 1],

w† =

(
0 12

−12 0

)
, s1 = m

((
0 1
1 0

))
,

s2 =


1

1
1

−1

 , η =


0 0 0 1
0 0 1 0
0 $ 0 0
$ 0 0 0

 , s0 =


− 1
$

1
$

1

 .

Observe that

w† = s1s2s1s2, η = s2s1s2δ2, s0 = ηs2η
−1, ηs1η

−1 = s1.

Let (π, V ) be an admissible representation of GSp4(F ). For an open
compact subgroup K of GSp4(F ) the subspace

V K = {φ ∈ V | π(k)φ = φ for k ∈ K}
consists of K-invariant vectors.
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Definition 7.1 (Hecke operators). Given g ∈ GSp4(F ), we write IgI =⊔
u∈Ig ugI and define the operator [IgI] on V I by

[IgI]v =
∑
u∈Ig

π(ug)v.

Put qg = [I : I ∩ gIg−1] = ]Ig. Define the Hecke operators by

UQ = [Iδ1I], UP = [Iδ2I].

Let T ′2 be the diagonal torus of Sp4 and Ñ the normalizer of T ′2 (F ) in

Sp4(F ). The Weyl group W = Ñ/T ′2 (F ) has 8 elements and is generated
by the images of s1, s2. We may view W as a subgroup of Sp4(oF ) and will
not distinguish in notation between the matrices s1, s2 and their images in
W . The affine Weyl group W̃ = Ñ/T ′2 (oF ) is generated by the images of s0,

s1 and s2. The length `(w) of w ∈ W̃ is defined as the minimum number of
uses of s0, s1 and s2 required to express w. If `(ww′) = `(w)`(w′), then

qww′ = qwqw′ , [Iww′I] = [IwI][Iw′I].(7.1)

Let χ1, χ2, σ ∈ Ω1(F×)◦ be such that χ1χ2 = σ−2. We consider the
unramified principal series representation

π = χ1 × χ2 o σ = Ind
GSp4(F )
B2

χ,

which is irreducible by Lemma 3.2 of [32]. Put

α = χ1($), β = χ2($), γ = σ($), α0 = αγ.

The space V I has the basis {φw}w∈W , where φw is the unique I-invariant
vector of V such that φw(w) = 1 and φw(w′) = 0 for w 6= w′ ∈ W . We will
primarily be interested in φ† = φw† = φs1s2s1s2 . It is convenient to order the
basis as follows:

φ14 , φs1 , φs2 , φs2s1 , φs1s2s1 , φs1s2 , φs1s2s1s2 , φs2s1s2 .

With respect to this basis the actions of [IsiI] and [IηI] on V I are given by

[Is1I] =



0 q
1 q − 1

0 q
1 q − 1

q − 1 1
q 0

q − 1 1
q 0


,

[Is2I] =



0 0 q 0 0 0 0 0
0 0 0 0 0 q 0 0
1 0 q − 1 0 0 0 0 0
0 0 0 0 0 0 0 q
0 0 0 0 0 0 q 0
0 1 0 0 0 q − 1 0 0
0 0 0 0 1 0 q − 1 0
0 0 0 1 0 0 0 q − 1


,
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[IηI] =



γq3/2

γq3/2

βγq1/2

βγq1/2
αγ

q1/2
αγ

q1/2
αβγ

q3/2
αβγ

q3/2


.

thanks to Lemma 2.1.12 of [33]. We have [Is0I] = [IηI][Is2I][IηI]−1. Let

φ0
χ = φ14 + φs1 + φs2 + φs2s1 + φs1s2s1 + φs1s2 + φ† + φs2s1s2

be the unique element of π that takes the value 1 on GSp4(oF ).

Definition 7.2 ((α−1, γ)-stabilizations). Introduce the ordinary projector

e0
ord :=

α

γ3q13/2
(UQ − q2/β)(UP − q3/2/γ)(UP − q3/2γα)(UP − q3/2γβ)

(cf. [28]). Define stabilizations of φ0
χ by

φ‡ = e0
ordφ

0
χ,

φ[ = q−15/2γ−1α3(UP − q3/2γβ)(UQ − q2α)(UQ − q2β)(UQ − q2β−1)φ0
χ.

Remark 7.3. The operators UQ and UP are commutative.

Proposition 7.4. (1) The support of φ† is contained in B2w†U2(oF ).

(2) φ† is an eigenform for both UQ and UP , i.e.,

UQφ† = q2α−1φ†, UPφ† = q3/2γφ†.

(3) φ‡ and φ[ are eigenforms for both UQ and UP . Moreover,

φ‡ = (1− αq−1)(1− βq−1)(1− γ2α2q−1)(1− γ−2q−1)φ†, φ[ = (α+ 1)φ‡.

Remark 7.5. One can partially deduce (2) from (1), namely,

[IδiI]φ† = ([IδiI]φ†)(w†)φ†.

Let g ∈ GSp4(F ) be such that ([IδiI]φ†)(g) 6= 0. There exists u ∈ I such
that φ†(guδi) 6= 0. We have guδi ∈ B2w†U2(oF ) in view of (1). Since

δiU2(oF )δ−1
i ⊂ U2(oF ), we get g ∈ B2w†I = B2w†U2(oF ).

Proof. Put

Ū2 = w†U2w
−1
† , Ū2(p) = {u ∈ Ū2(oF ) | u ≡ 14 (mod p)}.

Thanks to the Iwahori factorization I = Ū2(p)B2(oF ) = B2(oF )Ū2(p), we get

B2Iw†I = B2Ū2(p)w†I = B2w†I = B2w†Ū2(p)B2(oF ) = B2w†U2(oF ).

To prove (2), one can show that

UQ = [Is1I][Is2I][Is1I][Is0I], UP = [Is2I][Is1I][Is2I][IηI],

using (7.1). By direct computations the matrix representation of UQ is

2The matrix for [Is1I] in Lemma 2.1.1 of [33] contains a typo.
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q2α 0 0 0 0 0 0 0
αq(q − 1) q2β 0 0 0 0 0 0

0 0 q2α 0 0 0 0 0

0 q(q − 1)(β + 1) αq(q − 1) q2

β 0 0 0 0

(α+ 1)(q − 1) (q − 1)2 α(q − 1)2 q2−q
β

q2

α βq(q − 1) 0 0

0 0 αq(q − 1) 0 0 q2β 0 0
α
q (q − 1)2 β(q − 1) (q − 1){α(q − 1 + 1

q ) + 1} 0 0 (q − 1)2(β + 1) q2

α
q2−q
β

α(q − 1) 0 α(q − 1)2 0 0 q(q − 1)(β + 1) 0 q2

β


and the matrix representation of UP is given by

q3/2

γ 0 0 0 0 0 0 0

0 q3/2

γ 0 0 0 0 0 0

q1/2(q−1)
γ 0 γαq3/2 0 0 0 0 0

0
q1/2(q−1)

γ 0 γαq3/2 0 0 0 0

q−1

γq1/2
(q−1)2

γq1/2
0 γαq1/2(q − 1) γβq3/2 0 0 0

0
q1/2(q−1)

γ
q1/2(q−1)

γβ 0 0 γβq3/2 0 0
(q−1)2

γq3/2
(q3−2q2+2q−1)

γq3/2
γα(q−1)

q1/2
γα(q−1)2

q1/2
γβq1/2(q − 1) 0 γq3/2 0

q−1

γq1/2
(q−1)2

γq1/2
0 γαq1/2(q − 1) 0

q1/2(q−1)
γα 0 γq3/2



From these we can prove (2) and observe that both φ‡ and φ[ are multiples
of φ†. By a brute force calculation one can show that

αγ−3q−13/2(UQ − q2β−1)(UP − q3/2γ−1)(UP − q3/2γα)(UP − q3/2γβ)e0

=(1− αq−1)(1− βq−1)(1− γ2α2q−1)(1− γ−2q−1)e7,

where e0 = t(1, 1, 1, 1, 1, 1, 1, 1) and e7 = t(0, 0, 0, 0, 0, 0, 1, 0). �

8. Explicit calculations of Bessel integrals III: ordinary
vectors

Let µ, σ ∈ Ω(F×)◦. Put π0 = I1(µ) and χ = (µσ−1, µ−1σ−1, σ). Let
π = I(π0, σ) = I2(χ) be an irreducible unramified unitary principal series
representation of PGSp4(F ). Recall that φ‡ = e0

ordφ
0
χ is the p-stabilization

of the spherical section φ0
χ in I2(χ) obtained by the ordinary projector e0

ord

in Definition 7.2. Let Λ ∈ Ω(F×\K×).

Definition 8.1. When Λ is trivial on r×, set c(Λ) = 0. Otherwise we put

c(Λ) = max{s ∈ N | Λ is trivial on 1 + psr}.

For any given positive integer n we put

ξ(n) := m(ς
(n)
p ), ς

(n)
p :=



(
θ −1

1 0

)(
$n 0

0 1

)
if K = F ⊕ F ,(

0 1

$n 0

)
otherwise.
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Set n = max{1, c(Λ)}. Our task in this section is to compute

BΛ
S(π(ξ(n))e0

ord) =
JΛ
S (π(ξ(n))e0

ordφ
0
χ,M

∗
w†

(χ)π(ξ(n))e0
ordφ

0
χ)

b]W(φ0
χ,M

∗
w†

(χ)φ0
χ)

,

where we use the pairing b]W to define JΛ
S . Recall the unique section φ† ∈

I2(χ) supported in B2w†N2(oF ) with φ†(w†) = 1. Since (ς(n))−1Jς(n) ∈ I,
the following result readily follows upon combining Propositions 6.5 and 6.6:

L(1, τK/F )
JΛ
S (π(ξ(n))φ†,M∗w†(χ)π(ξ(n))φ†)

ζ(1)γ
(

1
2 , µKΛ, ψK

)
γ
(

1
2 , σ
−1
K Λ, ψK

)(8.1)

=|dF |1/2|dK |−1/2Bχ
S′,Λ(π(m(ςς(n)))φ†)Bχ

−S′,Λ−1(π(m(ςς(n)))φ†).

We retain the notation in the previous section. Put

α = µ($), γ = σ($).

In the split case we write Λ = (Λ0,Λ
−1
0 ). Set

π0 ' I1(µ), χ = (µσ−1, µ−1σ−1, σ), π = I2(χ) ' I(π0, σ).

Definition 8.2. Define the modified p-Euler factor

e(π,Λ) =
αc(Λ)

L
(

1
2 , (χ1σ)KΛ

)
L
(

1
2 , σ
−1
K Λ

) .
Recall the element f †µ ∈ I1(µ) defined in the proof of Lemma 6.3.

Lemma 8.3. We have

Tµ
Λ(π0(ςς

(n)
p )f †µ) =

|dK |1/2K L(1, τK/F )

|dF |1/2(αγ)nqn/2
×

{
Λ0(−1) if K = F ⊕ F ,

1 otherwise.

Proof. Note that

ςς
(n)
p =



(
k$n −1

0 1

)
if K/F is split,(

0 1

$n 0

)
if K/F is non-split.

Since W
f†µ

(diag[a, 1]) = µ(a)−1|a|1/21loF (a), if K/F is split, then

TΛ(π0(ςς
(n)
p )f †µ)

γ
(

1
2 , µ
−1Λ−1

0 , ψ
) =

∫
F×
W†
µ−1

((
a 0
0 1

)(
k$n −1

0 1

))
Λ0(a)−1d×a

=

∫
F×

ψ(−a)|a$n|1/2µ(a$n)−11loF (a$n)Λ0(a)−1 d×a

=Z(Φ,Λ−1
0 µ−1ω

1/2
F )Λ0($)n,
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where Φ(x) = ψ
(
− x
$n

)
1loF (x). Since Φ̂(x) = 1l$−n+oF , we obtain

Z(Φ,Λ−1
0 µ−1ω

1/2
F ) =

Z(Φ̂,Λ0µω
1/2
F )

γ
(

1
2 ,Λ

−1
0 µ−1, ψ

) =
(αγ)−nΛ0($)−nqn/2

γ
(

1
2 ,Λ

−1
0 µ−1, ψ

) vol($−n+oF ).

Observe that vol($−n + oF ) = vol(1 + pn) = q−nζ(1).
Next we assume K to be a field. Since

K× = F×(1 + oF θ)
⊔
F×(p + θ),

we use the formula∫
F×\K×

f(t)dt =

∫
oF

f(ι(1 + yθ)) d′y +

∫
p
f(ι(y + θ))

d′y

|y + θ|K
,

where d′y is the Haar measure on F giving oF the volume L(1, τK/F )
|dK |

1/2
K

|dF |1/2
.

Since f †µ(ι(y + θ)ς
(n)
p ) = 0 by (6.4),

Tµ
Λ(π0(ς

(n)
p f †µ) =

∫
oF

f †µ

((
1 + yTr(θ) −yN(θ)

y 1

)(
0 1
$n 0

))
Λ(1 + yθ) d′y

=

∫
oF

f †µ

((
N(1 + yθ) ∗

0 $n

)(
0 1
1 $−ny

))
Λ(1 + yθ) d′y

= µ($)−nqn/2
∫
oF

1loF ($−ny) d′y.

This finishes the proof. �

Lemma 8.4. We have

Bχ
S,Λ(π(m(ς)ξ(n))φ†) = γnq−3n/2Tµ

Λ(π0(ςς
(n)
p )f †µ).

Proof. For any φ ∈ π we have

[π(m(ς)ξ(n))φ](wsn(z)) = γnq3n/2π0(ςς
(n)
p )φ(wsn(ς

(n)−1
p ς−1z tς−1 tς

(n)−1
p )).

Since S[ςς
(n)
p ] ∈ Sym2(oF ) and since φ†(t(A)wsn(z)) = f †µ(A)1lSym2(oF )(z)

by definition, we find the first identity by (3.7). Remark 3.5 and Lemma 8.3
give the second identity. �

The main result of this section is the following explicit formula for the
Bessel integral of ordinary vectors.

Proposition 8.5. Let n = max{1, c(Λ)} and α = χ1($). Then

BΛ
S(π(m(ξ(n))e0

ord)

L(1, τK/F )ζ(2)ζ(4)
=
|dK |1/2K L(1

2 ,Spn(π)K ⊗ Λ)

|dF |1/2L(1, ad, π)
e(π,Λ)2α−2nq−4n.

Proof. It is proved in Proposition 7.4 (2) that

e0
ordφ

0
χ =d(χ)−1φ†, d(χ) =L(1, χ1)L(1, χ2)L(1, (χ1σ)2)L(1, σ−2).
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Put φ′ = π(ξ(n))φ†. By Lemmas 8.3, 8.4 and (8.1)

L(1, τK/F )JΛ
S (φ′,M∗w†(χ)φ′)

ζ(1)γ
(

1
2 , µKΛ, ψK

)
γ
(

1
2 , σ
−1
K Λ, ψK

) = γ2nq−3n |dK |
1/2
K L(1, τK/F )2

|dF |1/2(αγ)2nqn
.

Since

γ

(
1

2
, σ−1

K Λ, ψK

)
= γ−2c(Λ)L

(
1
2 , σKΛ−1

)
L
(

1
2 , σ
−1
K Λ

) ,
γ

(
1

2
, µKΛ, ψK

)
= (αγ)2c(Λ)L

(
1
2 , µ
−1
K Λ−1

)
L
(

1
2 , µKΛ

)
by the definition of the gamma factors, we get

JΛ
S (φ′,M∗w†(χ)φ′)

ζ(1)L(1, τK/F )
=
|dK |1/2K

|dF |1/2
α2c(Λ)−2nq−4nL

(
1
2 , σKΛ−1

)
L
(

1
2 , µ
−1
K Λ−1

)
L
(

1
2 , σ
−1
K Λ

)
L
(

1
2 , µKΛ

)
= |dF |−1/2|dK |1/2K L(1/2, Spn(π)K ⊗ Λ)e(π,Λ)2α−2nq−4n.

In view of (9) of [2] we have

M∗w†(χ)φ0
χ =

L(1, π, ad)

ζ(1)2d(χ)2
φ0
χ−1 .

Let f0
µ be a unique section of I1(µ) such that f0

µ(GL2(oF )) = 1. Then

W(f0
µ) = L(1, µ2)−1, bW(f0

µ, f
0
µ−1) =

ζ(1)L(1, ad, π0)

ζ(2)L(1, µ2)L(1, µ−2)
=
ζ(1)2

ζ(2)
.

Since φ0
χ(t(A)ws) = f0

µ(A), we have

b]W(φ0
χ, φ

0
χ−1) =

ζ(1)2

ζ(2)

∫
Sym2(F )

|a(wsn(z))|−3 dz =
ζ(1)3

ζ(2)ζ(4)
.

We conclude that

d(χ)2bW(φ0
χ,M

∗
w†

(χ)φ0
χ) = L(1, π, ad)ζ(1)ζ(2)−1ζ(4)−1.

From these our proof is complete. �

9. Global Bessel periods for GUD
2

9.1. Notation. If L is a number field, then oL is the ring of integers of
L, AL is the adèle ring of L and L∞ = L ⊗Q R is the infinite part of AL.
When L = Q, we suppress the subscript L. Let Z̄ be the ring of algebraic

integers of Q̄, Z̄` the `-adic completion of Z̄ in C` = Q̂` and Ẑ =
∏
` Z` the

finite completion of Z. Given an abelian group M , we put M̂ = M ⊗Z Ẑ.

In particular, AL = L∞ ⊕ L̂. Let e =
∏
v ev denote the standard additive

character of A/Q such that e∞(x) = e2π
√
−1x for x ∈ R. Set ψL = e ◦ TrLQ.

When G is a reductive algebraic group over L, we denote by Acusp(G) the
space of cusp forms on G(AL). For an adèle point g ∈ G(AL) we denote its

projections toG(L̂), G(L∞) andG(Lv) by gf , g∞ and gv, respectively. We fix
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once and for all an embedding ι∞ : Q̄ ↪→ C and an isomorphism ` : C ' C`
for each rational prime `. Let ι` = ` ◦ ι∞ be their composition. We regard L
as a subfield of C (resp. C`) via ι∞ (resp. ι`) and Hom(L, Q̄) = Hom(L,C`).

Let F be a totally real number field of degree d and K a totally imaginary
quadratic extension of F . We denote by ∆F (resp. ∆K) the discriminant of
F (resp. K), by dF =

∏
l dFl

the different of F , by DK
F the relative different

of K/F and by τK/F the quadratic Hecke character of A× corresponding to

K/F . Fix a square free ideal N = N+N− of oF such that every prime factor
of N+ (resp. N−) is split (resp. not split) in oK . Fix a decomposition

N+oK = N+
0 N

+
0 .

Suppose that the number of prime factors of N− is even. Then there exists
a totally indefinite quaternion algebra D over F of discriminant N−, i.e., D
is a central simple algebra of dimension 4 over F such that Dv := D ⊗v Fv
is a division algebra if and only if v divides N−. Put

ND
Q = NF

Q ◦ND
F , TrDQ = TrFQ ◦ TrDF , N = ](oF /N), N− = ](oF /N

−).

Once and for all we fix a prime p of F , which does not divide N, CM type

Σ of K and a finite idèle dF = (dFl
) ∈ F̂× such that dFl

is a generator of
the local different dFl

for each finite prime l. We identify Σ with the set of
real places of F . Fix a maximal order oD of D. For any finite prime p we
set oDp = oD ⊗oF oFp . If p divides N−, then we write Pp for the maximal
ideal of oDp . We choose an element θ ∈ K such that

• =τ(θ) > 0 for every τ ∈ Σ;
• {1, θ} is an oFl

-basis of oKl
for every prime l dividing pDK

F N;
• θ is a uniformizer of oKl

for every prime l ramified in K.

We regard K as a subalgebra of D. Put S = Sθ := 1
2(θ − θ̄) ∈ D−(F ).

Recall that J1 =

(
0 1
−1 0

)
. Put J? = diag[12, J1]. For v - N− we fix an

isomorphism iv : M2(Fv) ' Dv by which we identity M2m(Fv) with Mm(Dv).
Since i−1

v (x̄) = J−1
1

ti−1
v (x)J1 for x ∈ Dv, we arrive at

J?GUD
2 (Fv)J

−1
? = GSp4(Fv), J1D−(Fv) = Sym2(Fv).

We identify

(
TrKF (θ) −NK

F (θ)
1 0

)
with θ. Then

J1Sθ =

(
1 −TrKF (θ)

2

−TrKF (θ)
2 NK

F (θ)

)
.

We always take the adèlic measure dg on PGUD
2 (AF ) to be the Tamagawa

measure. We define the bilinear pairing by

〈φ, φ′〉 =

∫
PGUD2 (F )\PGUD2 (AF )

φ(g)φ′(g) dg.
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Let π ' ⊗′vπv be an irreducible admissible tempered representation of
PGUD

2 (AF ) which is realized on a subspace V of Acusp(PGUD
2 ). The space

Acusp(PGSp4) satisfies multiplicity one thanks to the work of Arthur. It is

conjectured in general that Acusp(PGUD
2 ) satisfies multiplicity one, which

we assume. Then since πv ' π∨v for every v, we have V = V̄ := {φ̄ | φ ∈ V }.
Thus the restriction of the pairing 〈 , 〉 to V × V is nondegenerate.

Let dz denote the Tamagawa measure on D−(AF ). When l and N− are
coprime, we take the Haar measure dzl on D−(Fl) so that the measure of
D−(Fl)∩ oDl

is 1. For each prime factor q of N− we take the Haar measure
dzq on D−(Fq) so that the measure of D−(Fq)∩Pq is 1. For v ∈ Σ we define
the Haar measure dzv on D−(Fv) by identifying D−(Fv) ' Sym2(Fv) with
F 3
v with respect to the standard basis. Then by Lemma 2.1 of [41]

(9.1) dz = ∆
−3/2
F (N−)−2

∏
v

dzv.

Fix a Hecke character Λ ∈ Ω1(K×A×F \A
×
K). Let dt be the invariant measure

on K×A×F \A
×
K normalized to have total volume 2Λ(1, τK/F ), where

Λ(s, τK/F ) = π−d(s+1)/2Γ ((s+ 1)/2)dL(s, τK/F )

is the complete Hecke L-function of τK/F .
We define the Sth Fourier coefficient and the Bessel period relative to S

and Λ of a cusp form φ ∈ Acusp(PGUD
2 ) by

WS(φ, g) =

∫
D−(F )\D−(AF )

φ(n(z)g)ψF (τ(Sz)) dz,

BΛ
S (φ, g) =

∫
K×A×F \A

×
K

WS(φ, t(t)g)Λ(t)−1 dt.

Here e is the identity element in GUD
2 (AF ). We will write BΛ

S (φ) = BΛ
S (φ, e).

9.2. The refined Gross-Prasad conjecture for the Bessel periods.
For each place v we normalize the local Bessel integrals by

BΛv
S = c(πv,Λv)

−1BΛv
S , c(πv,Λv) = ζFv(2)ζFv(4)

L
(

1
2 , Spn(πv)Kv ⊗ Λv

)
L(1, τKv/Fv)L(1, πv, ad)

.

We denote the complete Dedekind zeta function of F by ξF (s), the com-
plete adjoint L-function of π by Λ(s, π, ad) and the complete Godement-
Jacquet L-function of an automorphic representation Π of a general linear
group by Λ(s,Π).

We rewrite the theorem of Furusawa and Morimoto in a form which is
suitable for our later use (cf. Theorem 1.2).

Theorem 9.1 (Furusawa-Morimoto). Let φi = ⊗vφi,v for i = 1, 2, 3, 4. If
〈φ3, φ4〉 6= 0, then

BΛ
S (φ1)BΛ

S (φ2)

〈φ3, ϕ4〉
= ξF (2)ξF (4)

Λ
(

1
2 , Spn(π)K ⊗ Λ

)
(N−)2∆

3/2
F 2`(π)Λ(1, π, ad)

∏
v

BΛv
S (φ1,v, φ2,v)

〈φ3,v, φ4,v〉v
.
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Proof. The Petersson inner product ( , ) is defined by (φ, ϕ) = 〈φ, ϕ̄〉. Fix
a factorization ( , ) =

∏
v( , )v, where ( , )v is an invariant Hermitian

perfect pairing on πv. Furusawa and Morimoto [15] use ( , )v to define a
local Bessel integral

α\S,Λv(φv, ϕv) = c(πv,Λv)
−1

×
∫
F×v \K×v

∫ st

D−(Fv)
(πv(n(zv)t(tv))φv, ϕv)vψv(TrDF (Szv))Λv(tv) dzvdtv

When v is archimedean, the integral is defined via regularization (see [26]).
We fixed a local invariant C-bilinear pairing 〈 , 〉v : πv×π∨v → C, which is

equivalent to fixing a sesquilinear equivariant isomorphism c : π∨v ' πv such
that 〈φv, ϕv〉v = (φv, ϕ

c
v)v. Fix a factorization 0 6= φ = ⊗vφv ∈ π ' ⊗vπv

and define a factorization π∨ ' ⊗vπ∨v by φ̄ = ⊗vφcv. Then it is formal to see
that ϕ̄ = ⊗vϕcv for all pure tensors ϕ = ⊗vϕv ∈ π.

Theorem 1.2 of [15] gives

BΛ
S (φ1)BΛ

S (φ)

(φ3, φ4)
= ξF (2)ξF (4)

Λ
(

1
2 ,Spn(π)K ⊗ Λ

)
(N−)2∆

3/2
F 2`(π)Λ(1, π, ad)

∏
v

α\S,Λv(φ1,v, φv)

(φ3,v, ϕ
c
4,v)v

by the uniqueness of Bessel period and the identity (φ,φ)
(φ3,φ4) =

∏
v

(φv ,φv)v
(φ3,v ,φ

c
4,v)v

.

We defined the local Bessel integral

BΛv
S (φv, ϕv) = α\S,Λv(φv, πv(m(J,−1))ϕcv)

in Definition 2.2. Let φ = π(m(J,−1))φ2. Since BΛ
S (φ) = BΛ−1

−S (φ2) =

BΛ
S (φ2), we get the stated formula. �

Remark 9.2. (1) The theorem of Furusawa and Morimoto is a special
case of the refined Gross-Prasad conjecture formulated by Liu [26]
for SO(m)×SO(l). It is easily seen that dt =

∏
v dtv. Thus CG0 = 1

and Bπ0(ϕ0, ϕ̄0) = 2Λ(1, τK/F ) in the notation of [26].
(2) Furusawa and Morimoto [13, 14] proved the Liu’s conjecture for ir-

reducible cuspidal tempered representations of SO(2n + 1) and the
trivial character of SO(2). In the course of the proof they verified
that π has the weak lift Spn(π) to GL2n(AF ) and obtain L(s, π, ad)
to be the symmetric square L-function of Spn(π), which is holomor-
phic and nonzero at s = 1, for the exterior square L-function of
Spn(π) has a pole at s = 1.

9.3. A central value formula. Let κ ∈ NΣ be a tuple of d natural numbers
indexed by Σ. We define the action of GUD

2 (F∞)◦ on the space

H∗2 := {Z ∈ M2(F ⊗Q C) | t(ZJ−1
1 ) = ZJ−1

1 , =(ZJ−1
1 ) > 0}

and the automorphy factor Jκ : GUD
2 (F∞)◦ × H∗2 → C× by

hZ = (hvZv)v∈Σ , hvZv = (avZv + bv)(cvZv + dv)
−1,
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Jκ(h, Z) =
∏
v∈Σ

j(hv, Zv)
κv , j(hv, Zv) = NDv

Fv
(cvZv + dv)/N

Dv
Fv

(hv)
1/2,

where we write hv =

(
av bv
cv dv

)
. Let i =

√
−1J1 ∈ H∗2. Put

UΣ
2 = {g ∈ UD

2 (F∞) | g(i) = i}.
The open compact subgroup K(l) (resp. K(Pl)) of GUD

2 (Fl) is defined in
(4.2) (resp. (5.5)). The paramodular subgroup of level N is defined by

KD(N) =
∏
l|N+

J−1
? K(l)J? ×

∏
l|N−

K(Pl)×
∏
l-N

J−1
? GSp4(oFl

)J?.

From now on let π be an irreducible cuspidal automorphic representation of

PGUD
2 (AF ) whose archimedean component is ⊗v∈ΣD(2)

κv and such that πl is
generic for each finite prime l. Let Vκ(π,N) denote the subspace of V on
which the group UΣ

2 ×KD(N) acts by the character k 7→ Jκ(k∞, i)
−1.

Definition 9.3. For φ, φ′ ∈ Vκ(π,N) we normalize the pairing by

〈φ, φ′〉KD(N) = 〈φ, φ′〉
∏
l|N+

(q2
l + 1)

∏
l|N−

(q2
l − 1).

Suppose that dimVκ(π,N) = 1. The representations considered in the
next section satisfy and are characterized by this condition (see Remarks
4.3 and 5.1). Fix 0 6= φπ ∈ Vκ(π,N). Then φπ = ⊗vφ0

v is a pure tensor of
new vectors. Put

εl(π) = ε

(
1

2
, Spn(πl)

)
, εN+(π) =

∏
l|N+

εl(π).

Take χ1, χ2, σ ∈ Ω(F×p )◦ so that πp ' χ1 × χ2 o σ. Put αp = χ1($p) and

γp = σ($p). Define the (α−1
p , γp)-stabilization of φπ by

e0
ord,pφπ = (⊗v 6=pφ

0
v)⊗ e0

ord,pφ
0
p,

where the ordinary projector e0
ord,p is defined in Definition 7.2 with respect

to (α−1
p , γp). For a ∈ F×∞ put aκ =

∏
v∈Σ |a|

κv
Fv

. For l - N we take θl ∈ Kl

and Al ∈ GL2(Fl) so that oKl
= oFl

+ oFl
θl and J1Sθl = (J1Sθ)[Al]. Recall

ς =

(
1 −θ̄
−1 θ

)
.

Definition 9.4. For each positive integer n we define ς
(n)
p ∈ GL2(Fp) by

ς
(n)
p =

(
ϑ −1
1 0

)(
$n

p 0
0 1

)
,

where ϑ = θ if p splits in K and ϑ = 0 otherwise, and define

ζ(n) = m
(
ip

(
ς

(n)
p

)) ∏
l|N+

m(ς−1)
∏
l-N

m(il(Al))
∏
l

d(dFl
) ∈ GUD

2 (F̂ ).
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Put τ∞ =
∏
v∈Σ τv, where τv = d(−1) ∈ GUD

2 (Fv).

Theorem 9.5. We suppose that Λl is unramified for every prime l distinct
from p. Put n = max{1, c(Λp)}. Assume that dimVκ(π,N) = 1. Assume
that Fl = Q2 if l 6= p and 2 is divisible by l. Then

BΛ
S (e0

ord,pφπ, ζ
(n))2

〈φπ, π(τ∞)φπ〉KD(N)e
4π
√
−1TrDQ (Si)

=
∆2
F ξF (2)ξF (4)ND

F (4S)κ[oK : oF + θoF ]−3

εN+(π)Λ(N+
0 )22d+`(π)∆

1/2
K ND

Q (Sθ)3/2

×e(πp,Λp)
2

α2n
p q4n

p
L(1, τKp/Fp

)2Λ
(

1
2 ,Spn(π)K ⊗ Λ

)
NΛ(1, π, ad)

∏
l|N−∩DKF , l=l2K

(1−εl(π)Λ(lK)),

where e(πp,Λp) is the p-adic multiplier

e(πp,Λp) = α
c(Λp)
p · L

(
1

2
, (χ1σ)KpΛp

)−1

L

(
1

2
, σ−1

Kp
Λp

)−1

.

Proof. Put BΛl
S (H) =

BΛl
S (H)

c(πl,Λl)
, where BΛl

S is defined with respect to an addi-

tive character of order 0. It should be remarked that when Fl is of residual
characteristic `, we have defined BΛl

S with respect to the additive character

e` ◦ TrFl
Q` on Fv. Taking Remark 2.4 into account, we have

BΛl
Sθ

(πl(m(Al, dFl
))Hφl, πl(m(Al, dFl

))Hφl) = |dFl
|−3| detAl|3BΛl

Sθl
(H).

Since
∏

l |detAl|−1
Fl

= [oK : oF + θoF ], it follows from Theorem 9.1 that

BΛ
S (φ‡π, ξ(n))2

〈φπ, π(τ∞)φπ〉
= ξF (2)ξF (4)

D
3/2
F Λ

(
1
2 ,Spn(π)K ⊗ Λ

)
[oK : oF + θoF ]3(N−)22`(π)Λ(1, π, ad)

BΛp

Sθp
(e0

ord)

×
∏
v∈Σ

BΛv
S (φ0

v, φ
0
v)

r(φ0
v, πv(d(−1))φ0

v)

∏
l|N+

BΛl
S (πl(m(ς−1)))

∏
l-pN+

BΛl
Sθl

(Id).

Taking Remark 2.4 into account, we deduce from Theorem 4.2 that

BΛl
Sθl

(Id) = |dKl
|1/2Kl
|dFl
|−1/2

if l and pN are coprime. If l divides N−, then by Corollary 5.3 and (5.1)

BΛl
S (Id) =

|dKl
|1/2Kl

|dFl
|1/2

q3
l (1− q−2

l )×

{
1 if Kl/Fl is unramified,

1− εl(π)Λ(lK) if l = l2K is ramified.

If N+ is divisible by l, then Proposition 4.10 gives

BΛl
S (m(ς−1)) = εl(π)Λ($l)

−1|dKl
|1/2Kl
|dFl
|−1/2ql(1 + q−2

l ).

Since the measure dtv gives F×v \K×v the volume 2, Proposition 5.8 gives

BΛv
Sθ

(φ0
v, φ

0
v)

r(φ0
v, πv(d(−1))φ0

v)
= 24κv−2NDv

Fv
(Sθ)

(2κv−3)/2e4π
√
−1TrDQ (Si)
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for v ∈ Σ in view of c(πv,Λv) = (2π)2κv

Γ (2κv−1)π . Proposition 8.5 gives

BΛp

Sθp
(πp(m(ξ(n))e0

ord,p) = |dK |1/2K |dF |
−1/2L(1, τKp/Fp

)2e(πp,Λp)
2α−2n

p q−4n.

Upon combining these calculations we obtain Theorem 9.5. �

10. Theta elements and p-adic L-functions

10.1. Quaterinionic modular forms. Let

D+
− := {S ∈ D−(F ) | J1S > 0 for every v ∈ Σ}.

Given B ∈ D+
−, we define a function W

(κ)
B : GUD

2 (F∞)◦ → C by

(10.1) W
(κ)
B (h) = e2π

√
−1TrDQ (Bh(i))Jκ(h, i)−1.

Definition 10.1 (adèlic quaternioic cusp forms). Let K be an open compact

subgroup of GUD
2 (F̂ ). A quaternionic cusp form of weight κ and level K is

a C-valued function φ on GUD
2 (F )\GUD

2 (AF )/K which satisfies

φ(zhk) = φ(h)Jκ(k, i)−1

for every k ∈ UΣ
2 and z ∈ A× and admits a Fourier expansion of the form

φ(h) =
∑
B∈D+

−

WB(φ, h) =
∑
B∈D+

−

wB(φ, hf )W
(κ)
B (h∞)

for h ∈ GUD
2 (F∞)◦GUD

2 (F̂ ), where wB(φ,−) : hf 7→ wB(φ, hf ) is a locally

constant C-valued function on GUD
2 (F̂ ).

We denote the space of adèlic quaternionic cusp forms of weight κ and level
K by A 0

κ (K). The space A 0
κ (K) is contained in the subspace of Acusp(PGUD

2 )
which consists of right K-invariant cuspidal automorphic forms with scalar

K-type k 7→ Jκ(k, i)−1 (cf. [2]). The finite adèle group PGUD
2 (F̂ ) acts on

the space A 0
κ =

⋃
KA 0

κ (K) by right translation. If an irreducible cuspidal

automorphic representation of PGUD
2 (AF ) has the lowest weight represen-

tation with minimal K-type k 7→ Jκ(k, i)±1 as its archimedean component,
then its non-archimedean component appears in the decomposition of A 0

κ .

10.2. Theta elements. Let (π, V ) be an irreducible cuspidal automorphic

representation of PGUD
2 (AF ) such that πv ' D(2)

κv for v ∈ Σ, such that πl is
generic for every finite prime l and such that dimVκ(π,N) = 1. Fix a basis
vector φπ = ⊗vφ0

v ∈ Vκ(π,N). Let Opn = oF + pnoK be the order of oK
of conductor pn and Gn = K×\K̂×/Ô×pn its Picard group. We identify Gn
with the Galois group of the ring class field Kpn of conductor pn over K via

geometrically normalized reciprocity law. Denote by [ · ]n : K̂× → Gn the
natural projection map. Define

xn : K̂× → GUD
2 (F̂ ), xn(t) = t(t)ζ(n).
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Definition 10.2. Let αQ = qκ−1
p α−1

p . Define the nth theta element by

ΘS
n(φπ) = α−nQ

∑
[a]n∈Gn

qκnp wS(e0
ord,pφπ, xn(a))[a]n ∈ C[Gn].

The sequence {ΘS
n(φπ)}n satisfies the following compatibility condition:

Lemma 10.3. Let Πn+1
n : Gn+1 � Gn be the natural quotient map. Then

Πn+1
n (ΘS

n+1(φπ)) = ΘS
n(φπ).

Proof. For n′ > n, let Kn′
n be the kernel of the quotient map Gn′ � Gn.

Recall that

(10.2) UQp φ =
∑

x∈oF /p

∑
y∈oF /p

∑
z∈oF /p2

πp

(
n

((
z y
y 0

))
m

((
$p x
0 1

)))
φ.

Since UQp φ
‡
π = q2

pα
−1
p φ‡π, we have∑

x∈oF /p

wS

(
φ‡π, t(a)ζ(n)m

((
$p x
0 1

)))
= q−1

p α−1
p wS

(
φ‡π, t(a)ζ(n)

)
.

Observing that

(ς
(n)
p )−1(1 +$n

p xθ)ς
(n)
p =



(
1 +$n

p xθ −x
0 1 +$n

p xθ̄

)
if p splits in K,(

1 −x
$n

p xN(θ) 1 +$n
p xTr(θ)

)
otherwise,

we get∑
x∈oF /p

wS

(
φ‡π, t(a(1 +$n

p xθ))ζ
(n+1)

)
= q−1

p α−1
p wS

(
φ‡π, t(a)ζ(n)

)
.

The left hand side is
∑

u∈Kn+1
n

wS

(
φ‡π, xn+1(au)

)
in view of the description

Kn′
n = [Ô×pn ]n′ = {[1 +$n

p xθ]n′ | x ∈ oF /p
n′−n}.

The proof is complete by Definition 10.2. �

Put G∞ = lim
←−
n

Gn. Lemma 10.3 enables us to define

ΘS(φπ) := {ΘS
n(φπ)}n ∈ lim

←−
n

CJGnK.

Assuming that c(Λl) = 0 for l 6= p, we will write c(Λ) = c(Λp). When
n ≥ c(Λ), we can view Λ as a character of Gn and extend it linearly to a
function Λ : C[Gn] → C. Let WK be the group of roots of unity in K and
wK its order. Put QK = [o×K : WKo

×
F ] ∈ {1, 2}.
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Proposition 10.4. Assume that Fl = Q2 if l 6= p and 2 is divisible by l. If
n ≥ 1 and n ≥ c(Λ), then

Λ(ΘS
n(φπ))2

〈φπ, π(τ∞)φπ〉KD(N)
=Q2

Kw
2
K

∆F∆
1/2
K ND

F (4S)κ

24d+2+`(π)ND
Q (S)3/2

ξF (2)ξF (4)
Λ
(

1
2 ,Spn(π)K ⊗ Λ

)
NΛ(1, π, ad)

× e(πp,Λp)
2εN+(π)

[oK : oF + θoF ]3Λ(N+
0 )

∏
l|N−∩DKF , l=l2K

(1− εl(π)Λ(lK)).

Proof. We may assume that n = max{1, c(Λ)} by Lemma 10.3. Denote

by vol(Ô×pn) the volume of the image of K×∞Ô×pn in K×A×F \A
×
K with respect

to the measure dt. Remark 9.2(1) together with the class number formula
gives

vol(Ô×pn) = vol(ô×K)L(1, τKp/Fp
)q−np = 2d+1Q−1

K w−1
K

√
∆F∆−1

K L(1, τKp/Fp
)q−np .

Since W
(κ)
S (t(t)g) = W

(κ)
S (g) for t ∈ K×∞ by (10.1),

BΛ
S

(
φ‡π, ζ

(n)
)

=
(detS)κ/2

e2π
√
−1TrDQ (Si)

∫
K×F̂×\K̂×

wS

(
φ‡π, t(t)ζ(n)

)
Λ(t)−1 dt

= e−2π
√
−1TrDQ (Si)vol(Ô×pn)q−np α−np Λ(ΘS

n(φπ)).

Theorem 9.5 gives the declared formula. �

10.3. Classical quaternionic cusp froms. Hereafter let F = Q. Thus

N = N = N+N−, K = Q(
√
−∆K), KD(N) = KD(N) ∩UD

2 (Q).

It is important to note that

D×(A) = D× ·D×◦∞ R̂×, GUD
2 (A) = GUD

2 (Q)GUD
2 (R)◦KD(N).(10.3)

We associate to h∞ ∈ UD
2 (R) and a function f : H∗2 → C another function

f |κh∞ : H∗2 → C, f |κh∞(Z) = f(h∞Z)Jκ(h∞, Z)−1.

Symbolically, we will abbreviate qB = e2π
√
−1TrD∞⊗C

C (BZ) for B ∈ D+
−.

Definition 10.5 (classical quaternionic cusp forms). A quaternionic cusp
form of weight κ with respect to a discontinuous subgroup K ⊂ UD

2 (Q) is a
holomorphic function f on H∗2 which satisfies f |κγ = f for every γ ∈ K and
admits for every β ∈ UD

2 (Q) a Fourier expansion of the form

f |κβ(Z) =
∑
B∈D+

−

cB(f |κβ)qB.

Let Sκ(K,C) stand for the space of such cusp forms.

Let K be an open compact subgroup of GUD
2 (Q̂). Set K = UD

2 (Q)∩K. If

GUD
2 (A) = GUD

2 (Q)GUD
2 (R)K,
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then we can associate to each f ∈ Sκ(K,C) a unique φf ∈ A 0
κ (K) such that

f(Z) = φf (h∞)Jκ(h∞, i) (h∞ ∈ GUD
2 (R)◦, h∞(i) = Z).

We shall call φf the adèlic lift of f . By definition wB(φf , e) = cB(f). Let
Ip be the standard Iwahori subgroup in GSp4(Zp) in Section 7. Put

KD(N, p) = {g ∈ KD(N) | gp ∈ Ip}, KD(N, p) = KD(N, p) ∩UD
2 (Q).

Recall that I` is the Iwahori subgroup of GL2(Z`). Let R be an Eichler
order of level N+ in oD. We identify R` = R⊗Z Z` with M2(Z`) or I` via i`
according to whether ` - N or `|N+. Put

R⊥ = {x ∈ D | TrDQ (xy) ∈ Z for all y ∈ R},

R̆− = {x ∈ D− | TrDQ (xy) ∈ Z for all y ∈ R⊥ ∩D−}.

Observe that if N+ is divisible by `, then

J−1
? K(`)J? =

{(
a b
c d

) ∣∣∣∣ a, d ∈ R`, b ∈ R⊥` , c ∈ `R⊥` }.
It follows that

KD(N) =

{(
a b
c d

) ∣∣∣∣ a, d ∈ R, b ∈ R⊥, c ∈ NR⊥}.
Thus the Fourier coefficients of cusp forms in the spaces Sκ(KD(N),C) and

Sκ(KD(N, p),C) are indexed by R̆+
− = R̆− ∩D+

−.

The operators UPp and UQp on the space A 0
κ (KD(N, p)) are defined in

Definition 7.1. We define the operators UPp and UQp on Sκ(KD(N, p),C) by

[UPp f ](Z) = pκ−3 · [UPp φf ](h∞) · Jκ(h∞, i),

[UQp f ](Z) = pκ−3 · [UQp φf ](h∞) · Jκ(h∞, i),

where f ∈ Sκ(KD(N, p),C) and h∞ ∈ GUD
2 (R)◦ with h∞(i) = Z.

Proposition 10.6. Let f ∈ Sκ(KD(N, p),C). Then

[UPp f ](Z) =
∑
B∈R̆+

−

cpB(f)qpB, [UQp f ](Z) =

p∑
x=1

∑
B∈R̆+

−

cγ̄xBγx(f)qB,

where γx ∈ D× is such that γx ∈ ip
((

p x
0 1

))
D×◦∞ R̂×.

Proof. The first formula is easy to prove. We see by (10.2) and (10.1) that

[UQp φ](h∞) =

p∑
x=1

∑
X∈R−/γxR−γ̄x

φ

((
γ−1
x 0
0 γ̄x

)
∞

(
1 X
0 1

)
∞
h∞

)

=p−κ
p∑

x=1

∑
B∈R̆+

−

∑
X∈R−/γxR−γ̄x

cB(f)e2π
√
−1TrDQ (Bγ−1

x (Z+X)γ̄−1
x )
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=p−κ
p∑

x=1

∑
B∈R̆+

−

cB(f)qγ̄
−1
x Bγ−1

x
∑

X∈R−/γxR−γ̄x

e2π
√
−1TrDQ (γ̄−1

x Bγ−1
x X)

where R− = R ∩D−. Note that∑
X∈R−/γxR−γ̄x

e2π
√
−1TrDQ (γ̄−1

x Bγ−1
x X) =

{
#(R−/γxR−γ̄x) if B ∈ γ̄xR̆−γx,
0 otherwise.

On the other hand,

R−/γxR−γ̄x ' Sym2(Zp)/
(
p 0
x 1

)
Sym2(Zp)

(
p x
0 1

)
.

We find that #(R/γxRγ̄x) = p3. �

Definition 10.7. For each subring A ⊂ C the space Sκ(K, A) consists of
cusp forms f ∈ Sκ(K,C) such that cB(f) ∈ A for every B ∈ D+

−.

The following result follows from Proposition 10.6 immediately.

Corollary 10.8. UQp and UPp stabilize Sκ(KD(N, p), A) for any A.

Lemma 10.9. If f ∈ Sκ(KD(N, p), A), then for every B ∈ D+
− and t ∈ K̂×

pnκwB(φf , xn(t)) ∈ A.

Proof. Let R ⊂ R be the Eichler order of level pN+. Given t ∈ K̂×, we use

(10.3) to write tς
(n)
p = γfu with γ ∈ D×(Q), ND

Q (γ) > 0 and u ∈ R̂×. Then

t(γf )
−1xn(t)d(pn) ∈ KD(N, p). Let h∞ ∈ GUD

2 (R)◦. Put Z = h∞(i). Then

φf (h∞xn(t)) = φf

((
γ−1

pnγ−1

)
∞
· h∞

)
=

f(p−nγ−1Zγ)

Jκ

((
γ−1 0
0 pnγ−1

)
, Z

) = p−nκf(p−nγ−1Zγ).

Thus pnκwB(φf , xn(t)) = wpnγ−1Bγ(φf , e) = cpnγ−1Bγ(f) ∈ A. �

10.4. Anticyclotomic p-adic L-functions. Let f ∈ Sκ(KD(N),C) be a
Hecke eigenform and π an irreducible cuspidal automorphic representation
of PGUD

2 (A) generated by the associated adèlic lift φπ := φf ∈ A 0
κ (KD(N)).

Denote the ring of integers of the Hecke field Fπ of π by oπ. We may assume
that f belongs to Sκ(KD(N), oπ) (cf. [12, Proposition 1.8 on p. 146] or [24]).
The Hecke field Fπ is a totally real number field for π is self-dual.

Define an automorphic of GU2(D) by gc = d(−1)gd(−1). Since

gc∞(i) = −g∞(i), Jκ(gc∞, i) = Jκ(g∞, i)

for g∞ ∈ GU2(R)◦, the cusp form π(τ∞)φπ corresponds to
∑

B∈D+
−

cB(f)qB,

and hence φπ = π(τ∞)φπ. We may further assume that not all of the Fourier
coefficients of f are zero modulo the maximal ideal of oπ with respect to ιp.
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Let {αp, α−1
p γ−2

p , γp} be the Satake parameters of πp. Put

αP = pκ−3/2γp, βP = pκ−3/2γ−1
p α−1

p ,

αQ = p2−καPβP = pκ−1α−1
p , βQ = pκ−1αPβ

−1
P = pκ−1αpγ

2
p .

Definition 10.10. Let

f ‡ := α−3
P α−1

Q · (U
Q
p − βQ)(UPp − p2κ−3α−1

P )(UPp − p2κ−3β−1
P )(UPp − βP)f.

Let ordp : Q×p � Q denote the normalized additive valuation. From now
on we assume one of the parameters of πp to satisfy

(Q-ord) ordp ιp(αQ) = 0.

It is convenient to suppose that another parameter satisfies

(P-ord) ordp ιp(αP) = 0.

Remark 10.11. (1) The eigenvalues of UQp are αQ, βQ, p
2κ−2α−1

Q , p2κ−2β−1
Q

and those of UPp are αP , βP , p
2κ−3α−1

P , p2κ−3β−1
P by the proof of

Proposition 7.4.
(2) The eigenvalue of f ‡ for UQp is a p-adic unit if and only if (Q-ord)

holds.
(3) The eigenvalue of f ‡ for UPp is a p-adic unit if and only if (P-ord)

holds.

Lemma 10.12. If πp satisfies (Q-ord) and A contains oπ and eigenvalues

of UPp and UQp , then α3
P · f ‡ ∈ Sκ(KD(N, p), A).

Proof. Remark 10.11(1) and Corollary 10.8 imply that

βQ, βP , p
2κ−3α−1

P , p2κ−3β−1
P ∈ Z̄,

and the lemma follows from (Q-ord) and Definition 10.10. �

Let Γ− be the maximal Zp-free quotient group of G∞ and ∆ the torsion
subgroup of G∞. We have an exact sequence

1→ ∆→ G∞ → Γ− → 1.

Fix a noncanonical isomorphism G∞ ' ∆ × Γ− once and for all. If n ≥ 1,
then the map ∆→ G∞ → Gn is injective and hence

Gn ' ∆× Γ−n , Γ− � Γ−n = Gn/∆.

Let χ : ∆→ Q̄× be a branch character. Define the χ-branch of ΘS
n(φπ) by

ΘS
n(φπ, χ) = χ(ΘS

n(φπ)) ∈ C[Γ−n ].

Enlarge oπ to a ring A so that A contains values of χ and eigenvalues of UPp
and UQp . By Lemma 10.9, ΘS

n(φπ, χ) belongs to A[Γ−n ], and hence

ΘS(φπ, χ) := lim
←−
n

ΘS
n(φπ, χ) ∈ AJΓ−∞K.
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Definition 10.13 (periods). Recall that we have normalized f ∈ Sκ(KD(N), oπ)
so that not all the Fourier coefficients vanish modulo the maximal ideal of
the completion of oπ with respect to ιp. Define a period Ωπ,N− of π by

Ωπ,N− := Λ(1, π, ad)/〈f, f〉KD(N),

where we define the Petersson norm of f by

〈f, f〉KD(N) :=

∫
KD(N)\H∗2

|f(Z)|2 (detY )κ−3dXdY.

Proposition 10.14. Let N = N+N− be a square-free integer. Then

vol(KD(N)\H∗2) = 2ξQ(2)ξQ(4)
∏
q|N+

(q2 + 1)
∏
`|N−

(`2 − 1).

Let f ∈ Sκ(KD(N),C). Then

〈f, f〉KD(N) = ξQ(2)ξQ(4)〈φπ, π(τ∞)φπ〉KD(N).

Proof. Recall that a motive M of Artin-Tate type is attached to UD
2 in

Section 1 of [19] and a canonical Haar measure |ωv| on UD
2 (Qv) is defined

in Section 4 of [19]. For each rational prime q, let µq be the Haar measure
Lq(M

∨(1))|ωq| on UD
2 (Qq). Let µ∞ be Euler-Poincaré measure on UD

2 (R).
Then µ = ⊗vµv defines a Haar measure on UD

2 (A). Since the Tamagawa
number of UD

2 is 1, we have

(10.4)

∫
UD2 (Q)\UD2 (A)

µ = L∞(M)/c(Sp4(R))

by Theorem 9.9 of [19], where c(Sp4(R)) is a cohomological invariant at-
tached to the real symplectic group of rank 2.

Let H = D2 be a left D-vector space with Hermitian form

〈(x, y), (x′, y′)〉 = xȳ′ + yx̄′.

Let L = oD ⊕ ŏD be a maximal lattice in H(Q), where

ŏD = {x ∈ D(Q) | TrDQ (xy) ∈ oD for every y ∈ oD}.

Put Lq = L⊗Z Zq. Define an open compact subgroup K(L) of UD
2 (Q̂) by

K(L) =
∏
q

K(Lq), K(Lq) = {g ∈ GUD
2 (Qq) | Lqg = Lq}.

Then K(L) ' KD(N−). By the strong approximation property of UD
2

U2(Q)\UD
2 (A) ' (K\H∗2)×UΣ

2 ×K

for any open compact subgroup K =
∏
q Kq of UD

2 (Q̂), where we put K =

K ∩UD
2 (Q). Now we see from (10.4) that

vol(K\H∗2)vol(UΣ
2 )
∏
q

µq(Kq) = L∞(M)/c(Sp4(R)).
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Taking Lemma 3.3.3 of [31] into account, we get

vol(KD(N)\H∗2)

vol(KD(N−)\H∗2)
=
∏
q|N+

(q2 + 1).

Proposition 9.3 of [17] says that µq(K(Lq)) = 1 or q2−1 according to whether
D is split over Qq or not. It is well-known that

vol(Sp4(Z)\H2) = 2ξQ(2)ξQ(4).

Combining these results, we obtain the first equality. Proposition 3.1 of [10]
combined with this equality and Definition 9.3 gives the second identity. �

Take θ so that oK = Z + Zθ. Recall the decomposition N+oK = N+
0 N

+
0 .

Theorem 10.15. Let A be a subring of Q̄p which contains oπ, values of χ
and eigenvalues of UPp and UQp . If πp satisfies (Q-ord), then

α3
P ·ΘS(φπ, χ) ∈ AJG∞K.

Let ν̂ : Γ− → Q̄×p be a p-adic character of finite order. Then

ν̂(ΘS(φπ, χ))2

〈f, f〉KD(N)
=w2

K22κ−3∆κ−1
K e(πp, χpνp)

2Λ
(

1
2 , Spn(π)K ⊗ χν

)
N2sπΛ(1, π, ad)

× εN+(π)(χν)(N+
0 )−1

∏
`|(N−,∆K), `=l2K

(1− εl(π)(χν)(lK)).

Proof. By Definitions 7.2 and 10.10, α3
P ·e0

ord,pφπ is the adèlic lift of α3
P ·f ‡.

In view of Lemmas 10.9 and 10.12, we conclude that

α3
P · pnκwS(e0

ord,pφπ, xn(t)) ∈ A

for every t ∈ K̂× and nonnegative integers n. Since F = Q, we have QK = 1.
We have detS = ∆K

4 for our choice of θ. We finally get the stated formula
by Propositions 10.4 and 10.14. �

10.5. Reformulation in terms of optimal embeddings. We explain
theta elements in Definition 10.2 agrees with the one given in the intro-
duction. When O is an order of o, an embedding ι : O ↪→ R is said to
be optimal if ι(K) ∩ R = ι(O). Fix an optimal embedding Ψ : oK ↪→ R.
Recall that R ⊂ R is the Eichler order of level pN+. For any positive in-

teger n, write ς
(n)
p ∈ γnR̂× for some γn ∈ D×. Then one verifies directly

that the embedding Ψn ∈ Hom(K,D) defined by Ψn(x) = γ−1
n Ψ(x)γn is an

embedding from Opn to R of conductor pn, namely an optimal embedding
in Hom(Opn ,R). For σ ∈ Gal(Kpn/K), write σ = recK(t)|Kpn for some

t ∈ K̂×. Write Ψn(t) ∈ γR̂×. By definition,

xn(t) = ι(t)ς(n)
p ∈ γnΨn(t)γ−1

n ς(n)
p ∈ γnγR̂×.

On the other hand, according to the recipe of the Galois action on Ψn,

SΨσn = γ−1Ψn(pn
√
−∆K/2)γ = pn(γnγ)−1SΨγnγ.
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By Lemma 10.9, we find that

pnκwSΨ
(xn(t), f ‡) = cpn(γnγ)−1SΨγnγ(f ‡) = cSσΨn

(f ‡).

This shows that the theta element ΘS
n(φπ, 1) with S = SΨ agrees with the

one described in the introduction.
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