ORDINARY p-ADIC EISENSTEIN SERIES AND p-ADIC L-FUNCTIONS FOR
UNITARY GROUPS

MING-LUN HSIEH

ABsTRACT. The purpose of this work is to carry out the first step in our four-step program towards the
main conjecture for GLa XK * by the method of Eisenstein congruence on GU(3,1), where K is an imaginary
quadratic field. We construct a p-adic family of ordinary Eisenstein series on the group of unitary similitudes
GU(3,1) with the optimal constant term which is basically the product of the Kubota-Leopodlt p-adic L-
function and a p-adic L-function for GLo xK*. This construction also provides a different point of view of
p-adic L-functions of GLo xKX.

CONTENTS
Introduction 1
1. Notation and definitions 6
2. Modular forms on unitary groups 8
3. Siegel-Eisenstein series on GU(n,n) 15
4. Eisenstein series on GU(3,1) and the pull back formula 25
5. Constant term of the Eisenstein series 31
6. The ordinary projection of the local pull-back section 34
7. Proof of the main result 41
References 44
INTRODUCTION

Iwasawa main conjecture for totally real fields was proved by Wiles in one of his celebrated papers [Wil90].
His proof, modeled upon Ribet’s proof of the converse of Herbrand’s theorem, relies on the study of Eisenstein
congruence for Hilbert cusp forms. One of the key ingredients in Wiles’ proof is to realize the Deligne-Ribet
p-adic L-function as constant terms of a particular Hida family of Eisenstein series over totally real fields, and
then construct congruence between this particular family of Eisenstein series and Hida families of Hilbert cusp
forms modulo the Deligne-Ribet p-adic L-function.

The first generalization of Wiles’ work to Iwasawa main conjecture for non-abelian motives is due to
E. Urban. In [Urb01] and [Urb06], he established one-sided divisibility result on Iwasawa main conjecture
for adjoint representations. In particular, in [Urb06] he constructed a Hida family of Klingen-Eisenstein
series on Gsp(4) such that the constant terms at all cusps are divisible by the p-adic L-function for adjoint
representations, and he deduced Eisenstein congruence on Gsp(4) by proving the non-vanishing modulo p of
this Eisenstein series.

In this article, we consider certain Iwasawa main conjecture for GLo x K*, where K is an imaginary quadratic
field. Following Ribet, Wiles and Urban, we propose a four-step program towards a one-sided divisibility result
for this main conjecture. It turns out that we will need to consider Eisenstein congruence on certain unitary
groups. Our main result is the construction of a particular Hida family of Eisenstein series on the unitary
group U(3,1) such that the constant terms (the image of Siegel boundary operator) at all cusps are divisible
by a product of Kubota-Leopodlt p-adic L-function and a p-adic L-function for GLg XK.
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Main conjecture for p-adic Galois representations. In [Gre94], R. Greenberg reformulates the classical
Iwasawa main conjecture in the context of p-adic Galois representations, and he proposes a more general main
conjecture when the Galois representation satisfies the Panchishkin condition (for the definition, see [Gre94,
§3 and §4]).

We now describe the Galois representation under consideration. Let p be an odd rational number. Assume
p is split in K. Fix an embedding to, : Q < C and an isomorphism ¢ : C ~ C,, where C, is the completion of
an algebraic closure of Q. Let ¢p = tio : Q— C, be their composition. Let p and p are primes in K above
p, where p is the prime ideal induced by ¢,. Let Gx := Gal(Q/K) and ¥ : Gx — C, be a p-adic character.
We shall regard x as a character of A,é’ f /K* by the geometrically normalized reciprocity law. We assume ¥
is locally algebraic, namely there exist two integers a and b such that x(z,) = zgzg for z, = (zp, zp) in the

lp;—part of A¢ with z, and z; sufficiently close to 1 p-adically. In addition, the map x : Ag/K* — C* defined
Yy

X(2) = tooty, (R (21) 2, P25 )25 25

is a well-defined Hecke character. The Hecke character x is called the complex avatar of X whereas x is called
the p-adic avatar of x. We will say x (or x) has infinity type (b,a). Let E be an elliptic curve over Q and let
pE : Gq — GL(H}(E,Q,)) be the p-adic Galois representation associated with E. Let pgp ® X := prlge ® X
be the p-adic Galois representation of Gx. We will consider the main conjecture for pp ® x when x varies in
a p-adic family of a fixed infinity type.

The formulation of this main conjecture depends on the infinity type of x. If the infinity type of x is
(1,1) and F has good ordinary reduction at p, the main conjecture for pp ® x is the classical Iwasawa main
conjecture for E over K, which is the assertion for the equality between the p-adic L-function of Lx (0, £ ® x)
divided by the period of E and the characteristic power series associated to the Selmer group of F ® x. In
this case, the conjecture has been settled down by Bertolini and Darmon in [BDO05] if x is further assumed
to be anticyclotomic, and the general three-variable main conjecture for GLy x> is studied by Skinner and
Urban in [SU10].

We are interested in the main conjecture for pg ® ¥ when the infinity type of x is (k,0), £ > 1. This main
conjecture is quite different from the one considered in [BD05| and [SU10]. On the analytic side, the p-adic
L-function is related to the complex L-value Li (0, E ® x) divided by the CM-period attached to x and K
instead of the period of E. On the algebraic side, the Selmer group also has different local conditions at p.
Let us make precise the L-value and the Selmer group under consideration.

L-functions and Selmer groups.

L-functions. Thanks to the works of Wiles, Taylor and many other people, one can associate to E a weight
two holomorphic cuspidal eigenform f = > | a,(E)q". We choose a prime-to-p integral ideal ¢ of Q such
that ¢ is divisible by the conductor of E. We let S be the set of prime factors of ¢ and put

LEP s ppex) = Y an(B)X®)|] ™, (1) =nnZ,
(n,pc)=1

where n runs over integral ideals of K.
Throughout we assume FE has ordinary good reduction at p. In order to have nice arithmetic and p-adic properties
of the L-value L (0, pg ® x) when y varies in a p-adic family, we need to take normalization as follows. Let ay
and g be two roots of the equation 2* — a,(E)x + p. We define §; and d2 to be the unramified characters on
Q, such that d;(p) = v, i = 1,2. For a character pu: Q) — C, we let L(s, i) be the local L-factor associated
to p. Following [Coa9l, Lemma 7], we define the modified Euler factor E,(0, i) by

_ Lo
R O]

where (s, ) is Tate’s e-factor of u. Now we make the following definition of the normalized L-value.
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Definition 1.

e TR (k1
LE&5(0, pp @ X) = ((2)7m§2k1) - (0, xp01) Ep(0, Xp02)
2mi) 2k
: Q22c L N0, pp @ ),
K

where Qi is the CM period associated to K.

We remark that L;”‘Clg’S(O7 pE @ X) actually lies in Q by works of Shimura and that such normalization was
suggested by J. Coates’ recipe ([Coa91, Conj. A p.168]).

To define p-adic L-functions, we need to introduce more notations. Let I be the maximal Zg—extension
and I' = Gal(K o /K) =~ Zf,. Let ¢ be a branch character, namely ¢ is a character of G of finite order such
that Ky = KK is linearly disjoint from Koo. Let A = Gal(K,,/K). Let Ky = KyKoo and & = Gal(KL, /K).
Then & = A x I'. Put O = Z,[Im], the ring of values of ¢). Let A be O[I'] a two-variable Iwasawa algebra.
Let ¥ be the A-valued character of G defined by

!I/ZG;C—>AX
g — V(99K -

Let #4 be the set of locally algebraic p-adic characters of I' of infinity type (k,0),k > 2. Then #{ can be
regarded as a Zariski-dense subset in Spec A(C,). For z € #; and A € A, put AM(z) =z o0\ € C,. We let ¥,
denote the complex avatar of zoW. Then #4 is an ample subset of the set of critical specializations for pgp @ ¥
in the sense of Greenberg ([Gre94, §4]).

We further assume ¢ is divisible by the prime-to-p conductor of . Let Lf; (pg ® ¥) denote the unique
element in A such that

L3 (pp @ 0)(@) = 1y (LRE5(0, 5 © W), @ € W4,

The existence of Lg (pe ® V) is known. In fact it is a special case of p-adic Rankin products constructed by
Hida (cf. [Hid93]). We call L;? (pg ® ¥) the (non-primitive) p-adic L-function for GLg xIC* associated to E
and 1.

Selmer groups. Let Kg be the maximal S'U {p}-ramified extension of K. Let A* = Homeont(A, Qp/Zp) be the
Pontryagin dual of A. Let T'= H},(E,Z,). We consider a discrete a A-module T’ ® A* of corank two equipped
with Galois action by pg ® ¥. According to the Panchishkin condition of pg ® ¥, for x € #4, we define the
non-primitive A-adic Selmer group to pgp ® ¥ by

Selg (pp @ W) := ker{ H (Kg, T @ A*) — H'(I;, Ty ® A%)}.

If S is empty, we shall drop S in the above definition and simply write Selx(pr ® ¥). It is well known that
Sel (pp ® W) is a discrete and cofinitely generated A-module. Let ht;(A) denote the set of height one prime
ideals of A. For a cofinitely generated A-module S, let §* be the Pontryagin dual of S. For P € htq(A), put

(p(S) = length, . (5" ®4 Ap).

The main conjecture: connection between L-functions and Selmer groups. The following main
conjecture for pg ® ¥ is formulated in [Gre94, Conj. 4.1].

Conjecture 1 (The main Conjecture).

(1) Seli(pe @ ¥) is cotorsion over A.
(2) For any P € hti(A),

ordp(Lp(pe @ ¥)) = Lp(Selx(pp @ ¥)).

Remark 1. The formulation of the main conjectures depends not only on the Galois representation itself but
also the choice of an ample subset of critical specializations (or a choice of local conditions at p). The main
conjectures studied in [BDO05| and [SU10] are for the same Galois representation pgp ® ¥ with the critical
specialization at locally algebraic characters of I' with infinity type (1,1). The p-adic L-function and Selmer
group considered in this article are quite different from theirs.
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We shall consider the dual version of Conjecture 1 which has the advantage of including non-primitive
p-adic L-functions and Selmer groups. Let € : G — Z, be the cyclotomic character and let ¢ be the complex
conjugation. We define the A-valued Galois character ¥+ by

Ut(g) = v te?(cge).
Conjecture 2. For every P € ht1(A),
ordp(Ly (pp @ ¥)) = Lp(Selg(pp @ ¥)).
We propose the following weaker conjecture.

Conjecture 3 (Lower bound of Selmer groups). For every P € hty(A),

ordp(Ly (pr © W) < p(Seli(pp @ ¥)).

We wish to show Conjecture 3 by the method of Eisenstein congruences.

Eisenstein congruences. The method of congruences among modular forms provides a general strategy
to construct a nontrivial Galois extension. Roughly speaking, a Galois representation over a PID which is
generically irreducible and residually reducible should give rise to a nontrivial Galois extension. This basic
idea was due to K. Ribet in [Rib76].

In our project, we consider the congruences between Eisenstein series and cusp forms on the unitary group
U(3,1). The application of Eisenstein congruences to various main conjectures has been a success in [MW84],
[Wil90], [Urb01] and [SU10]. Following the exposition in [Ski06], we describe our project as follows.

(1) Construct an ordinary A-adic Eisenstein series £°"¢ on the unitary group U(3,1) with the constant
terms at all cusps divisible by Lg(—2, v - Li(pE ® ¥), where ¥, = ¥ oV is the composition of ¥
and the Verschiebung map V : G‘g’ — G% and Lg(fZ7 ¥, ) is an imprimitive p-adic L-function with
the following specialization property:

LE(-2,0,)(2) = 1, (L5 (<2, (2))), x € .

(2) Show that £°"¢ £ 0mod mp, where my is the maximal ideal of A.
(3) For P € hty(A), we let ro = ordp(L5(—2,%,)) and 7y = ordp(Lf (pp ® ¥)). Using Hida theory of
ordinary p-adic modular forms, we can show that there is a p-adic ordinary cusp form F such that

&ord = Fmod PretTs,

(4) We use the Galois representations associated to cuspidal automorphic representations of U(3,1) to-
gether with the above congruences to construct elements in the Selmer group Selg (pp ® ¥1). The
key here is to perform the lattice construction ([Urb01] and [SU10]). Assuming the existence of the
Galois representation attached to F, in favorable cases for instance r, = 0, we can construct a A-lattice
L =L 0L ® L in K* = (FracA)?* with dim.4 ® K = dim.%3 ® K = 1 and a representation pr.

U—Y(coc) * *
ps 1 Gk = GL(YZ), pg(o) = * pre (o) Co mod P"*,
0 0 Ve 3(a)

which is unramified away from S U {p}. Moreover under the assumption that r. = 0 we can show

o = (P25, ) 55 ) o

is indeed a non-split representation of G, but p}| p, is split. Then it can be shown that the cocycle
¢, provides a A p-submodule of length at least r4 in Sel,% (pg @¥1)p.
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The main result. Our main result in this paper is to fulfill Step (1) of this program when E has good
ordinary reduction at p, namely p { a,(E). Let m = 7y be the automorphic representation of GLy generated by
f. We further assume that the conductor Ng of E has a decomposition Ng = Ny N_ such that (N;,N_) =1
and N_ is a product of an odd number of distinct primes. This is equivalent to saying that m = JL(7?) is
in the image of Jacquet-Langlands correspondence of the definite quaternion algebra B ramified exactly at
infinity and N_. Let f be a p—primitive new form in 72 and choose ¢ an auxiliary Dirichlet character of G
such that £, = 1. Thus F := f ® £ can be regarded as a modular form of GU(2) (See §4.1). Let Dx be the
discriminant of K. We further assume ¢ is divisible by the conductors of ¥ and &, Dx and Ng.
Our main result is as follows.

Theorem 1. Under the above assumptions there exists a measure dé‘?fgc with values in the space of p-adic modular
forms on GU(3,1) such that for any X a p-adic algebraic character of & with infinity type (k,0), k > 4, then
we have

/ RdEga = Bord(y | £,€,0),
&

where E°rd £, &, ¢) is an ordinary p-adic Eisenstein series. Let d€Z"E (x) be the p-adic measure induced by
X Y f.&c

the constant term of Em’d(x | £,&,¢) at a cusp x, which is a measure with value in the space of p-adic modular
forms of GU(2). Then there exists a well-chosen cusp xo and a p-adic period Q, € (Z,)* depending on xg
such that

1 o jeor % o e—
[ R4EFEa0) = Dl (0= 1)+ (R (et -p)
p

x L5 (=2, x 1) - Li®®(0, pp ® X) - F.
Moreover €(x | £,€,¢), the ideal generated by the constant term at all cusps, is
Cx | £,6,¢) = L5 (=2,x1) - LE#5(0, pp © x).

Let us put a few words on the current progress about Step (2). To carry out Step (2), one usually needs

e an explicit computation of Fourier-Jacobi coefficients of an Eisenstein series, and
e a non-vanishing result of L-values mod p that are related to the above one.

Bei Zhang in her thesis [Zha07] has made a preliminary computation of Fourier-Jacobi coeflicients of an
FEisenstein series on our unitary group. Her computation does relate the Fourier-Jacobi coefficients of Eisenstein
series to certain L-values for GLs XK, but the desired non-vanishing modulo p result of the corresponding
L-values is not available yet. Nonetheless a wishing thinking (if we believe the main conjecture) is that since
our Eisenstein series has the optimal constant term, Step (2) should hold as well. We hope to work out this
problem in the future.

Sketch of the construction. The easiest way to construct an Eisenstein measure is to interpolate its Fourier
coefficients as we have seen in the examples of classical p-adic Eisenstein series for GLy. However it is difficult
to do so for our non-quasi-split unitary group GU(3, 1), since modular forms for this group only have Fourier-
Jacobi expansion, which is difficult to interpolate directly. To bypass this difficulty, our approach is as follows.

e Construct a nice p-adic Siegel-Eisenstein series on the quasi-split unitary group GU (3, 3).
e Apply the pull-back formula to obtain a p-adic Eisenstein series on GU (3, 1).
e Construct an ordinary p-adic Eisenstein series on GU(3,1) by taking the ordinary projection.

To study congruences, we further require that this ordinary Eisenstein series have optimal constant terms.

Our construction of Siegel-Eisenstein series on GU(3,3) is inspired by [Kat7§|, [HT93] and [HLS06]. In
particular, Harris, Li and Skinner in [HLS06] generalize Katz’s construction in [Kat78] to obtain a p-adic Siegel-
FEisenstein series of several variables with which they can construct p-adic L-functions for general unitary
groups. However the ordinary projection of the pull-back of their Eisenstein series is zero. A heuristic reason
is that the Fourier coefficients of the Eisenstein in [HLS06] are only supported in the matrices which are non-
degenerate modulo p. Therefore, we need to modify their section to fit our purpose. The new ingredients in
our paper are the choice of this modified section at p (3.15) and also the calculation of the ordinary projection
of its local pull back section in §6.4. Here is the summary of this paper:
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After fixing some notation and definitions in §1, we review the theory of p-adic modular forms on unitary
groups in §2. This theory is due to Hida ([Hid02] and [Hid04]).

In §3, following the same spirit in [HLS06], we construct the Siegel-Eisenstein series on GU(3,3) and
compute its Fourier coeflicients explicitly.

In §4, we review the pull-back formula in [Shi97], and in §5, we study the constant term of the pull back
of our Siegel-Eisenstein series. It turns out that the constant term is simply the pull back section itself. We
also calculate the local pull back section at places other that p in this section.

In §6, we calculate the ordinary projection of the pull back section at the place p by employing Jacquet’s
functor. We find that indeed it has correct modified Euler factors at p as suggested by J. Coates. The main
result of this section is Prop. 6.8.

In §7, we give the explicit formula for the constant term (Theorem 7.3).

Acknowledgments. The results of this paper are a part of the author’s Ph.D. thesis in Columbia University.
The author would like to thank my advisor Eric Urban for introducing me this fascinating subject. This
work would been impossible without his guidance and insight on p-adic Eisenstein series. The use of Jacquet
functor in §6 is inspired by Hida’s proof of multiplicity one theorem for ordinary vectors and a conservation
with Professor Jacquet. The author also would like to thank them for sharing their ideas. Finally the author
thanks the referee for the suggestions on the improvements of the previous version of this paper.

1. NOTATION AND DEFINITIONS

1.1. Throughout K is an imaginary quadratic field with the ring of integers Ox. Let Dx (resp. Dx) be the
discriminant (resp. different) of K.

Fix an odd rational prime p split in K. Fix an embedding once and for all 1o, : Q < C and an isomorphism
t: C ~ Cp, where C, is the completion of an algebraic closure of Q. Let ¢, = 11 : Q — C, be their
composition. Write pOyx = pp, where p is the prime ideal induced by ¢,.

1.2. For a finite set [J of rational primes, we define Z ) by
A :{%€Q|bz+qZ:Zforallq€D}.

By definition, Zgy = Q if O is empty. Write Z(,) for Z(o) if O = {p}. Let Zoy 4 = {a €Zmy |la> O} and
0 := Ok ®7 Z(p).

1.3. Denote by SET the category of sets and by SCH  the category of R-schemes for a ring R. The complex
conjugation ¢ induces a natural involution on R ®z K by r ®  +— r ® ¢(z). Define the nxn the Hermitian
matrices H,, (R) over R ®z K by

Hn(R) ={g€ Mo(R2zK)|g=9g"},

where g* = ¢(g?), ! is the transpose of g.

1.4. We write
Ox ®z O = O}C6+ ® Oxe™,

where et (resp. e¢7) is the idempotent corresponding to the identity map X : K — K (resp. the complex
conjugation X¢ =Y oc: K — K). If M is an Ox-module, we define

My :=et (M ®z Z,) and Mxe = e~ (M ®z Zy).

Let C(X) (resp. Z,(X)) be the Ox-module C (resp. Z,) on which Ok acts via it (resp. ¢p). Similarly let
C(X°) (resp. Z,(X°)) be the Ox-module C (resp. Z,) on which Ok acts through c.
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1.5. Unitary groups. Let » > s be two non-negative integers. Let (W,¥) be a skew-Hermitian space of
dimension r — s such that =1 is positive definite, where § = —/— Dy and Dy is the discriminant of . We

fix a KC-basis {wl}:;ls and regard ¥ as a (r — s)x(r — s) matrix according to this basis. We further assume
tp(det 9) = 1, (det 9(w', w)) is a p-adic unit. Let V = @5_ Ky’ @ W @;_, Kz' and 9, 5 be the skew-Hermitian

form on V' such that according to the basis {yi, w?, xi}, we have

Let (, )rs : VXV — Q be the alternating pairing defined by (v,v’), s = Trg(07.7s(v, v,)).
Let G = GU(r, s) be the group of unitary similitudes associated to (V, ¥, ), i.e. for a Q-algebra R,

G(R) = {g € Endo, (V ® R) | Vrs(xg,yg9) = v(9)Vrs(z,y), m,y €V @ R}.
Let GU(0,r — s) be the group of unitary similitudes attached to (W, —9). The unitary group U(V') is defined
by
U(V)(R):={g € G(R)[v(g) =1}.

1.6. Lattices and polarization. In what follows we make the specific choice of the lattice M in V and define
the standard polarization Polg of M. Welet XV = Oxa'®--- Oxa® = Of and Y = Oy’ @ - Oxy® = Of be
the standard Ox-lattices in IX and I respectively. We choose an Ox-lattice L in W such that L is Z-mazimal
with respect to the Hermitian form §~'¢. Let L, = L ®z Z, = Y., _; (Ox ®z Z,)w" = (Ox ®z Z,)""*. Then
we define the Ox-lattice M in V by

(1.1) M:=YaoLaX".

Let M, = M ® Z,,. A pair of sublattices Pol, = {N‘l, NO} of M, is called an ordered polarization of M,
if N~ and N are maximal isotropic direct summands in M, and they are dual to each other with respect to
(, )r.s- Moreover, we require that

rankNgl = wnk]\fgC =, rankNgf = rankNg =s.
We endow M, with the standard polarization as follows. Put
M =Yy ® Ly ®Yse and M° = X% ® Lye ® X¥.
We call Polg = {M LM O} the standard polarization of M,. We make the following identification according
to the basis {yi, wi,xi},
MY = XY, = Z,(2)° Mg} = Yye = Z,(2°)°

(1.2) 1 and 0 y
My =Ys@®Ls=7Z,(2)" My = X% ® Lye =Z,(X°)".

1.7. Let n be a positive integer. Denote by 1,, the identity matrix in GL,,. Denote by B,, the upper unipotent
subgroup of GL,,, by T;, the diagonal matrices and by N,, the unipotent radical of B,,.
Since p splits in K, G(Qp) = GL,14(Qp) x Q) via the map g — (g|vs,v(g)). For v € h, we put

K ={g € G(Q,) | Myg = M,} and K° =[] K?.
veh

For g, € K] ~ GL(Mx), we write g, = B} according to the decomposition My = My' @ M. For an

A
C D
open-compact subgroup K in K% with K, = KS, we put

K":{g€K0|ng[1OT 1*] modp"},

Kt ={g9€ K°| gy, = N,ys(Z,)mod p"}.
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2. MODULAR FORMS ON UNITARY GROUPS

2.1. In this section, we give a brief account of the theory of p-adic modular forms on unitary groups. This
theory is due to Katz for GL(2) [Kat78] and to Hida for general reductive groups [Hid04].

Definition 2.1. [S-quadruples] Let [J be a finite set of rational primes. Let U C K° be an open-compact
subgroup in G(A;D)). Let S be a connected, locally noetherian O-scheme and 5 be a geometric point. A
S-quadruple of level U™ is a quardruple A = (A, X, L,ﬁ(‘j))s consisting of the following data:
e A is an abelian scheme of dimension (r + s)d over S.
e )\ is a prime-to-[] polarization of A over S and A is the Zg) -orbit of A. Namely
A= Z(D),-{-)\ = {)\/ € Hom(A,At) Xz Z(D) ‘ N =MXo a, a € Z(D),_,_} .

e 1: O¢ — Endg A®z Z(I:l) .
o 70 = U™ is a m(S,3)-invariant U-orbit of isomorphisms of Ox-modules ™ : M ® Z0 3
7O (45).
Furthermore, the quadruple (4, X, ¢, Un(™))g satisfies the following conditions (K1)-(K3):

(K1) Let * denote the Rosati involution induced by X on Ends A ® Z(my . Then «(b)" = 1(c(b)), Vb € Ok.

(K2) Let e* be the Weil pairing induced A\. We fix an isomorphism ¢ : Ay ~ A (1) once and for all, with
which we regard e* as a skew-Hermitian form e* : 75 (45) x T (A5) — D' @z ZD. Let ¢” denote
the skew-Hermitian form on 70 (A) induced by e"(z,2') = 9, s(n(z),n(z")). We require that

e* = u - e" for some u € A(fD).

(K3) The determinant condition:

(2.1) det(X — ¢(b)|Lie A) = (X — (0¢)())" (X — a(b))® € Og[X], Vb € O.
Define the fibered category Q(UD) over SCHg (@) as follows. Objects over S are S-quadruples. For A =

(AN, 0, Ung and A" = (A, N,/ U(')D)g, we define
Hom, o (4, &) = {¢ € Homoy (4, 4) | 6N = X, Us(n) D = Uy}
We say A ~ A’ if there exists an isomorphism in Hom o) (4, 4").
U

2.2. Shimura varieties.

2.2.1. Let O = () be the empty set and U be an open-compact subgroup in G(Ay). We define the functor
Cy: SCH/)C — SET by

Q:U(S) = {A: (A7X’ L UU)S € Q:U(T)}/: :

By the theory of Shimura-Deligne, €y is represented by Sg(U),/x which is a quasi-projective scheme over K.
We call S¢(U)/x the Shimura variety associated to G.

2.2.2. Kottwitz model. Let O = {p}. Let K be an open-compact subgroup such that K, = KS. we define

functor C(Ifzp) : SCH;9 — SET by

ngm

($)={A=@XugMsect, b/~

K(®)

In [Kot92], Kottwitz shows ngzp) is representable by a quasi-projective scheme Sg (K)o over O if K is neat.

2.3. Igusa schemes.
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2.3.1. For a quadruple V = (V, 9, 5, M, Pol,,), where (V, 9, ;) is the skew-Hermitian space defined in §1.5, M
is the Ok-lattice in (1.1) and Pol, = {N‘l, NO} is a polarization of M), we review the (open) Igusa schemes
associated to V) following the exposition in [HLS06, 2.1].

Definition 2.2 (S-quintuples). Let n be a positive integer. We define the fibered category Q%)n’Polp whose

(p)

objects over a base scheme S are S-quintuples (A,7)s = (A, X, 1,71, j)s of level K™, where Ag € <t

S-quadruple and

y 1Is a

Jt B @z NO = A[p"]
is a monomorphism as Ox-group schemes over S. We call j a level p™ structure of A. Morphisms between
S-quintuples are

Homgy | (A.0).(4.)) = {6 € Homgy (4,210 =7' .

K,n,Polp
Define the functor Q(Ig,)n,Polp :SCH;9 — SET by

&), (9) = {(4.5) = (AKL7P s e €@}/ .

Let A be the universal quadruple of level K(P) over Sg(K). Then equivalently, we have
Ie(K™) = Ini,, (1, @2 MO, A).

It is known that Qfg’g) are relatively representable over Sg(K) o (cf. [HLS06, Lemma(2.1.6.4)] and

,n,Pol,

[SGA64, Prop. 3.12]), and thus it is represented by a scheme. We denote by Ig(K™),o the scheme that

represents €7 for the standard polarization Polg ={M~',M°} defined in (1.2).

K,n,Polg

2.3.2. p-adic one forms. Suppose p is nilpotent in R and p™R = 0 for some m > 1. Let (A,j) be a R-
quintuple of level K. Identity M° = Mgl @® MY, with the basis in (1.2). Then if n > m, the level p»
structure j over R induces an trivialization of Lie A:

G MY @RS et LieA]p"] = et Lie A; j, : MY ® R = e” Lie A[p"] = e Lie A.
Let w4 = Hom(Lie A, R) be the R-module of invariant one forms of A. Then via the identification in (1.2), j.
induces an isomorphism:
(2.2) Wt =w( ) Zy @RS etwy; w(i) =w(T): Zy QRS e wy.
2.3.3. Change of the polarization. It is clear that the notion of level p™ structures depends on the choice of
the polarization of M,. Choose v € Kg such that N=! = M~1y and N° = M%y. Then we see that j — 7j
is an isomorphism from the level-p™ structures with respect to Polg to those of Pol,. Therefore the map

(4,7) = (A,~7) induces an isomorphism between Q(Ig?mpolg and G%”)nypolp.

2.4. Complex uniformization.

2.4.1. Let G = GU(V) and U C K° be an open compact subgroup in G(Ay). We recall the description of
the complex points S¢(U)(C) following [ST61].

We begin with the Hermitian symmetric domain attached to unitary groups with signature (r, s). We treat
two cases 7 > s > 0 and rs = 0 individually. If » > s > 0, we put

X, = {7 = m |2 € My(C),y € My s (C), i(s" — 7) > —ig™9 ).

For o € G(R), we write

a b c

a=1g9 e f
h 1 d

according to the standard basis of V. The action of & € G(R)' on X, 4 is defined by

2.3) m _ [aerberc

. -1
ol gx+ey+f} (hz+ly+d)~.
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If rs = 0, X,  consists of a single point written x¢ with the trivial action of G.
Then Xt = Xy, s is the Hermitian symmetric domain associated to G. Put

Ma(XT,U):=GQ)"\XT x G(Ay)/U,

where G(Q)™ = {g € G(Q) | v(g) > 0}. Then Mg(X™,U) is a complex manifold when U is neat. The group
G = GU(r, s) satisfies the Hasse principle ([Hid04, 7.1.5, p.319]). Hence we have

(2.4) Mg(Xt,U) 5 Sq(U)(C).

2.4.2. Analytic construction of the universal abelian scheme over C. Let A(V),c be the universal quadruple
of level U over Sg(U)c. After introducing some notations, we shall recall a construction of A(V)c. Define
C™* a vector space over C of dimension r + s with [C-action by

(2.5) C*=C*(X) @ C (X g C*(X).

Here C"~* and C? are regarded as spaces of row vectors. According to the above decomposition (2.5), we
define ¢, ; : C™* — C™* by

(ula Uz, u3)c7“,s = (Tlv u727 Ug),

where % means the complex conjugation of u € C. We denote by ,2:‘(/1)(2)7 e ,z‘(/r)(E) the first » complex
coordinates of C™*, where zg)(ﬂ) = (287)0)062. Similarly, we denote by z‘(/r"rl)(EC)7 e ,z‘(/r's_s)(EC) the rest
of s complex coordinates. If s > 0, we put
oyt oz
B(r)=10 ¢ y|.€Mq4s(C).
1, 0 1,

If s = 0, we put B(xg) = ¢. Via the isomorphism £ ® R = C, we regard Vg as a C-space of row
vectors according to the KC-basis {yi,wi,xi}. For each 7 € X, we define the map p(7) : Vg — C™* by
p(7)v = vB(7)cys. Then V acts on (7,2) € X x C™* by

v (7,2) = (1,p(T)v + 2).
We define a left action of G on V' by

(2.6) g*v:=uvg" =vg 'v(g)
and put
(2.7) Mg =g+ M = Mg" and M (1) = p(7)(Mg).

To each point (7,9) € XTxG(Ay) we can attach a C-quadruple A(V),(7) = (A(V)g(7), (, )ouns [1, Ung) of
level K™ defined by the following data
e Abelian variety: A(V)y(7) = C™* /My (1) = Vi /M),
e Polarization: (, )_,,, is the Q-orbit of the polarization induced by the Riemann form defined by the
pull back of (, ), s via p(7),
e Endomorphism: [] : Ox — End A4(7) ®z Q is the Og-action induced by the action on V' via p(7),
e Prime-to-p level structure: nép) MZP S Mgy = Hy(Ay(7), ZP) is defined by

nép)(x) =gx*x for x € M.

e Level structure at p: Taking a primitive p"-th root ¢ = e2™¥/P" | we have an isomorphism ¢ : Z /p"Z =
M. Similarly as above we have
J¢ t Hyn @M ~Z/p"Z @ M° — A, (7)[p"] = Z/p"Z @ Mg, §(x°) = g * 2° for 2° € MP°.
Let ng be the full level structure ngp ) x1p(jc). Thus the isomorphism in (2.4) can be described explicitly as
follows.

Mg(XtT,K™) 5 Sq(K™)(C)

(2.8) (1,9) = A(V)g(7) := [(AV)g(7); (s Deans [1: K1) |-
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Note that for u € K, we have

0] = [(Ag(r). T Tl K@, i)
We put
(2.9) dzy (2) = {dz$>(2), . ,dzg“)(z)} and dzy (2°) = {dz‘(fﬂ)(ﬂ“), . ,dzg“*S)(ZC)} .
Then dzy, := (dzy (X)), dzy (X)) form a basis of Q4 (). We define a r-form wy,c(Y) and a s-form wy/c(X°)
by

r r+s

(2.10) wye(2) = N\ daP () wye(9) = N\ daf) (59).
i=1 i=r+1

2.5. Igusa schemes associated to U(V). In the later application of the pull-back formula, we have to
consider the Igusa schemes attached to the unitary group U(V) as well. Let Z? be the ring of integers of Q®°
and 0% be the ring generated by O and Z%. Let Clg(K) = Q\A /v(K) and choose a set of representatives

Ck of CIE(K) in A%. For ¢ € C, we consider the functor Iyy(vy(K";c): SCH 9 — SET
Ty (K"5€)(S) = { (A A 6,0 KD j)s | (AN 1,0 K®) e e 1) =,

where )\ is a polarization in the class A such that

A =u-e uccv(K).

It is shown in [Hid04, p.136] below that the isomorphism class [(A, A, ¢, n®P K, j)s] is independent of the choice
of A in A. Pick g € G(A}), v(gc) = ¢ and let °K" = geK"g ' NU(V)(Af). Then over C we have an
isomorphism

My (X*,°K) 5 Iy (K™ ¢) /e
As explained in [Hid04, §4.2.1] for the Hilbert modular varieties, we have

|_| Iy (K" ¢) = Ig(K™).
CGCIQ(K)

When ¢ = 1, we write Iy (K™) for Iy vy (K";c).

2.6. Morphisms between Igusa schemes. Let (W, 9, L) and (V, 9,5, M) be as before. Let L™ = Ly :=
et (L®zZy) and L’ = Ly := e (L®zZ,). Then {L~!, L°} is a polarization of L,. Recall that the standard
polarization of M, in §1.6 is

M7= (Ox®zZ)y' @ L' and M° = L°® Y (O ®z Zy)a".
iz1 i=1

Let V.= (V,9p 6, M, M~ & M°) and -W = (W, -9, L,L° ® L™1). Let (W,n,) = (V& (-W), 9, ® (=9)).
Define an Oy-lattice L= M & L in W and a polarization (L™, L%) = (M~' & L°, M° & L) of L,,. Put

W=Va&(-W)=(W,n,LL oL’

Let Gy = U(V), Gy = U(W) and G3 = U(W) be the associated unitary groups. For open compact
subgroups K; C G;(Ay) such that Ky x K C K3 and a fixed ¢ € (A%})*, we write I'(K;(p™)) for the Igusa
schemes I, (K;(p™), c) associated to unitary groups with additional data. Then we have a natural morphism

ivw : TH(EKL(p™)) joar X T (Ka(p™)) joar — I (K3(p™)) jgas
defined by

(2.11) dv,w ([(Ars Ar, e VK, 1)), (A2, Az, o, m5 Ko, j2)]) = [(Ar X Aa, A X A, 01 X g, (7 X 175) K3, 1 X j2)].
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Now we consider a different polarization of Lj. Let w™ ' (resp. w™") be the image of w’ in W (resp. —W)
as a subspace in W. We define a basis {yi,xi}zzl of Whyy! =y, x* =2 if 1 <i < sand

+,i—s _ 1 —,i—5

o1
) w ,

Y= av 2

Xi —_ er,ifsﬁfl + w*,ifsﬁfl.
if s <i<7r WeputY =37 (O @z Z,)y" and X = Y2 (O @z Z,)x'. Then {Y,X} is another
polarization of L, = M, & (—L,). We have

Lyr=Mys®(-L)s=Ys®Xs.

We define T € U(W)(Q,) ~ GL(Wx) ~ GL2,(Q,) by 'Y =y, 2'T = x"if 1 <i < s and w;’ifs'f =y
and wy' Y = x5 if s < i < r. Then MY = Xy and MEIT = Y. The matrix representation of T
according the basis y% and x%; is

3 1, _% S P
L
vt vt

We give an explicit expression of the morphism in (2.11) in terms of the complex coordinates defined in
(2.8). Notations are as in §2.4. By definition of C™" we can decompose

CrT = CS(EC) o Crfs(Ec) P CS(E) ey Crfs(E) =C" @ CO,rfs'

Then for 7 = [;ﬂ € X, s, we let i € GL(C™") be the matrix such that according to the above decomposition,

1
i = 17’—9
T — ]_S
Iy 1
and put
(212) Z; = |:x 0:| e X, T
y s '

where ¢ = —2719. For g € U(V) and h € U(W), a straightforward computation shows that
(Lo, (Z7)) iz = My(7) & Ln(x0),
hence 7 induces an isomorphism

Qrr Z’:‘— Qs Qor—s

(213) A(W)(%h)(z‘r) = L(g,h)(Z‘f') — Mg(T) Lh(XO) = A(V)Q(T)X'A(W)h(xo)'
Note that
(2.14) ir(wyv/c(X),wyc(X) Aww/c(X9)) = (ww/c(X), ww/c(X9)).

Taking into account the change of the polarization, we can deduce that the morphism in (2.11) over C is
simply given by

(2.15) ivw ([7, 9], [x0, h]) = [Z-, (g, h)Y].

2.7. CM abelian varieties and periods.
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2.7.1. We consider a special case where r = 2 and s = 0. Then G = GU(W) is a definite unitary group of
degree two. It follows that Sg(K) is finite over O and Sg(K)(C) = Mg(X ™, K) is a finite set. Let B be the
universal quadruple over Sg(K). Then B = |_|[h]€ S (K)(c) By, and each B, is defined over a discrete valuation
ring o C Z,. We consider the quintuple (B, j) over Sg(K™),c. Since By, is an abelian varietiy with CM
by Ok and p is split in K, it follows that B;, ®¢ I_Fp is an ordinary abelian variety, and jc descends to a level
p"-structure over a finite unramified extension of o. In short, we can enlarge o so that the quintuple (B, j) is
defined over 0. Note that by the complex uniformization constructed in §2.4.2, we have

c(z)

(2.16) B (C) = el

2.7.2. We introduce the CM-period and its p-adic avatar for the CM-algebra I @ K. Let Fx be an elliptic
curve with CM by K together with a complex uniformization i : Ex(C) = C/Ox (i is unique to £1). It is

well known that Ex is defined over Q, and extends to an abelian scheme E over Z(p). We choose a Néron
differential wx € HO(E, QE/Z(p)) such that H°(E, QE/Z<p)) = Z(,) - wi. On the other hand over C i induces

a holomorphic one form of first kind dz on Ei, so there exists a complex number x such that
wie = QKdZ.

We call Qx the CM period of K which is well-defined up to ZE; y-

By the isomorphism (2.16), the holomorphic one forms dzyy, (¥) defined in (2.9) give an Ox-basis of Qs .
By the assumption on L and o, By, is Zy)-isogenous to Ex x Ex. Then it is easy to show that the top form
wag, = Q,QC -wyw/c(X) over C induced by complex uniformization actually descend to Z(p).

On the other hand, the level p level structure j : @fn ~ @h induces an formal top form w(j) of @h as in
(2.21) which can descend to a top form of B, still denoted by w(j). Hence there exists Q, € (Z,)* such that
(2.17) Qw(j) = ws, = Rww/c(D).

2.8. Siegel modular forms for unitary groups.

2.8.1. We introduce the notion of Siegel modular forms for unitary groups. For a R-quintuple z = (A4, \, ¢, 7P, j) €
I (K™). We say w is an Ok-top form of z if w = (w(X),w(X°), where w(X) (resp. w(X°)) is a generator of
% = N\ etQy (resp. Q5. = AN’ e Qa). Let H = GL, x GLg. For h € H, we write h = (h1, h2) € GL, x GLs.
For k = (a,b) € Z, we let pg(h) = det(h1)~% det(hy)~°. We have the obvious left action of H(R) on w.

Definition 2.3 (Katz-Hida). A Siegel modular form of weight & = (a,b) is a rule f which assigns to a pair
(z,w) a R-quintuple z in Ig(K™) together with an Ox-top form w of Lie AV, an element f(z,w) € R, such
that the following three conditions are satisfied.

(1) f(z,w) depends only on the R-isomorphism class of the pair (z,w).

(2) For any h € H(R), f(z, hw) = py(h) f (1, w).

(3) The formation of f(z,w) commutes with base change. Namely, for any 7 : R — R/, 7n(f(zr,w)) =
flar, wr).

Tautologically modular forms of k can be viewed as sections in the sheaf wj, as follows.
Set
M (K", R) := H(Ic(K") /r, wk)-
We call My (K™, R) the space of geometric modular forms.

2.8.2. Automorphic forms and modular forms over C. Let J : G(R)T x XT — GL(r, C) x GL(s, C) be the
standard cocycle defined by

9ooP(T) = P(9o0T) I (9oo, T)5 ¥ (9oo, T) € G(R)T x XT.

Fix a point i € X+ and let K2 be the stablizer of i in G(R). Then J : KO — H(C), koo = J(koo,1) defines
an algebraic representation of K9_.
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Definition 2.4. Let U be an open compact subgroup in G(Ay) and let x be a Hecke character of K with
infinity type (b,a). Let Ay(G,U,x) be the space of automorphic forms of weight k& = (a,b) and level U
with central character x. In other words, Ax(G,U, x) consists of smooth and slowly increasing functions
F : G(A) — C such that for all (o, koo, u,2) € G(Q)x K xUxZ(AF),

F(zagkseu) = pi(J (Koo, 1)) F(9)x ™ (2).

Define the function AM(F) on X xG(Ay) associated to F € Ax(G,U, x) by
(2.18) AM(F)(7,9) := x5 (1(9))pr(J (950, ) ™) F (950, 9))
where go € G(R)™" such that gooi = 7. Then AM(F) is a well-defined function on X+ x G(A¢)/U. We put

AEOI(G7 U,x) = {F € Ax(G,U, x) | AM(F) is holomorphic in X"} .
We denote by My (G, U, x, C) the space of holomorphic functions f on X+ x G(Ay) such that
flar, ag) = v(a)~ @) p (J(a, Z2) "N f(1,9), Z € XT, a € G(Q)
and
f(r,2gu) = X°(2)f(1,9), w € U, z € Z(Ay).

My (G,U, x, C) is the space of modular forms of weight k and level U with central character y. It is easy to
see that AM induces an isomorphism

AM : AJNG, U, x) 5 Mi(G,U, x, C).
By G.A.G.A we have an injection:
Mj (G, K™, x,C) — My(K",C)
[ = f(r,a], 2miwy/c) == f(7,a),
where wy /¢ = (Wy/c(X), wy/c(2)) is the Ox-top form defined in (1.6).

2.8.3. Analytic Fourier-Jacobi expansion. The set of cusp labels for Sg(K) is defined to be
C(K) := (GLs(K)xGU(W)(Af)Np(A\G(Af) /K.

For g € G(Ay), we denote by [g] the class in C(K).
Holomorphic modular forms f € My (G, U, C) have the following analytic Fourier-Jacobi expansion:

1

X

y] .9) = f([ﬂ (g 2midzy) = ) ag(y,g; e OO, (m ,9) € XT x G(Ay),

BEH(Q)
where H(Q) is the set of s x s Hermitian matrices in M, (K). We put
(2.19) Fa( =D as(y,9: "
BEH(Q)
The formal power series F,;(f) is called the Fourier(-Jacobi) expansion of f at the cusp [g].
2.8.4. p-adic modular forms. Let n > m be positive integers. Write Z,, for Z/p™Z. Let T, = Ic(K")z,, -

Let Too,m = l'mn Tom and Too oo = li m]'&nn Tn,m be Igusa towers on Sg(K) 0. Then there is a natural
action of GL,(Zy)x GLs(Z,) on T oo. We define p-adic modular forms following [Hid02].

Definition 2.5. Put

Vian = H(T 0, O, ) and Vi = B (T, O ) = lim Vi

Let N = N, (Z,)xNy(Z,). We define the space of p-adic modular forms V,(G, K) by
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Let R be a Z,,-algebra. For a R-quintuple (4, j), the p"-structure j induces the following isomorphism as
Ojc-modules.

(2.20) ju: M® ®z R 5 Lie A[p"] = Lie A.

Then (2.20) induces a p-adic Ox-top form w(j) = (w(5)(X), w(j)(X¢)) € HY(A4,Q%) x HO(A, Q5%.), where
(2.21) w()(X): A"LieAse 5 A"(M% ® R) ~ R, w(j)(X°):A*Lieds = A*(M%:® R) ~ R.

The last isomorphism depends on the choice of a basis of M. Then (2.21) induces the emdedding:

B: H(Tym,wi) — Vin

(2.22) = BUA) = FA w0 (i),

which induces the following morphism
My (KT, Z,) *% HO(TS o.w) = VoG, K, f = | = Blres(f)).

We call f € Vp(G, K) the p-adic avatar of f.

3. SIEGEL-EISENSTEIN SERIES ON GU(n,n)

3.1. Let n be a positive integer. In this section, we give a construction of p-adic Siegel-Eisenstein series on
the quasi-split unitary group of degree n. We retain the notation in §2.6. Let W, V and W be the quadruples
defined in §2.6 with » = n and s = 1. We further assume that the lattice L is a Z-mazimal lattice with respect
to the Hermitian form 2715714 in the sense of Shimura [Shi97, Ch. I §4.7|. Let G = GU(W,n,,) denote the
group of unitary similitudes attached to (W,n,). For a Q-algebra R, we identify G(R) with

G(R) = {g € M, (R®qK) | g Lon 3”] 9" =) {1071 ;n]}

according to the basis {yi, xi}?zl. Thus G is the standard quasi-split group of unitary similitudes of degree
n. Let P be the stablizer of the flag {0} € X € W in G. Then P is the standard Siegel parabolic subgroup
of G.

Recall that X, ,, is the Hermitian symmetric domain associated to G defined by
Xnn=4{Z € M,(C)|i(Z" - Z) > 0}.
We choose a distinguished point i in X, ,, attached to J. Put

[

= 0 .

v
-

Put
K% ={g€GR)|gi=g}.

Let KY be the stablizer of L in G(Q,) and let K?e = [loen K be a maximal open compact subgroup in
G(Ay). For g € G(A), we define

vd™™* b

5(g) = |v" det(ad)rl , g = { 0 d

] k, k € KL K.
We have dp(g) = 0(g)"™, where dp is the modular character of P.

3.2. Eisenstein series.
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3.2.1. Let x be a Hecke characters of K with infinity type (k,0). Namely x : AZ/K* — C is a character

such that Yoo(2eo) = 2% . Consider the induced representation I(x,s) = Ind$ (x,s), where Ind$ (x,s) is the

unitary induced representation of x and s € C such that n(s + %) = s. For a place v of Q, let I,(x, s) be the

induced representation attached to x, := X|(kgqq,)x- In other words,

I,(x,s) = { smooth functions f : G(Q,) — C| f(pg) = x, *(det dp)SS(p)f(g)} .
Then we have
I(X7 S) = ®;Iv <X7 8)
Define the adelic Siegel-Eisenstein series associated to a smooth section ¢ € I(x, s) by

Ea(g,9):= Y,  ¢(v9),
VEP(Q\G(Q)

whenever the sum is convergent.

3.2.2. Denote by 9 the standard additive character of A /Q such that ¢ (Te) = exp(27iz o), Too € R. Let h
be the set of finite places of Q. If v € h, let dx, be the Haar measure on Q,, such that vol(Z,, dz,) = 1. Let dX,
be the Tamagawa measure on the nxn Hermitian matrices 3, (Q,) in M, (K,) such that vol(H,(Z,),dX,) =
1. If £ is a lattice in 3,,(Q,), put

L ={z €3, (Qp) | ¥, (Tr(zy)) =1, Vy € L}.
If v is archimedean, let
dX, = N\dX;; N\ 271 dX 0 A dXy.
J J<k
For 8 € 3, (K) and X € 3, (A), define 15(X) = 1 o Trx)q(BX). We choose the normalized measure d.X
on H,,(A) so that vol(H, (Q)\H,(A),dX) = 1. Then it is well-known that

n(n—1)

dX = Cx(n) - ®,dX,, where Cic(n) =277 |Dic|g"" /.
Let ¢P(x) be the prime-to-p conductor of xy. We fix a prime-to-p integral ideal ¢ of Z such that
(S1) ¢ C D - c(x).
Let S = {v € h | v|c}. Note that S is not empty.

3.2.3. Fourier expansion. Let N be the unipotent radical of P given by
1, X

N={n(X) = { " 1 } | X € 3, }.
n

Then Siegel-Eisenstein series Ea = Fa (g, ¢) has the Fourier expansion

peH~(Q) 3, (Q\In (A)
Let w = 1 _1"} It is well-known that if ¢ = ®¢, is decomposable and supp ¢, C P(Qy,)WP(Qy,)
n

for some v, then we have Wg(g, Ea) = Cic(n)W3s(g, ¢) for g € G(A) with g,, = 1, where
Wﬁ(ga(b) = HWB(gva(bv)a W5(9v7¢v) = /‘}C @) ¢v(wn(Xv)gv)¢75(Xv)dXv~

Thus the Fourier expansion in (3.1) can be rephrased as
Ci(n) "' Ea(g,0) = Cx(n)'¢(9) + Mwd(g) + > Ws(g,9),
BEH(Q),B#0

where My ¢(g) := Wo(g,d). Then My ¢ is called the intertwining operator of w, and we will write M¢ for
My ¢ in the sequel. Define the constant term Ep(g) along the parabolic subgroup P by

Ep(g) = / Ea(n(X)g)dX = ¢(g) + Cie(n) - M(g).
Hn(Q\HA(A)
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3.3. The local section at the archimedean place.

3.3.1. To define the desired Eisentein series with good arithmetic and p-adic properties, we need to choose
some special decomposable local section in I(y,s). In this subsection, we give the choice of the local sections
at the archimedean place.

For g € G(R)" and Z € X,, ,,, we define the standard automorphy factors J(g, Z) and J'(g, Z) by

J(9,2) = det(cyZ + dg) and J'(g, Z) := det(g) ™" J (g, Z)v(g)"-
Then we have

8(g) = 17(g, )7 (h,i)w(g) """ = [J(g,0)| " |det g, g € G(R).
Let J,,A(g, Z) denote the automorphy factor of weight (u, \) € Z2,
(3.2) Tunle, 2) = J'(9.2)" (9, 2)*.

Define the section of minimal K9 -type (0, k) in I.(x,0) by
Nool9) = oy (9, 2) = J(g.0) 7",

Set

(3.3) Dy.s.00(9) = D% (9)6(9)°.

3.3.2. Intertwining operator. The intertwining operator of ¢, s oo can be computed by Gindikin-Karpelevi¢ formula.

2 Dp(k—n—2s)

Mw 5,00 :~—nk.2n, "
Dxs5,00(9) =i " T,k + s)Dn(s)

. (bk,nfk:fs,oo(g)
Note that My ¢y s c0|ls=0 = 0 if & > n.

3.3.3. Fourier coefficients. We will compute the local Fourier coefficient of ¢, 5. First of all, we recall
several definitions and facts from [Shi82]. Put

H) ={x+iy € M,(C) | z,y € H,,(C) and = > 0} .
We define the function &(y, h; q1,qz2) for (v, h;q1,q2) € H., x H,(C) x C? by

&y, h;q1,q2) 1 = / det(y + iz) " det(y — ix)*qze*%i“(m)dl’

(3.4) 30,(C)

n(ga— n n? - -
=M@= 9m 2T (qr)  Tala2) ™ 02y, Ths a1, g2),

where
n—1
T(s) = o H (s —j).
=0

Then ¢ is well-defined when Re ¢; > 0 and Re g2 > 0. Moreover £ has meromorphic continuation to the whole
H! x H,(R) x C2.
Now we assume h > 0 and write 7h = AA*. Then we have

(2, 7h; g1, 42) = 1(29, AA™; g1, go) = det(mh)\ B H2 ™) L n(A%2y A, 15 g1, gs)
and
(3.5) (g, Lq1,42) = e~ TO2ANTETINL (go) det(2y) T w(29; 41, g2),
where w(z;p, q) is the function on H/, x C? defined in [Shi82, p.281|. Shimura proves the following:
Proposition 3.1 (Theorem 3.1 [Shi82|). w(z,q1,q2) is a holomorphic function on H! x C? which satisfies

w(zin —q2,n—q1) = w(zq1,q2), w(z,n,q2) =w(z,q,0) =1.
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Let y =1 in (3.5). We have
n(2,27h; q1, q2) = e~ 27 T glatraz=mnp () det(4mh) "2 w(4rh; g1, 1).
Hence
(3.6) E(1, h; qu, qo) = iM2m@) L gnla—a—ntl) gnar (g )7L det(R) BT e 2T MM g (47h; g1, g2)
When h = 0, we have
1(9,0:q1,42) = Tn(q1 + g2 — n) det(g)" ™" 7%,
Hence
€(9,05q1,p) = @271 g (E=2082) 7n® D (1) D, (go) TE - T + g2 — ) det(g)" 7%
Given Z € X, ,,, we can choose ps € P(R) such that Z = p -1 and v(pe) = 1. We write

Poo = {a Z} eP(R),a=d * and Z = Xy +iY)

with Xo,Yy € 3, (C) and Yy > 0. From psi = (ai + b)d™! = Z = X + Yyi, we have Xy = bd~! and
Yy = aid~!. Note that det(i) = det(—ic) and det Y = det(a*a) det(is). Therefore

det(a) % J(o k) (Poo, 1) = (det Yo) ™% - det(ic)*.
By the above formulae, a straightforward calculation shows that the local Fourier coeflicient of ¢ = ¢ s o0 is

given by

Wioe(Pocs Grn) = [ 6wn(Xa)po)tp (X)X ox
3, (R)

=J(0,) (Poc, 1) 71 (det Yo)™" 7F 7% det(ic) " ap 5 (X0)&(1, Yo B, k + s, 5)
By (3.4) and (3.5), the last equation equals
(3.7) J0.k) (Pocs 1) 71 Dy g - 7" FF) T (K + 5) L det(B)F T2 D) (Ao B k + s, 5),
where

Dps = i7" 2n(E=n+D) det (i¢) 5.

)

Evaluating ¢ s o at s = 0, by Prop. 3.1 we obtain the local Fourier coeflicient at the archimedean place.
Proposition 3.2. Let A, oo(s,x) = i~ "F . 27nk=nd ) g=n(s+h) . T, (s + k). Then

An,oc(O, X)—l . det(ﬁ)k—n . eQTriTr(ﬁZ) Zfﬁ ~0

J, oovi %% oo\ Pooy 5,00)|s=0 —
(O’k)(p JWi.o0 (Poc; xs.00)ls=0 {O otherwise.

3.4. The local section at finite v # p.

3.4.1. In this subsection, we give the choice of the local sections at finite places other than p. We first introduce

“ Z} € Mo, (R) with a,b,c,d € M,(R), we

write a = a4, b= by, ¢ = ¢4 and d = dy. For a a subset in R and & € M, xm(R),

some notation and definitions. For n a positive integer and g =

T <a <= z; €a,Vij.
Put F=Q, and E=K®Q, forv € h. Let O =7Z, and R = O ® Z,. Put

— x R R
Dl[cv]—{xeGLG(EHdetIER T Lv 1+¢,

and D(c,) = D1[c,] N G(F'). We define an open-compact subgroup K of G(A[) by
(3.8) K =[] D(e,)x [T KS.

veS vgS
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Since L, is a O-maximal R-lattice in V with respect to the Hermitian 271614, by [Shi97, Lemma 20.2],
we can find o, € GL,_4(F) such that L’ o, = L, where L', = Rw!,--- ,+Rw" ! is the standard lattice in W

and oo™ = [g _02] if v €S and v is inert in K. Define S, and w’ in G(F) by

For v € S, define f., to be the unique section in I, (x, s) such that
(3.9) supp fe.o C P(F)D(c,) and f.,(pu) = 5°(p)x '(dp), P € P(F),u € D(c,).
For v € S, x, is unramified. We let f? . denote the unique section in I,(x, s) which is invariant by K.
Definition 3.3. The local sections ¢, s, at v # p are defined as follows.

Y(gS™! Su
(3.10) bra = 4 0o l957) v ESULDE
feo(gw'S™Y) ve s

Put u = F ga*]. Let £, = H,(F) N (uM,(2¢,)u*) be a lattice in H,,(F). Then one checks easily that

@y,s,0 for v € § is the unique section such that
SUPP ¢y 5,0 = P(F)WN(L,) 5 dy.5,5(wn(u)) = x, ' (detu) |[det(un)],*, u € L,.

Note that ¢, s, for v € S is supported in the big cell.
We will define the local section at p in §3.5.

3.4.2. Fourier coefficients at v ¢ S. When v & S U {p}, x, is unramified and ¢, s ,(g) = [V ,(¢9S™!), where

X8,V
f%s,v is the standard spherical section in I,(x, s). In this case, the Fourier coefficients have been calculated

by Shimura.
Proposition 3.4 ([Shi97] Prop. 19.2 ). Let rank 8 =r. We have

Wa(f0 1) = /N o P (KDY (X)X,

= Anw (5a X)_lA:z,y(& X)R,@,U(X-‘r,v(wv) |wv|12;s)]lf}fn(zv)v (B)v

where
n—1 ‘
An,v(87 X) = H Lv(28 - ja X+T)JC/Q)7
j=0
n—r—1 )
A:L,U(Sﬂ X) = H Lv(25 —n-—j, X+T£7(371)
3=0

and Rp (T) is a polynomial which only depends on 8 and equals to 1 for almost v.

We only need this result when 3> 0 and A (s, x) = 1.

3.4.3. Fourier coefficients at v € S. Notations are as in §3.4. The local Fourier coefficient of ¢, . s is

W, 1) = x~(det ) |det ual > / Le (X, (X,)dX,
}C"(QU)

=y~ !(detw) |det ua, ** Iy (8) vol(£,dX,)

(3.11)

3.5. The local section at v = p.
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3.5.1. Gauss sum and e-factor. Let d*x be the Haar measure on Q) such that vol(Z,’,d*z) = 1. Let u be

a character of Q). We let ¢, (u) = |c(,u)|];1 if 11 is ramified and ¢, () = p if p is unramified. We define the
Gauss sum G(u) by

Gy= [ s, @

Then (s, ) = G(u|-|°,4,) " is Tate’s e-factor. It is easy to verify that e(s,x) = |N|* x(N)7(u), where
7(p) is the classial Gauss sum which only depends on zx Define a Bruhat-Schwartz function ®,, on Q, by
D, () := ,u(x)]lzg (z). Then one can compute its Fourier transform easily:

= “Hy)G ()1 if g i ified with conductor N,
(3.12) W) = {X ()G () 12 (y) if p is ramified with conductor

Iz, — [pll,1z, if p is unramified.
We now introduce the modified p-Euler factor E,(s, p).
Definition 3.5 (Modified p-Euler factor).

By (s, 1) = Z(s, 1, <T>u)=/ (@) | Bu()d*a.

Qp

The following identity inspired by (3.2a)[HT93] is our key to the construction of the local section.

LP(&/‘)

(3.13) E,(s,p) = L= s )

3.5.2. Some Bruhat-Schwartz functions. We introduce some special Bruhat-Schwartz functions on M3(Q,).
Definition 3.6. Let J, N and N be three p-power integers. Let Ks3(J) be the subset of Mg(Q,) of the form

Ply, L, Z,
JZ, Z; Z,
pZy pl, Z;

Let Io(N, N2) be the subset of Mg(Q,) such that In(N, N2)* the transpose of In(N, N2) is of the form

ZX NZ, NZ,
Z, ZX MN7Z,
Z, Z, Zf

For 1 = (i, p3), we let ®“7 be the Bruhat-Schwartz function in Ms(Z,,) such that
7 (2) = ey () (Z)pz(Za2) s (0™ Zin), Z = (Ziy).
Set
oy (z) = Iz (v N2t (2) H vi(Zis)
Given p and v, we let Ny = ¢,(v2) and choose J and N such that
(3.14) N > J > max {cp(1i), cp(v4)} .

Then (3.14) implies that Io(N, Ny) is a group. Let ®; = ®*” and ®, = ®5" which satisfy the following
properties:

Lemma 3.7.

(1) @1(tZ) = pa(t2)ps(t3)2(Z) and ®1(Z1t) = po(ta)ps(t1)P1(Z) for t = diag(ty,ta, ts).
(2) By(7 My (z )) = Bo(Z) and Ba(Zt) = Bo(t2) = v(t)"'Ba(Z) for t € Ty(Zy).
(3) ®1(Zn) = ®1(Z) for n € N3(Z,)

PROOF.  Straightforward verification from the definitions and (3.14). O
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3.5.3. The local section at p. In this subsection, we define the local Godement section at p. Let (x1,x2) =
(Xp»X7) = Xp and x4+ = x1X2. For z = (z1,22) a character of Wy = ZxZ} of finite order., we define
= (p2,pu3) and v = (v1, 19, v3) as follows

(1) v1 = x4, 2 = x122 and v3 = X121,
(2) p2 = x5 'z and pg = x5 ' 21
Recall that the Fourier transform ® for ® € S (M3(Qp)) is defined by

d(2) = / O(X)p(Tr(* X 2))dX.
Ms(Qp)

Define &% a Bruhat-Schwartz function on Msx6(Qp) by
SIN(X,Y) == 01(X)Ba(Y).

We consider the Godement section fp associated to & = @i’ﬂ.
(3.15) falg) == xa(det )l detgl” [ (0, Z)g)axaldet 2)]det 20
GLS(QP)
The section fg has the following properties.
Lemma 3.8.
(1) fo(gt) = (2’172271'2,.%'17$2$;1251,$2$;12;1)f¢(g) fort € T4(Zy).
(2) fo is N¢(Zy)-invariant.

ProOF. (1) follows from Lemma 3.7. As for (2), for A, D € N3(Z,) and B € M3(Z,), we have ®1(XA) =
®(X) since J > cp(p2) . If X € supp @1, we have XB € Ms(Z,). Therefore by Lemma 3.7 (1) and (2), we

have
A B

d(X,Y) [0 b

]) = 01 (X)P2(YD + XB) = &1 (X)05(YD) = &(X,Y)
O

3.5.4. Local Fourier coefficient at p. We compute the local Fourier coefficients of fg. To emphasize the
dependence of the local Fourier coefficient on z, x and 3, we put

Wp(B;x,z) = Ws(fa,1).
Proposition 3.9.
(3.16) Wy(8;x, 2) = |p~ " J| vol(Io (N, Na), d* Z)x+(det ) |det 8%~ - Toc, ) (B)H(B),
where
H(B) = z125 " (p7 ' B31) - X3 " z2(—p~ " det [

In particular, Wy,(8;x,2) =0 if det 5 = 0.

Ba1 522])
Ba1 Ba2|”

PrROOF. By definition,

] . 0 —1 2s 1%
W= [ [ e |) i) ez a zy_ oo

(3.17)
_ / O (2)®5(' 2 B) 1 (det Z) [det Z|>* d* Z.
GLS(QP)

As @, is supported in non-degenerate matrices, we see W,(8;x,z) = 0 if det 8 = 0. If det § # 0, we make a
change of variable Z — Z3. Then (3.17) equals

X+ (det ) |det 52 / B (Z8)a(' 2 V) x4 (det Z)| det Z|>*d* Z
GL3(Qp)

= (et et ST [ w2002 et 2)a7 2
IO(N,NQ)
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For Z € Iy(N, N3), we write Z = utngz(x), where

1z, Z, 100
u€e |NZ, 1 0| ,teT3(Zy), and nog(z) = |0 1 x| z € Zy,.
NZ, N»Z, 1 00 1

Then by Lemma 3.7 we have ®;(Z3) = u(t)®1(n23(x)B8) and ®2(*Z~1) = v(t)~!. Since pr~1xy = 1, we have
u X

(3.18) W, (85X, 2) = X+ (det B) |det B> ~? vol(Io(N, Na), d* Z) / D1 (n23(2)B)dx.
ZP

We use the following lemma to compute (3.18).

X
Lemma 3.10. Let Ko(J) = [JZP Z,

Pz pZJ and define the function Qx, x, on My(Q,) by

Qi (9) = Tocy (0 (DA (0)A2(p™ ' e), g = {CCL Z} )

Then we have

1 _ _ _ _
L @unt|" 7] o1de =t e 0 Dalp (7 et

Proor. Write Q = @Qx,,,.- Then

/ZPQ(n(x)[Z flbdx _ /ZQ([atxc btlzdb

I4

= )\Q(p’lc)]lpz; ()pz, (d) / Iyz,(a+xzc) A (b + xd)dx
v/

p

= )\Q(p_lc)]lpz; (c)lpz, (d) / I x (0)A1 ()7, (pc” a + zp)Ai (1 + 2b~ ' d)dz

p

- b - -
= h(p 1C)Hg<2(p)(|:z d})Al(b)/Z iz, (e~ a+zp)Ai (1 + xb~ ' d)da.

P

Since b~'dp~tJZ, C JZ,, the integral [ I,z (pc 'a+ xp)Ai(1+ xb~'d)dz equals
zZ

p

/ M =clab dyde = |p7 | Au(pe” o) - A (—p ! det [a b} ).
70—1a+p—1JZp c d
O
To proceed the computation of (3.18), we note that
1 =z
®1(0(0)8) = Q| 5]
Therefore the formula follows from Lemma 3.10 and the fact that psuy; ' = 2125 ' O

Lemma 3.11 (Trace computation). Let u € GL3(Q,). Then we have
1 _ s _
(3.19) Wﬁ(fcp,{ ° u]) = X5 *(detw) |det ul*" W, (u™'B; x, 2).

In particular if x € cp(zlzgl)zp, then

WB(ﬁPv [13 ):|):W5(f<1>a1)7u($):

u_(x

8 =
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PrROOF. We have

u-0y(2) = (Zu) = /@(Y)w(tYZu)dY - /@(Y)w,b(t(Ytu)Z)dY

= /(I’(Ytu’l)'(/;(tYZ)dY = ty-1- Q.

Following the same computation in Prop. 3.9, we have

L
=x2(detu)|det u|® - Ws((Is @ u) - @, 1)

=xz(detu)| det u|® - x4 (det B)| det B]?573 / @ﬂZﬂ)z?fl\g(tZ_l)er(det Z)|det Z)**d* Z
GL3(Qp)
=xa(det u)| det u|® - x4 (det B)| det B|>*~3 / O, (ZB)Po('(Zu) ) x4 (det Z)|det Z|**d* Z
GL3(Qp)
=x2(det w) [det ul*T* W, (u15; x, 2)
The second assertion follows from (3.16) directly. O

3.6. Normalization. In this subsection, we take a suitable normalization of the Siegel-Eisenstein series on
GU (3, 3) attached to the section we have defined. Put

1
|p_1J|p . VOI(I()(N, NQ), dXZ) '

NC(x,s) = Cx(3)" - A5V (s, x) -

Definition 3.12. Let ® = @i’ﬂ be as in §3.5. Define the section ¢, s € I(x, s) and its normalization ¢} ; by
¢X75 = ®v;ﬁp¢x,s,v & f<1>a ¢;,s = NC(Xa 5) : ¢X75'

Define the normalized adelic Siegel-Eisenstein series by
EA(ga S, X5 2, C) = NC(Xu 8) . EA(Q? ¢X,s) = EA(g7 (b;,s)
= Y #.(19),9€G(A).
YEP(Q\G(Q)

When k > 3, Ea(g, s, X, 2, ¢) converges absolutely at s = 0 (¢f. [Shi97] and [Har84]). Thus Ea(g, s, X, 2, ¢)|s=0
is an element in A%{OOL)(G, K5°, x?), where K is defined in (3.8).

Let E(x, 2, ¢) be the associated holomorphic Siegel-Eisenstein series as in (2.18). For (Z, g) € X33 x G(Ay),
we have

E(x,z,¢)(Z,9) : = AM(Ea(—, ¢} s)|s=0)(Z, 9)
= XB(V(g))J(O,k) (9007 i)EA((gOOa g)a 5 X5 & c)|3=07

where g, € G(R)" with gooi= Z.

By the inspection on Fourier coefficients of FE(y, z, ¢), this normalized Eisenstein series in fact is independent
of the choice of N = (N, N2) and J (See Remark 3.14).

Proposition 3.13. Let g € G(Ay) such that g, = g, = 1 at some v € S. Then E(x,z,¢) has the following
Fourier expansion:

Fo(E(x.z.0) = > aslgx.2)d",
0<BeH3(Q)

where ag(g, x,2) = ag(g,x,g) det 853 and
ap(1,x,2) = X4 p(det B)| det B[, 2 H(B) - xs(detu™") - D(x, L)
(3.20) x 11 Rg o (X0 () - I=(B),

vgSU{p},vtdet B
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where
D(x, £) = X"} (det o) x5! (det u) |det 06|;?§ H vol(L, dxy)
vES
and

== H LX X Kg(p) X H %S(ZU)V

vES vgSU{p}

is a compact subset in Hz(Ay) independent of x and z. Moreover, given g = {A A_*}’ Ae GLg(A%;) X
GL3(Ox ®z Z,), we have
(3:21) ap(9,x:2) = X" (det A) [A"A]” - alf. 54 (1, x, 2) det 52,

PROOF.  Since the support of ¢, s, at v € S is in the big cell, the S-th Fourier coefficient of Ea (g, ¢y,s) is
decomposed into a product of local coefficients if z,, = 1 at some v € S. Hence the formula (3.20) and (3.21)
follows from

(3.22) W@([

together with Prop. 3.2, (3.11), Prop. 3.9 and Prop. 3.4. O

A—J ,¢) = x"(det A)| det A AT Wa-54(1, ¢)

Remark 3.14. By g-expansion principle over C and the formulae of the Fourier coefficients, the Eisenstein
series F(x, z, ¢) is independent of the choice of J and N in CID;I’E. Also, by Lemma 3.11 we have

1

}>=mmaongu= Lo

E(x,z,¢)(Z.g [13
cp(zlzgl)Zp 1

u

3.7. p-adic Siegel-Eisenstein series. In this subsection, we construct an Eisenstein measure with values in
the space of p-adic Siegel-Eisenstein series. We need to introduce some notation Let K(¢cp™) be the ray class field
of K with conductor ¢p” and let & = lim Gal(K(cp"/K). Then & is a Z,-module of rank two. Let C(®,C,)
be the set of continuous C-valued functions on &. Let #{ be the set of locally algebraic p-adic characters of &
with infinity type (k,0), k > 3. Then % is a Zariski-dense subset in C(®, C,). We shall regard p-adic Galois
characters as p-adic Hecke characters of I by geometrcially normalized reciprocity law. Recall that to an
algebraic Hecke character y of IC we have associated y its p-adic avatar in the introduction.

To construct a p-adic measure on &, we recall the "Abstract Kummer congruences". ([Kat78, Prop. 4.0.6]
or [HLS06, Lemma 3.4.1 |).

Lemma 3.15 (Abstract Kummer congruences). Let V be a p-adic Banach space. We consider measures on &
with values in V. Let x — my, a function from #, to V, and let \(m) denote the corresponding V[1/p|-valued
measure. Then A(m) extends a p-adic measure if and only if, for every integer m and for any finite sum
2o X with oy € R[%] and x; € #o such that -, a;x;(t) € p™ R for allt € &, we have

Zajmxj cp™V.
J
Recall that V,(G,K) is the space of p-adic modular forms for G = GU(3,3) as in §2.8.4. Let C(G) =
P(A’;) x P(Z,). For an Og-algebra R = R,y C C, by g-expansion principle we have

M (KT, & R) = § f € Mi(KT,£,C) | Fg(f) e ] R-d"vgeC(G)
BEH3(K)

Let E(X,g, ¢) denote the p-adic avatar of E(x,z,¢). Note that a Siegel modular form f over Q of weight k =
A

(a,b) with Fourier expansion JFg(f) at g = (97, 9p), 9p = [ } , the Fourier expansion of the p-adic avatar

D
fat g is R
F1g(f) = (det A)*(det D) "1, (F g (f))-
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Theorem 3.16. Let Wy = (Z;)? There exists an Eisenstein measure d€3 3 on & x Wy such that for x € #p
and z = (21, 22) € Wa, the set of finite order characters of Ws, we have

/ <X7§)d8373 = E(Xa§7 C) € ‘/P(GaK)
QSXWQ
PrROOF. For (x,z) € #y x Wa, we define
/ (X, 2)d€33 = E(x, 2,¢).
®><W2

We verify the above indeed gives a well-defined measure by Lemma 3.15. Write x1 = xp, x2 = x5 and
X+.p = X1X2. For 8 € H3(Q), the S-th Fourier expansion of E(x, z, ¢) at the infinity cusp (3.20) is given by

(a1, x,2)det B*7%) = D(R,2) - Ry p(det B) - Ra(uz) [ Rew(Raw(@0)) - 21(u)2a(un)
vESB videt B

x (det )% det B15° - I=(8),

where u1,u2 and us are some p-adic units which only depend on 3, and Rg , is a polynomial with coefficients
in Z. In general by (3.20) for a1, as € GL3(Z,), the "aBas"-th coefficient

Ly [afjlﬁaz (1, x, z)(det ﬁ)k_?’] det(alag)k
also has the form

(3.23) Zbi (X, 2)(ci), for some ¢; € Ag o x Wa, b; € Z,).

The B-th Fourier coefficient of E at the cusp T = {al al} € G(Z,) C G(Ay) is given by
2

det a¥ - 1, (ag(z, x, 2))
=detal -1, [Xl_l(det a1)xs *(det ay) |det azay \i aZzBal (1,x,2) det g3
=iy [aZzﬁal (1,x, 2) det 53] det(aza1)” - X1 (det a; ') xa(det ay )
which also has the form as in (3.23). Since #{ x W is a Zariski-dense subset in C(& x W3, C,), by g-expansion
principle for unitary groups ([Hid04] and [Cha08]) and the abstract Kummer congruences, we obtain the
desired measure. ]
4. EISENSTEIN SERIES ON GU(3,1) AND THE PULL BACK FORMULA
4.1. Let W and V be the quadruples as in §3.1 with n = 3. Let s be a positive integer. We define the skew-

Hermitian form ¥ by [56 } according to the basis w!,w?. Let Np and Mp be subgroups of G = GU (V)

1)
given by
1 =z t— %9:19:5*
Np =< n(z,t) = 1, —z* |z eK? teQ
1
and
v(h)a=!
Mp = <{m(a,h) = h |a e KX, he GUW)
a

Then P := MpNp is the standard parabolic subgroup in G. Put
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Then w is the unique nontrivial Weyl element with respect to P. For g € P(A), we put
3p(g) = |v(g)(dd)™"|a-

4.2. Open compact subgroups. For v € h, put ¥ ,, = 0,90;. Define an open-compact subgroup Kp(c) =
[loen Kp(c)y of UW)(Af) by

(4.1) Kp(c)y ={g€ K(Ly,) | 1917711)(0”90;1 —1) <} ifv#p
(4.2) Kp(c)p = In(p) :== {gp € GL2(Zy) | gp = [; i] (mod p)} .

Let X = UW)(Q)\U(W)(Ay) and Xw(¢c) = X/Kp(c). We assume that ¢, at some v € S is sufficient small
so that the right Kp(c)-action on X is free (|[Shi97, Lemma 24.3]). As U(W) is a definite unitary group, Xw (c)
is a finite set. By the weak approximation, we can find a set of representatives {b} in Xy (¢) such that b, = 1
at v € SU{p}. We will identify Xy (¢) with this set.

4.3. Automorphic representations and automorphic forms on GU(2).

4.3.1. Put
B ={g € M>(K) = End(W) | g¥g" = det(g)J}.

Then it is well known that B is a definite quaternion algebra over Q with local invariants inv, (B) = (—s, —D),,.
We denote by Sa2(B*, C) the space of automorphic forms on B* of weight 2. Namely

S2(B*, C) = { locally constant C-valued functions on B*\B*(Ajy)}.

Let & be a Hecke character of KX of finite order and let 72 be an irreducible automorphic representation
in S3(B*, C) with central character £, := {|a. By the choice of B, we have GU(W) = B* xqgx K*. Hence
Il := 78 X ¢ can be regarded an irreducible automorphic representation on GU(W). Let n be the conductor
of 7. We make the following assumption:

p*fn.
In addition to (S1), we further suppose throughout the paper that the ideal ¢ chosen in the beginning of §3.2
is sufficiently small so that

(52) ¢ C c(&)e(n?).
Definition 4.1. For a subring A C C, we put

S2(B* 0, &4, A) = {f € S2(B*,C) | f(zgu) = £(9)&+(2), YVu € I1(n)},
the space of weight two modular forms of of level n with neben type £, over A.

In the remainder of this section, having fixed B*, n and £, we simply write Sy(A) for this space. The
isomorphism ¢ : C ~ C,, induces ¢ : S3(C) ~ S2(C,). Then since 77 is ordinary at p, there is an element up
to scalar f in Sy(C) such that f is an eigenform of the U,-operator and the eigenvalue is a p-unit with respect
to t. We can further manage ((f) € S2(C,) to be p-primitive, which means that ¢(f) takes value in Z, and
(f) # 0 (mod p). We define a distinguished element 7, = [[7, € B*(Ay)

Tv—[ _] ifon; 7, =1, vtn.
n’l}

Then the map
[ f|Tn(g) = f(ng)7 fe 82(‘4)

defines an involution on Sy (A).
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4.3.2. Local representations at p. We have fixed a decomposition K ®q Q, = Qpe™ & Q,e~ with the idem-
potents in §1.1. Then as a subgroup in GL2(K ® Q,), we identify GU(W)(Q,) with GL2(Q,)xQ, by
g (etg,v(g)), so B*(Q,) and U(W)(Q,) as subgroups in GL2(Q,)xQ,’ are isomorphic to GL2(Q,). We
make these isomorphisms precise as follows.

GL2(Qp) = B*(Qp), g~ (g,det(g)),

(4.3) N
GL2(Qp) = UW)(Qp) .9 — (9:1)
We regard the local representation wf as a representation of GL2(Q,) by the above identification. We further

assume 77 is ordinary at p. Namely Wf = m(d1,d2) where 0; and d3 are two characters on Q). Moreover we

may further assume that &, is unramified with v,(61(p)) = % and v(62(p)) = —%. Thus mJ is isomorphic to a
sub-representation of the unitary induced representation I(d1, d2).
Write &, = (£p,&5). According to the identification (4.3), as a representation of GL2(Q,) x Q)

I, = I(6:6; ", 6265 1) R &
Similarly, as a representation of GL2(Q,)
Iy lvwyq,) = I(€§151,€§15z)~

We will fix the choice of these models in the remainder of the paper.
4.4. The embedding U(V) x U(W) — U(W).
4.4.1. Recall that ¢ = —g. Let 7 denote the diagonal embedding

i:UV)xUW)— UW),

i:(a,y) = (a,7) € GL(V & W) = GL(W).

As an embedding between matrix groups ¢ can written as

UV)xUW)—U(W)

(@) ita) = (@ma= a5 A

where

(4.4) A—Aw=| b =

4.4.2. Imbedding of Hermitian symmetric domains. Let X3, and X5 o be the Hermitian symmetric domains
as in §2.4.1. We have the following embedding of Hermitian symmetric domains:

X31xXog — X33
(T7XO) — Z‘ra

where Z, = Lx/ g] for 7 = [;ﬂ is as in (2.12). We write for a € G

a b ¢
a=|9 e f
h 1 d
. i 0 .
Leti= [0 J . Then the automorphy factors are given by

o [hi+d 0] .,
J(<a77)Aal) = det [gl-i-f ,Q/:| _J(a72) det’y

The embedding defined in (4.4) at the archimedean places is compatible with the identification G(R)/ K, =
X33 in an obvious sense.
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4.4.3. We record some formulae for the future use. Put

Then AnA* = w.

Lemma 4.2.

(4.5)

where & = 91z

(a7 ’Y)A

-1 -1
) -1,
777 - 1
-9 1,
a b c %bﬂ
139 sle+n)  3f gqle—)0
h l d %119 ’

07lg 9T e—n) 07U 3(E+9)

ProOOF. It follows form straightforward computation. Put

Then

(4.6)

Put

S
Il

Then

and

(aa’Y)A

;o

1
10

1
_ 1, S
Y= 1
1,
a b c
(OZH’)AZY g ° 5
079 0T e—q) 7S
c 0 h l
f 0]’0{1919 191(6_7)},13[
[0 —bs
a = | _GJ
_Jo =l
“=o —ﬂl(e—v)c}
[0 0
LD = .
o
[0 0
Lo = |~ g —c¥ (e
[0 0
LCL =
10 ¥ (e — V)J
—-L| A B||1 L
1 C D||0 1
[A—LC B+ AL—-LCL—-LD
C D+ CL
a b c
g+ lg et N e—7) fHcIIf
h { d
Ity 9~ (e —7) Ot f

0

0]y -1

0 Y

,3/

d 0 0 0
9-1f A} andL[O -
7)]

—be
—es — ¥ e =)+ ¥

F—=0"He—7)s



ORDINARY p-ADIC EISENSTEIN SERIES FOR UNITARY GROUPS 29

In particular, when v = 7(«) := e, we have

a b c —bg

1 1
_ |39 ¢ 3f 0
(aaﬂ—(a))A = h 1 d —Ic
9=lg 0 0-lf ¢

4.5. Eisenstein series on GU(V) and the pull-back formula.

4.5.1. Induced representations on GU (V') and the pull-back section. Let x be the Hecke character of £* in
§3.2. Given an automorphic representation II of GU(W), we define the induced representation I(II, x, s) of G
by

I(L x,s) = {¢: G(A) = 11| ¢(pg) = x " (dp)dp(p)°LL(e,)d(h).}

Let ¢ = ®,¢, be a decomposable vectorin 72 = @75, We identify ¢ with the section p X ¢ in II. Let
fs = ®ufs,0 be a decomposable section of I(x,s). Put

(4.7 o.fsu(g) == /U(W)(Q )fs,v((g,hh')A)Xv(det(hh’))HU(hh')cpdh,

where g € G(Q,) and &' is any element in GU(W)(Q,) such that v(h') = v(g). We call ¢.f,, is the local
pull-back section of f , by ¢,. It is easy to see that ¢.f, ,(h) is independent of the choice of ¢’ and ¢. fs, is
an element in I, (11, x;, s).

The global pull-back section . fs of fs by ¢ is defined as follows. For g = (g,) € G(A),

(48) o.fa(g) = /U oy o0 PRI = 0150 ) 00

It will follows from Prop. 5.5 that the local and global pull-back sections fs - ¢ converge absolutely when
Re s > 0 and has meromorphic continuation to C.

4.5.2. Fisenstein series on GU(V). Fix a B*(A)-embedding
/
A: 7B = ®7Tf — S3(B*, C).
Let A, ¢ = A(p) X & be an automorphic form for GU(W). We observe that

Alp-fs(9)) (@) = /U(W)(A )fs((g,hh’)a)x(det hi') Ay ¢ (whh)dh, x € GU(W)(Ay).

Define a C-valued function I(p.fs) on M(Q)N(A)\G(A) by
I(e-fo)(g) = Alp.fs(9))(1), g € G(A).

By the general theory for Eisenstein series in [MW95], to ¢. fs we can associate an Eisenstein series Ea (g, . fs)
for G defined by

(4.9) Ba(g,0.fs) = Y, I(e-f9)(v9)-
VEP(Q\G(Q)

4.5.3. The pull-back formula. In [Shi97], Shimura proves the following pull back formula:

Theorem 4.3. Let fs be as above. Then

EA(gaQans) = EA((ga h)Aafs)X(det h)A<P,§(h)dh

/U(W)(Q)\U(W)(A)
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Recall that we have introduced d; and dy characters of Q; in §4.3.2. Let z = (fﬁ_lél,fﬁ_lég) be a pair of
characters of Q,, to which we attach fe € I,(x,s) in §3.5.3 with auxiliary choices of integers J, N. Define

the section (;5;(,3 € I(x,s) by

1 1
(4.10) &Y (9) = Q) bx.s0(9) Q) fo(9T), g € G(A) where T = 2, 2| =amh
vF#p v=p 91 91

Let f be a primitive ordinary form as in §4.3. Then f = A(y) for some ¢ € 78, and ¢ = ®,¢, is
decomposable. Now we define the Eisenstein series obtained by the pull-back of ¢Y , and f|r, by

XS
NC(x,s)

(4.11) Ealg.s:x 11,89 = e (o, am)

’ EA(g7 ((b;s)pb)? (ng,s)pb = ¢§,S‘T‘ﬂ¢'

Let E(x | £,&,¢) be the associated holomorphic Eisenstein series as in (2.18). For (7,¢9) € X31 x G(Ay), we

have

E(X | f7£7 C)(T7 g) :AiM(EA(_’SaX | f’€>c))(7—7 g)
(4.12) ) N
= X(¥(9))(9o0,1)" Ea((9o0,9), 8, X | £, ¢)|s=0,

where g, € G(R)™T such that g.i = 7. By definition, E(x | f,£,¢) is the holomorphic Eisenstein series
attached to the section

NC(x,s) ,
m ’ (¢§7s) b|s:0~

Define an automorphic form F for GU(W) by

(4.13)

F=A(mm.¢o) XE =11, KE.
Applying the pull-back formula, we obtain

1
E(x |£.60)(rg) = — 2 /
(414 (] £, 8)r.g) vol(K'p(¢), dh) Juwy@\uw)ay)
: 1
= Z ﬁ : E(X,é, C)(ZT7 (ga h)AT)X(det h)F(h)7
heXw (c) b

E(x,z,¢) (Z7, (g, h)aY) x(det h)F(h)dh

where |['y,| is the order of the group U(W)(Q) N hKp(c)h~1. It is well known that |T',| = 1 if ¢ is sufficiently
small.

On the other hand, we regard E(x, z, ¢) as geometric modular form over C, and thus by the discussion in
§2.6 and (2.14), we get

E(x,z,¢)(iv,w ([, 9], [%0, h]) , (wv)c: wwyc(29))) = E(x, z,¢) ([Z-, (9, h)aY] ,ww/c) -
Therefore by (4.14)

(415) E(x|f.& (g wvc) = Y Bz 06vw (1 g) xo, k) s (@vycs wwyc(E9)))x(det h)F(h).
heXw (c)

4.5.4. The measure attached to ordinary p-adic Fisenstein series. Let e be the ordinary projector on the space
of modular forms for the unitary group U(V) constructed by Hida in [Hid02] and let E°"¢(y | f,&,¢) = e.E(x |
f,¢,¢) be the ordinary projection of E(x | f,,¢). Let E"rd(x | f,€,¢) be the p-adic avatar of E"(y | f, ¢, ¢).
Then E‘”d(x | £,¢,¢) = e.E(x | £,£,¢), and by (4.15) we can deduce that

(4.16) E(x[£.6,0(4) = Y E(x.z )(AxB,) - x(det h)F(h)
heXw (c)

for a test object A € I¢(K7]'). Now we can easily prove the following theorem.
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Theorem 4.4. There exists a measure dE?Tgc on & such that for any algebraic p-adic character X of infinity
type (k,0), we have

[ ez = Bt g0,
&
where E\"rd(xf_l | £,&,¢) is an ordinary p-adic Fisenstein series of weight (0, k).

PRrROOF. Note that ¢ is of finite order, we see that ¥ € %) <= X¢ ! = )2—\1 € #. For ¢ € C(6,C,) and
h e UW)(Ay), we put

o|h(z) = ¢(xdet h)E " (xz det h).
We define the measure dS;’f’gc by the following rule: for a test object A € I(K7),

/ pdegd(A) = Y e / (61, 2) d€3,3(AxBn) - F(h), 2 = (01§, 52651).
& heXw (c) BXW,

It is clear that the theorem follows from the definition of dE?Tgc and (4.16). O

5. CONSTANT TERM OF THE EISENSTEIN SERIES

5.1. Constant term of modular forms and the ®-operator. Let f be a holomorphic modular form on
G = GU(V) of weight k = (0, k). For the remainder of this article, we shall identify GU (W) with the image
Gp in Mp by h+— m(l,h)

Definition 5.1. Let Zy, be the center of Np. For g € G(Ay), the analytic Siegel ®-operator at g is defined
by

ME(G, C) — SQ(GP, C)

f= @i f)h) = / f(zh-(10,9))dz, h € Gp(Ay).
Znp (QA\Znp (A)

The measure dz is normalized so that vol(Zn,(Q)\Zn,(A),dz) = 1. It is well-known that this definition is

independent of the choice of 7o and ®{1(f) = ®{7(f) for n € Np(A) (See the discussion in [Har84, 2.2.1]).

On the other hand, the constant term for an adelic automorphic form F' is defined by

Fp(g) = / F(ng)dn.
Np(Q)\Np(A)

The following lemma is evident.

Lemma 5.2. Let F € AJ°(G) and f = AM(F) € My(G,C) be the associated holomorphic modular form,
where AM is defined in (2.18). Then

Fp(hg) = @ ()(h).

It is well-known that the (adelic) constant term of E = E(g, ¢) is

-1
(5.1) Ep(9) = o(9) + Muw(9)(9), w = -1, :
1
where if ¢ = ®,¢,,
(5'2) Mw(¢)(g) = HMw((bv) ) Mw(¢v)<g) = / d)(wng)dn
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5.2. The local pull-back section at oo. We compute the local pull back section and the intertwining
operator of the section in (4.11) at the archimedean place.

Proposition 5.3.
(1) 8’5 oo(9) = (9,1 7%6°(9) - Poc-
(2) Mq&il?s,oohio =0.

PROOF.  Since 7, is the trivial representation, we have
s 00 (9) = /G( )¢>x,s,oo((g, h)a)Xeo(det h)moo (B) pocdh = j(9,1)7*6°(9) - Poc-
R

The first assertion follows. We proceed to show the second assertion. Write ¢, = gi)f(ljs’oo. To prove the

proposition, it suffices to show Mpuo|s=o(1) = 0. Write n = n(b,t) € Np(R), (b,t) € C2x € R. Then

Mon() = [ oucwn)an

Np(R)
_ 1
= (1 +ib],0;s + k,s)db A db, [b] = ibﬁb*
C2
K F2s+k—1)

:27284»2 i
T T(s + k)D(s)

/ (1)) =*=25ab A db.
C2

The last integral equals
/ (14 [B])* = 2 db A db :det(%—?/ (14 bb*)'~2db A db
C2

C2

=47%(det i) 242 / / (1+ 22 + 22+ 250 20 dx  day
o Jo

1
=2472(det i) 2 o —
Thus Mo |s—o(1) = 0. 0
Corollary 5.4. The constant term of E(x | £,,¢) is given by the section defined in (4.13).
ProOOF.  This follows from the Prop. 5.3, (5.1) and (5.2). O

5.3. The local pull-back section at unramified places. For the remainder of this section, we put F' = Q,,
and F =K ®Q, for v € h. Let O and R be the rings of integers of F' and E respectively. In this subsection,
we calculate the local pull-back section ¢, at v & SU{p}. For v ¢ S, note that U(W)(F) ~ U(1,1)(F) if

v is inert and U(W)(F) ~ GLy(F) if v is split.
Let f? be the unique spherical section in I,(r, x, s) such that f2 (1) = 3.

Proposition 5.5. For v & SU{p}

s X8,V

( 0 )pb: LU(S_%ﬂTvX) 0

sy Ago(s,xy) 7020
Proor. The is equivalent to
L (Si 1 T X) o
(FOPP (1) = =200

A2,v (Sa X+)
The above local integrals have been computed by the doubling method in the following form.

Proposition 5.6. For ¢’ € 7V,

(P(1), ') = / brmo((1 ) a)x(det h) (m(h) 0, ) dh =
U(W)(F)

L(S B %771-7)()

AQ(S,X+) <<pa<p/>a

where As(s, x) = L(2s,x+)L(2s — 1, x4+ 7x/q)-

PROOF.  This is the classical integral in the doubling method. We refer the computation to [GPSR87| and
[Li92]. |
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5.4. The local pull back section at v € S. In this subsection, we calculation the pull-back section of ¢, s
when v € S. Let 1 = 0*0. Because L is a O-maximal R-lattice with respect to 271514 and § is chosen to be
a generator of the different of X/Q., we have ¢; < 2R (¢f. [Shi97, (20.6.1)]). For (a,y) € U(V)(F)xU(W)(F),

we write

1 1 a b c
o) = oy Q@ ot =g e f| and vy =o,y0, "
1 1 h 1 d
Write ¢ = ¢, for simplicity. Define a subset Dy (¢) in G(F') by
R R R
(5.3) Dy(c)={acK%|ag < [Vic R R|,9e—1)<c,d—1=<c
¢ ¢ R

If @ € Dy/(c), the relation adso* = ¢ implies d*a + f*¥1 — ¢*h = 1, hence a — 1 < ¢. From the identity
al= 193’104*193:% € K9, we see that
_d* f*,ﬂl—l —C*
(5.4) ayt = | =0 Vier9yt bt | < R.
_h* 9*19;1 a*
This shows Dy (¢) is an open-compact subgroup in G(F).
Let fs(g) = fev(gS™!) be the section defined in (3.9). Now we compute the pull-back section fgb of fs.

Proposition 5.7. fgb is the unique section in I(m,x, s) such that

(1) supp f5° € P(F)Dy(c),
(2) For a € Dy (c), fgb(a) = vol(Kp(c),dh)p,, where Kp(c) is the group defined in (4.1).

PROOF. Let a bein the support of fgb. To prove (1), we may assume o € K? by the Iwasawa decomposition.
By definition, we have

1 1
a <R, 97 f < R; 5f*ﬁlf = f*ﬁl‘l(iﬁl)ﬂl‘lf < R.

Because fs((a,7)a) # 0 for some v € U(W)(F), we have S(a,7)aS™" = AT (a1,m1)A; € P(F)D(c),
where A; = SAS™! = A(¢;) as in (4.4). By the formula (4.6), we find that

[1 Hd or[h I }_[ d='h d=11 .
L ) lg oe—m) T Wit g —fdTth) 97 (e — faTi) — 1) T
Observe that

1 Lo—f97t 2971 [d 0 07fa b ¢
vt 1 —f 1 0|lg e f
1 1 d' |h | d
* % *
= |7 g—fd'h) A t(e— fd7') 0| € Dy ().
d-'h d=11 1

Hence o € P(F)Dy (c). This completes the proof of (1).
We proceed to prove (2). If & € Dy (c), then by Lemma 4.2 and (5.4) together with the fact that ¥, < 2R,
we can deduce that

S(a, 1)aS~! € Dy(c) %(19;161191 +1) =1 (mod o).
Because ¢ is sufficiently small as in (S2), we conclude that
fs((e,1)a) = x"*(deto™).
Now we use the following lemma.
Lemma 5.8. Let h € U(W)(F), then
(1,h)AS™ ' € P(F)D(¢) < h € Kp(c).
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PRrROOF. Since

YiS(1,hi)aS 1Y ! = 12

97— hy) I1hy]
with h; = cho™!, we have

(1,h)a €P(F)D(c) < 9 '(hi'—1) =y for somey < ¢

< heKp(o)
O
By Prop. 5.7,
fs((1,h)a) = x~(det k) ko) (h).-
Therefore
Y@ = [ fal(aDalLma)x(h)e(h) - pdn
UW)(F)
= o) [ (R (n) - G
Kp(i)

= x '(deto*)vol(Kp(c),dh)p.

This completes the proof of (2) O

Prop. 5.7 shows that fgb is the unique section in I(m, X, s) such that

supp f§" = P(F)Dy (c)
() = x"Y(det o*) - vol(Kp(c), dh)@, o € Kp(c).

Now we are ready to determine ¢2°, . Note that ¢ s, = fs|w', w' = (w,13)a. Thus
-1

o0 = (fsIw)P(g) = / f((g, W) aw)x(det hym(R)@dh = f2(gw), w= | —1,
UW)(F) 1

Now the following proposition is straightforward.

Proposition 5.9.
Qs)p;ljs,v = VOI(KP(C)7 dhv) N

X,T0,8,0)

1

where f$

X758,V and

is the unique section supported in P(F)Dy (¢c)w™

: (uw™t) = x; (det 0*)@,, u € Dy (c).

X5T,S,V

6. THE ORDINARY PROJECTION OF THE LOCAL PULL-BACK SECTION

6.1. We have computed the local pull back section ¢§’£S’v at places other than p. In this section, we compute
the ordinary projection e.¢, s, of the pull-back section ( fa|Y)P? by using the ordinary linear functional for a
regular principal series. This idea is inspired by Hida’s proof of multiplicity one theorem for ordinary vectors

([Hid04, Theorem 5.3]).

6.2. The ordinary linear functional.
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6.2.1. In this subsection, we let B denote the standard Borel subgroup of GL,,, T'and N denote the diagonal
matrices and the unipotent radical of B respectively. We let W be the Weyl group of GL,, with respect to
T. Consider the (unitary) induced representation .# = IndgL" (M, -+, An). We assume .# is regular, which
means the p-adic valuation of A;(p) are distinct. We call these numbers v,(A;(p)) p-adic weights.

Let D = {d € T(Qp) | d'N(Z,)d C N(Zp)} = {iu(p) | (1, Ry) > 0}. Let A, := Zpltr,ta,--+ ,ty,t,"] be
the Atkin-Lehner ring of G(Q,), where t; is defined by

b = [N(Z)auN ()], a: = {1’” N 11} .

t; € A, acts on I V(%) by
vlt; = Z asiozi_l 0.
z€N/a; 'Nay
We also define the action of A, on the Jacquet module J(.#) = #n of .& by
olt; = ()t -0
so that the natural projection .# — J(.#) is a A,-module homomorphism. Hida proves the following theorem

in [Hid04].

Theorem 6.1. Let .#° be the mazimal subspace of # ™ on which the action of A, is semisimple. Then the
natural projection induces an isomorphism as Ap-modules

J° = J(S).
The linear functionals l,, on J(.#) for w € W are defined by l,,(f) := M, (f)(1,), the evaluation of the
intertwining operator at the identity. It is well-known that [,, enjoys the following properties:
ly(u- f) =1,(f) and 1, (¢t - f) = /\(wtw_l)éé(t)lw(f) for ue U(Qy), t € T(Q,).
By definition,
lo(f) = / f(wu)du, where U, = H Ua(Qp), wal(t) == a(w 'tw)
Uw \U a>0,wa>0
whenever the integral is convergent. These [,,’s induce a T(Q,)-equivariant map
P tw:I(F)— P C A6\ (1) = Mwtw ™).
weW weW
Now we define the ordinary function ,,, as follows. Let p; € X, (T) be a cocharacter such that
14

pi(x) = x €req,.
1n—i

For w € W, we put
a; = vp(AMpi(p))) € Z.

Since .# is regular, these a; are distinct integers. Hence we can let W act on {a;};—; by aw.; = vp(A“ (i (p)))-
We let w3 be the unique element in W such that

Azl < Qg2 <+ < Aoy -

Let a = > 1" (1 — 1)p; and let to = [N(Zp)a(p)N(Z,)] = t1ta---t,—1. Then the normalized u,-operator on
# is defined by

(6.1) o|[t; 1= 6(0r) "2 A () vlts and wp.v = vl|ta.
The Hida’s idempotent e attached u, is defined by

T n!
(6.2) e= nh_}rrolo(up) .

Now we prove the following key lemma.
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Lemma 6.2.

lw(@-’l}) = {i)“@ (’U) Z Z Z::

PRrOOF. Put b,; = En Q.5+ Then

vp(A(a(p))) = Zz — Z buw.i-

It is easy to see that if w # ws,
buws.i = by.i and by, i, > by,.i, for some 7.

Put D, = ZZ bws.i — bw.i > 0 and D,, = 0 only if w = ws. From the identity

Lo (v]ta) = 6(a)lw (0™ v) = 62X (@)~ (v),
we see that l,,(u,.v) = p"Pwl,(v), hence the assertion follows. O
Remark 6.3. From this lemma together with Theorem 6.1, we see that

dime..¥ <1,

which has been proved in [Hid04, Theorem. 5.3] by essentially the same argument.

6.2.2. The functional l,,,. We apply the above discussion to our case I(s) = I,(m, x,s). Notations are as in
§4.3.2. For brevity, let (£,,&) = (£1,&) and (x1,x2) = (Xp, Xp)- Put

F(s) = I(xa| " 72,6101, &5 Mo, X7 M- 127°) W &axs

We identify these representations of GL4(Q,) x Q, with each other via the following map L:

L: Ip(’/TaXa 5) = I(X2|'|57%7§2_1513§2_1623X1_1|'|%7s)
[=g:= L(f(9)) = f(g)(1n)

Let .# := #(0). Then the p-adic weights of .# are (%, —%, %, k— %) Since k > 4, .# is a regular principal
series. We put

(6.3)

1 1 1
and w; =

1 1 1

Let ¢™¢ € Ip(xl_l\'|%,X2|'|_%,§2_152,§2_161) denote the unique section which is supported in Bw;N(Z,) and
invariant by N(Z,). Then we define ¢p°"¢ := L~Y(M,, ¢"¢) € I(m,x,0). Thanks to the following lemma, we
can cut off the ordinary projection from a given section by using the ordinary functional.

Lemma 6.4. ¢°"? is an ordinary section in I,(I1,x,0) as in [Hid04], and

(64) e.f= Zw3 (f)(borda Vfe IP(H>X’ 0)

PROOF. First we observe that the section ¢ is supported in the big cell, and then it is an eigenvector of
the wuy-operator. By (6.1),

0 lti(w) = 8(an) XN (ai) Y. dlauart).
ueU/Uq,;
Straightforward computation shows ¢°¢||t; = ¢°"¢, hence u,,.¢°"? = ¢°"? is an ordinary section. This proves
the first assertion.
Now we prove the second assertion. First M, ¢*¢ € & and ly,, (M, ¢"¢) = My, ¢"¢(1) = 1, so ¢°"¢ is a non-

zero ordinary vector. The space of ordinary forms has at most one dimensional (Remark 6.3), so e.f = 3-¢°™?
for some 5. By Lemma 6.2 we see 5 = L, (f). O
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B

6.3. The ordinary section in 7. We study the ordinary section in 7r;,3 . As in §4.3.2, ﬂf is ordinary and

is regarded as a sub-representation of I(d1,ds).

Proposition 6.5. Then there exists ¢ a unique section in ﬂf C 1(01,062) such that ¢ is invariant by I (p)
and ¢|U, = a,(f)p, where a,(f) = 82(p)~p|=2. Moreover p(1) = 1. We call ¢ the ordinary section of 5.

PrROOF.  This is well-known. We recall the proof here, as we need the construction of ¢ later. There are
three cases:
B

m, 18 a ramified principal series In this case, d; is ramified with the conductor p. Thus ¢ is in fact the new

vector in I(d1,d2). Namely, ¢ is the unique function such that ¢(1) =1 and

a b

eth | o) =ai@pm. v | ol e o)

wf is a unramified principal series. We have I(d1,2)0®) = Cp' @ C¢™, where ¢! is the function with
supp ¢* = B(Q,)Io(p) and ¢*(1) = 1, and ¢¥ is the function with supp ¢* = B(Q,)wN(Z,) and ¢*(w) = 1.
Let a =63 |p|% and 8 = da(p) |p|%. By a simple calculation, we find that

U, = BTN+ (1 Ip)B "

(z)w‘Up — Oé_l ’u).
From the above, we can solve for ¢ easily:
1—p|
(6.5) p=9¢'+ ——=—=9".
1- 51 152 (p)
7TZ’,3 1s special. In this case, ds is unramified and 61651 = ||, and we have

0—sm2 —1(81,62)—C - 81|~ —0.

1 B

Hence ¢ must be of the form as in (6.5). As U, acts on C-d; as a scalar a™ ', we conclude that ¢ is in 7.
In either of the above three case, we find that ¢(1) = 1. O
When no confusion arises, we will identify ¢ with ¢ X &, the ordinary section of II, = B X &p, and its

restriction to U(W)(Q,) as a section in m, = Il|y7(wy(q,) is still denoted by ¢ Note that when ¢, is viewed as

a section of 7, = I(d1,d2) ® &', the eigenvalue of Up-operator is & (p)ay(f).

The following lemma roughly says that the ordinary section is controlled by the evaluation at ws.

Lemma 6.6. Let W be the Weyl group of GL4(Q,). For w € W, we have
¢ (w) = ¢ if w = ws, and ¢°"(w) =0 for w # ws, if X1, X1&5 161 are ramified.

PrROOF.  Define a function on U(W)(Q,) by f(h) = L(¢°"*(m(1,h) sy wy)) for h € UW)(Q,) = CGL2(Q,).
Then f € I(d1,d2). We find that ws = s7 'w; and f(1) = M, ¢"¢(s7 ;) = 1. Tt is straightforward to verify

P

that for k = L;lc Z] € In(p), f(hk) = f(g9)& *(det k)d1(a). Hence, if §; is ramified, then f(h) = @,. If &; is
unramified, we can compute f(w) as follows.
(6.6) f(w) = ¢ (s ) (w) = / ¢Vt (syum(1, w) 7 wy)du
Us,
1

(6.7) = o 1 wy)da

' 0 1

1 a

~—~
(=2}
oo
=z
I
~
—
| ——
— o
Q
| S
—
u
L
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Note that f( [1 0}) = Iz, (x). By the identity

z 1
0 1] [-a* 1]]1 0
1 a|l al la=t 1]°
the last integral in (6.6) equals

—a 1 10 —1 3% -1 x
/ A TR > / @
1
= i 0
Hence in the case where 7 is unramified, we find that f(m) = ¢(m) by (6.5).

Next we show the second assertion. Recall that z; = Egéfl and z9 = Eg&fl. We identify with S4 and w be an
element in W. Let \ be the character of Ty(Z,) defined by X (diag(t1,ta,t3,t4)) = 21(t1)za(t2)x2(t3)x1 * (ta).
Then we have ¢°"(gt) = N (t)¢°"4(g) for t € Ty(Z,).

Now we regard W the Weyl group of GL4(Q,) as the permutation group Sy acting on the standard ba-
sis of Q. Suppose My, ¢"*(w) # 0 and w # (123) = ws. Since x1x2, X171 are ramified and ¢ (wt) =
N (g4 (w) = AMwtw™ )¢ 4 (w), it follows that w can only be (13) or (243) and (1243). And s; Bw con-
tains the big cell, which implies the reduced decomposition of w contains (123) = (12)(23), so w = (13) =
(12)(23)(12) or (1243) = (12)(34)(23). By direct computation, My, ¢*¢((13)) = M, $"¢((1243)) = 0. (since
X1X2 is ramified). d

X
P

6.4. The computation of lws(fg;).

6.4.1. We calculate the ordinary projection of the local pull back section at p in this subsection. Recall that
s ¢pb
(6x,55)"" = x2(det T) |det T|° f5”

X58,P

for ® = &% and z = (€5161,€5102). Then fg; is N(Z,)-invariant by Lemma 3.8. It suffices to compute
lws (foy) by Lemma 6.4. For (z,y) € Q2, put

U(.T,y) =

—_
=R

1

We have U, \U = u(Q2). Recall that in (6.3) we identify I(s) = I,(r, x,s) with .#(s) via L, and we have the
following commutative diagram when Re s > 0,

, where [,,, at left hand side is defined by
lws (f) == / w(wn) fdn,
Uy \U
and the bottom map L is the evaluation at the identity 1. Put H = U(W). Then by definition,

L (F21) = / dzdy / dh fa(wsu(z,y), k) aT)xaxs (det A)r(h)r,
Q2 H(Q,)
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where ¢ is the ordinary section in Prop. 6.5. To compute I, ( fg;), we begin with
1 0 ‘tw
3 e
(O,Z)(wgu(x,y),h)AT = (O,Z) . 2 1 2 T,y Lo
U 0 h
0 0 1
o (Z |:191’U ﬂlcz’y] ’Z |: ﬁlh:| )7

where Cy y = {(1) ﬂ and v = [(ﬂ Thus

(6.9) _ x 0 0 1
was [ [ azrmezez |, 2|t e
Q;‘; H(Qp) GL3(Q;D)
where P(h) = x1(det h)|det h|* and Q(Z) = x1x2(det Z)|det Z|?*. We make change of variable
Zs 7 [(1) 00119}  h s Cyyh.
@y

The integral (6.9) equals

o (det ) / 5 (=) [y~ dyda / P(h)r(Cyyh)Ty0dh

Q2 H(Qp)
(6.10) 0 0l - Lo
x / Q(2)®,(2 [C_lv b])cpg(z [0 h] i< 7.
GL3(Qp) *
We first compute the last integral. Write Z = [gl 22] . We find that
3 44

0 0,2 1 0 . ZQC;:}}U Zy |\ = 7z Zsh
®:(2 [le!v 12] )®2(2 {o h}) = {24057;1} 2%z, zun|)
Considering the support of ®; and @, we see that
Zy € 22, Zy € Io(p), Zs € Z,.

Since Zy € Iy(p), we can write

1Y 0
Z:[ J {;3 ZJ,Y€Z1277Z4€IO(p)

and we have d* Z = |a| > dY d* ad* Z4dZs. The last integral in (6.10) equals

s—2 2 0 0=~
NP [ @ e B @d e [ xa@etZo® |y oy g B (Zi)d 2
(6.11) ¥ o A s

— N2 E, (1,25 — 2) /
Io(p)

Make change of variable h + Z; *h. The integral (6.10) equals

0 0]~ y
®, [240;;1} 24] D, 1, (Zsh)d" Z4

(et ) [N By(2s —20m) [ o (-w)lyl~*dyds | &
Io(p
Q7

><X2(detZ4)<I)1([Z4001 Z(’J)ﬂ(cwz;l) / P(h)B,, 1, ()7 (R)Tpipdh,

zyV
H(Qp)

(6.12)
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Put
Ry, v, = / P(h)(/I;y27V3(h)7T(h)Tpg0dh cm.
H(Qp)
We claim
1 1
(6.13) Ry, v, = vol(Io(N2),dh)E,(s — 3 v9)Ep(s — 2 V3)Tpep.

We assume (6.13) first. Then the integral (6.12) can be rewritten as
1 1
X+ (det 9) [N By (v, 25 = 2) vol(Io(N2), dh) Ey (s — 5, v2) Ep(s — 5, vs)

(6.14)

X —1 —s 0 0
<vollloo). 4 22) [ (o)l w(Cay )y - | p Oyt 1) el

1
5 z,y
Q;

The last integral by Lemma 3.10 equals

Jo s o s A | |

=[p"J| Ip\/ y/ da:xz‘l(y)us?l(py)ﬂ([x;l (1)] [py 1])<P
= [p~"J|lpI° vol(p 1Z,f,dy)Xz(p)

Combining the above equation with (6.14) and rearranging terms, we obtain finally

Lus (F3) = INJ? vol(Io(p), dZ4) vol(Io(Nz), dh) [p~"J| (p -

1 _
- *,lez 152)

1
(6.15) X Ep(2s —2,x4) - Ep(s — §»X1§2_151) Ey(s 2

X X+ (det 9) - (xal-[*)(=p) - -
6.4.2. Computation of R,, ... It remains to do the calculation of R,, ,, in (6.13).
Lemma 6.7.
(6.16) Ru, vy = vol(Io(Na), dh) E, (s — % Va) B (s — %,V?,)w.

PRrROOF.  There are two cases:
Case(1) v5 and v5 are ramified: In this case, since 1/21/3_1 =610, and cp(61§2_1) =p, ¢p(v3) = cp(12) = Na.

For h € supp &)l,z,ys, we have h = N7 lu, u = L\Cflc Z] € Ip(N). We recall that
_ b
(6.17) m(u)Tpp = & H(det u)dy (d) T for u = L?V d} € Iy(p),
and ZI;,,%,,S(hk) = C/}Sl,%,,g(h)y(k), so we have
_os o N1
Rusy =0l i (V) VT2 B [V a2

= vol(Iy(N). dh) |N| G(12) G ()| N| > 10

1 1
= vol(Ip(N),dh)e(s — 2 1/2)_16(8 ~ 5 Vg)_lrpgp

1 1
= vol(Lo(N),dh)E,(s — 3 v9)E,(s — 3 U3)Tpp

Case(2) Either v or vs is unramified: In this case, we have Ny = p, and we can verify R,, ,, also satisfies
(6.17). Now we view ¢ as the ordinary section in the model I(8;,d5) K&, . To prove the lemma, it suffices to
show Ry, ., (e) = Tpp(e) and Ry, ,,(1,7') = 7p0(7, ). We choose the measure

dh = |a| ™" dyd* ad* bdk for h = [ ] k, k € GLa(Z,,).

0 b
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We have
o1 —12 a a
Ruvan©) = [[ [ atat ottt B [§ et [§ 4]y tva*aay
1 1
= vol(Io(p), dh) Ep(s — > va)Ep(s — > v3)Tpe(e).
Similarly
Rons (i) = [l (et 1)y (B (1,
GL2(Qp)
:/ x1|-|° (det h)&)l,,z,ys(TphT;l)go(h)dh.
GLZ(Q;D)
We find that

_ - 0
Ry, s (T, Yy = vol(Iy(p), dh ///Xl ab) ab|® |a| ™" ”2"/3([]33/ a}) ([0 b})dydxadxb
= vol(Iy(p), dh) // vo(b)vs(a) |abl® "2, (D), (a)d*ad*bp(e)

= vol({o(p), dh)Ep(s — §,V2)Ep(5* 5 )Tp@( )

Now we summarize our calculations as the following proposition. .
Proposition 6.8. We have
Ly (F3) = vol(Zo(p). dh) vol(Io(N, No), d* Z) [p~"J | (» —
X By(25 — 2,x4) - Byls — 5.0670) - Byls — 5.:0&5762)
x X+ (det 9) - Ol [°) (p)-
PROOF. By (6.15) and note that
IN[? vol(Io(p), d* Z4) vol(I(N2), dh) = vol(Io(N, Na),d* Z) vol(Io(N2), dh) [pNy |
= vol(Io(N, Na),d* Z) vol(Iy(p), dh).
d

7. PROOF OF THE MAIN RESULT

7.1. Fourier-Jacobi expansion and ®-operators. In this subsection, we give a brief description of arith-
metic Fourier-Jacobi expansion of modular forms for the unitary group G = GU(3,1). The purpose is to relate
the constant term of our Eisenstein series £°7%(x | f, ¢, ¢) and that of its p-adic avatar.

7.1.1. Local charts and Mumford families. We begin with some notations. Let g € G(A p)) and write gV =
kg~ with v € G(Q)" and k € K. Let Y, = Yg¥ and X/ = XVg". Let X, = {yEIy|(y, >31CZ} be
the Z-dual of X gv . Then we have the inclusion 1:Yy — X We let I, be the subgroup in X, ®Z Y, generated
by
Y Ry—yQy by —x®cbd)y, V,z € Xg,y,y € Yy, b€ Ok.

Let .%, = S(X, ®z Y,) be the maximal free quotient of the group X, ®z Y,/I,. We have Y,v = by' and
X ;/ v = a*z! for two fractional ideals a and b of Ox. Then the dual of g 1s the space of integral Hermitian
forms on a x b which is isomorphic to (abDx)~! N Q, hence Hg) 1s the fractional ideal abDx N Q of Q. Let

5”[;] ={sec 'y |s>0} and let 5’2] = 5”[;] U {0}.
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Let Sjg == Sap (K%) and let B = (B, s, t5,n5) be the universal quadruple over Sig)- Let P be the
Poincaré line bundle over BxB?. Define the group scheme Z14) over Sig by

Z[g] = mo& (Xg’ Bt) XMOK(nggt)moK (Yg’ B)
= {(c,¢") € Homy, (X, B')xHomp, (Yy, B) | c(i(y)) = (¢ (y)),y € Yy}
Let Z[‘;] be the connected component of Z. Each 8 € X ® Y induces a tautological map from ¢(f) : Z[Og] —

B x Bt. We let L(8) = c(B)*P be the line bundle over Z7,, obtained by the pull back of P via ¢(j). By the
symmetry of the polarization A and the ampleness of P, £(3) only depends on the holomorphic image of 8 in
Hg)-

Let K9 = gK'g ' NGp(Ay), e =1 or 0. Let Iy (K}) := Ig, (KJ") be the Igusa scheme over Sj. In our
simple case, Sj,) and I (K}') are affine schemes of finite type over O. Let A}y (resp. AE‘Q]) be the coordinate
ring of Sig) (resp. Ijg(K™)). Let R(y be the Af [.;]-algebra defined by

(7.1) R = [ H(Z5 £(B)d".
peFY

Let Z, be the ideal of R?  generated by {d"} e+ -By Mumford’s construction ([Cha85] and [FC90]), there
[9]

exists a semi-abelian scheme (Mg}, 1) over Spec R(y) together with an Ox-action ¢ : Ox — End M ®z Z(y,)
such that M ® R /L1 = M, where M is the universal Ox-Raynaud extension over Zy

(7.2) 0—X; ® G —M—B—0,
and M is an abelian scheme over Spec fng] [1/Z]. Moreover, (A, K%ns) induces a natural polarization and
level structures (XMﬁgf[)) of M over Rgi[1/Z] (cf. [FC90,1V. 6.4, 6.5 and V. 2.5]). We define the R;[1/Z,]-

quadruple of level K by
_ by =(p)
Mgy = (Mig)s Ancs e, g e 17,

We call M, the Mumford quadruple at the cusp [g]. Moreover there exists a morphism oy, * Spec fng] —
S (K) such that (Pmy)* G = Mg

Similarly, let (B,j5) be the universal quintuple over I;;(K™). Then Njz induces a canonical p"-level
structure Njat) on M, over Rygj. Then (M), ja) is the Mumford quintuple over Iiy(K7).

7.1.2. Fourier-Jacobi expansion and the ®-operator. Let R be an O-algebra and let f € My(K7,R) be a
modular form of weight k = (0,k). We define the Fourier-Jacobi expansion F,(f) of f at the cusp [g] as

follows. Let g € G(Agpp )). Then (7.2) induces the exact sequence of Ox-modules
0— 03— —Qg, —0, Ty = X ® Gyp,.

Let d*t be the canonical Ox-basis of Qg . Choose a lifting d*#/, of et.d*t in Qy¢ and a canonical lifting
d*t_ of e7.d*t in Qy. Let wy = (d*t/. A wp,d*t_) be a Ox-top form of Wy, - Let u € H(Z, =
GL3(Z,)x GL1(Z,). We regard u as an element in U(V)(Q,) by the embedding H(Z,) — GL4(Z,) ~
U(V)(Zy). If f € H'(Ig(K})/r,wk) , then evaluating f at (My,u™ " jn, wn), we obtain the Fourier-Jacobi
expansion of f

f(M[g],U_le,WM) = Zaﬁ]] (6) f)qﬁ € CR[g] ®0o R.

B

Suppose further that u='Np(Z,)u C Np(Z,). Define the Siegel ®-operator:

t - HOUG(KT) i wx) — H (I, Oy

Now we consider the case R = C. Recall that I, (K")(C) = Gp(Q)"\Gp(Ay)/K™9. Thus for every h €
Gp(Ay), the image [h] of h in I(5 (K™)(C) gives rise to a classifying C-algebra homomorphism ¢y, : Afy — C.
we have the following important comparison between analytic and algebraic Fourier-Jacobi expansion

(7.3) Finua) () = 211 ( SOy u™ e, (5, A (20 2w o (), dXt,))) .



ORDINARY p-ADIC EISENSTEIN SERIES FOR UNITARY GROUPS 43

7.2. The constant term of E°"¢(y | £.&,¢). Let E = E(x | f,&,¢) and let E be its p-adic avatar. We
compare the constant terms of E and E. First, by (4.15) and the definition of E( | £,€,¢) together with the
identity (2.17), we conclude that

1
Qk - E is the p-adic avatar of (Qlc )2k LB,

Let wy(C) = (d¥t4 A (271)?ww/c(X), d*t-) and wy(p) = (d*t4+ Aws, (js,),d*t-). By (2.17) we have

- 2mi -
Loo (B(Mg)s Jaes want)) = (ng)% E(Mg; 3, wm(C))
LP(E(M[g]3]M3wM)) - m ’ E(M[g]a]MawM(p)) - E(M[g]a]?\/[)
p

Comparing the constant terms of £ and E, we get

(74) (P @y (E) By wwyo(2) = g 0y (B)B).

Comparing the constant terms on both sides in (7.3), we obtain
(7.5) 7 (E)(h) = @{) (E) (B, ww/c(X)).

7.3. Proof of the main result. We are now in a position to prove the main result Theorem 1. Actually we
will prove it in a more general setting. First of all we recall our set-up. We begin with a quadruple (¢, ¢, f, ),
where

e ¢ is a Dirichlet Hecke character of £* and ¢ is an integral ideal of Z which satisfies (S2).

e fis an ordinary new GLga-cusp form in So(Io(pNy), €y).

e ¢ is a Hecke character of C* of finite order such that {[qx = &4 = 6;1.
We assume N has a decomposition Ny = Ny N_ with (N4, N_) =1 and N_ is product of an odd number of
distinct primes. We choose a positive integer s which is a p-unit and (—s, —D), = —1 exactly at v | coN_. B
is the definite quaternion algebra defined in §4.3 with the above choice of s. Then B is exactly ramified at the
infinity and N_, and

7y = JL(7P) is in the image of Jacquet-Langlands of B.

Let f be the corresponding p-primitive form of f for GU(W).
We give the definition of the normalized L-values.

Definition 7.1 (Normalized L-values). Recall that we have chosen I(d1,d2) a model of m, such that ds|- |% (p)
is a unit. Then the normalized L-values are defined by

(7.6) LS (20 = Byl-20x4) - o ISP (-2,
and
(7.7)

1 1 1

LS (= 50m ) = Byl 065 00 Byl(= 5 o651 02)

TRk —1) 2ri)* L (=17 x)
(2mi)2h—1 O ’

where Qx is the CM period associated to K. We express (7.7) in terms of L-values attached to Galois
representation p = py. Note that py = rec(ﬂ}/(f%)) and £, = €,!, we see that (7.7) equals

a. 1 a.
(7.8) Lklg’s(—i,w,x) = L®5(0,p ® x€)

as defined in the introduction.
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Remark 7.2. According to the recipe of J. Coates in [Coa9l], a p-adic L-function has no p-Euler factor
for the eigenspace of positive (geometric) Hodge-Tate weights, and we need to modify p-Euler factor for the
eigenspace of negative Hodge-Tate weights.

Theorem 7.3. Let (¢, ¢, f,£) as above. Let d8§fgc(g) denote the C,-valued measure induced by the evaluation
of constant term at g € G(A;p)). Let g € G(Agcp)) be a cusp defined by g, = w™! ifv € S and g, = 1 elsewhere
and h € GP(A;:D)). We have

1 or
or | RdeqEhg) = |Dx
P (o]

3 a
R(P—1) tpieg [Lalg’ (—2, x+6,) L2550, p @ x)

X (X )p(—p - det 9)u(F(h)).
In other words, the ordinary p-adic modular form <I>q[“”3 (Eord( E71|£,€,¢) on Gp is given by

aF I ETIOET1.6.0) = LY (-2 x6) Ly (0@ x) - F
p

% Dl (p— 1) (x¢ )(—p - det ).

Moreover the constant term at other cusps is a p-integral multiple of this element in Zp. Therefore the ideal
generated by the constant terms at all cusps is

Ly (=2, x4€)) Ly (p© X)-
PrOOF. By Cor. 5.4 the constant term of E°"¢ := E™(x | f,£, ¢) is

B0 = Sy (@8 @i | (s it

Therefore the first assertion follows from the computatlon in Prop. 5.3, Prop. 5.5, Prop. 5.9 and Prop. 6.8
together with (7.4) and (7.5). By [TU99, Lemma 4.3 and Cor. 4.1], the ordinary section is only supported in
g € G(Ay) such that g, has p-depth 0 (Def. 4.1 loc.cit.). Hence the second assertion follows from Lemma 6.6
and p-adic continuity. O
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