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Abstract. The rank one Gross conjecture for Deligne-Ribet p-adic L-functions
was solved in [DDP11] and [Ven15] by the Eisenstein congruence among Hilbert
modular forms. The purpose of this paper is to prove an analogue of the Gross
conjecture for the Katz p-adic L-functions attached to imaginary quadratic
fields via the congruences between CM forms and non-CM forms. The new
ingredient is to apply the p-adic Rankin-Selberg method to construct a non-
CM Hida family which is congruent to a Hida family of CM forms at the 1+ ε

specialization.

Résumé. Le conjecture de Gross en rang 1 pour les fonctions L p-adiques de
Deligne-Ribet a été résolue par [DDP11] et [Ven15] au moyen de congruences
d’Eisenstein parmi les formes modulaires de Hilbert. Le but de cet article est de
prouver un analogue de la conjecture de Gross pour les fonctions L p-adiques
de Katz des corps quadratiques imaginaires, via les congruences entre formes
CM et formes non-CM. Le nouvel ingrédient est l’application de la méthode de
Rankin-Selberg p-adique pour construire une famille de Hida non-CM qui est
congruente à une famille de Hida de formes CM pour la spécialisation 1 + ε.
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1. Introduction

In [DDP11], Darmon, Dasgupta and Pollack applied the congruence between
Eisenstein series and cusp forms to prove the rank one Gross conjecture for Deligne-
Ribet p-adic L-functions with some assumptions, which were later removed by
[Ven15]. The purpose of this paper is to apply their ideas in the setting of CM
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congruence to prove an analogue of Gross conjecture for the cyclotomic Katz p-adic
L-functions associated with ring class characters of imaginary quadratic fields. To
begin with, we let K be an imaginary quadratic field and let p > 2 be a rational
prime. Fixing an isomorphism ιp : C ' Qp once and for all, let p be the prime
above p induced by ιp. We shall assume that

pOK = pp, p 6= p.

Let f be a prime-to-p ideal of OK . Let K(f) and K(p∞) be the ray class fields
of K of conductor f and p∞. To any p-adic character φ̂ : Gal(K(p∞)/K) → Q

×
p

which is Hodge-Tate, one can associate a character φ : WK → C× of the Weil
group WK of K unramified outside places above p with φ̂(Frq) = ιp(φ(Frq)) for
q - p, where Frq denotes a geometric Frobenius at a prime q. The character φ̂ is the
p-adic avatar of φ (cf. [HT93, page 190]). Let W be a finite extension of the Witt
ring W (Fp). Let χ : Gal(K(f)/K)→W× be a primitive ray class character modulo
f. The works in [Kat78], [dS87] and [HT93] have proved the existence of a (two-
variable) Katz p-adic L-function Lp(χ) in the Iwasawa algebraWJGal(K(p∞)/K)K
characterized uniquely by the following interpolation property: there exists a pair
(Ωp,Ω∞) ∈ W××C× such that for any p-adic character φ̂ : Gal(K(p∞)/K)→ Q

×
p

which is crystalline of Hodge-Tate weight (−k − j, j) with either k ≥ 1 and j ≥ 0
or k ≤ 1 and k + j > 0,

(1.1)
φ̂(Lp(χ))

Ωk+2j
p

=
1

2(
√
−1)k+j

(1− χφ(Frp))(1− χφ(Fr−1
p )p−1) · L(0, χφ)

Ωk+2j
∞

.

Here L(s, χφ) is the complete L-function of χφ (cf. [Tat79, §3]). Let K+
∞ be the

cyclotomic Zp-extension of K. Let εcyc : Gal(K(p∞)/K)→ Gal(K+
∞/K)→ Z×p be

the p-adic cyclotomic character. Define the cyclotomic p-adic L-function Lp(−, χ) :
Zp →W by

Lp(s, χ) := εscyc(Lp(χ)).

In the remainder of the introduction, we suppose that

(1.2) χ 6= 1 and χ(Frp) = 1.

The assumption (1.2) implies that Lp(0, χ) = 0 by the p-adic Kronecker formula,
and in view of Gross’ conjecture for Deligne-Ribet p-adic L-functions, it is tempting
to expect the leading coefficient of the Taylor expansion of Lp(s, χ) at s = 0 to be
connected with certain L -invariant, or rather p-adic regulator, and special values of
a L-function. Along this direction, the work [BS19] provides an affirmative answer
in most cases. We would like to remark that the results of [BS19] indeed include
more general CM fields assuming some major open conjectures in algebraic number
theory. We recall the (cyclotomic) L -invariant associated with χ introduced in
[BS19, Remark 1.5 (ii)]. Let H = K(f) be the ray class field of conductor f and
O×
H,p

be the group of p-units. Put

O×
H,p

[χ] :=
{
u ∈ O×

H,p
⊗Z Qp | (σ ⊗ 1)u = (1⊗ χ(σ))u for all σ ∈ Gal(H/K)

}
.

We have O×
H,p

[χ] = H1
{p}(K,χ

−1(1)) via Kummer map. The dimension of the space
is given by dimQp

O×
H,p

[χ] = 2. Let P be the prime of OH induced by ιp. By

Dirichlet’s units Theorem, we can choose a basis
{
uχ, uχ

p

}
with uχ ∈ O×H ⊗Z Qp
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and uχ
p
∈ O×

H,P
⊗ Qp with ordP(uχ

p
) 6= 0. Let c denote the complex conjugation.

Define logarithms logp, logp : H× ⊗Z Qp → Qp by

logp(x⊗ α) = logp(ιp(x))α; logp(x⊗ α) := logp(x⊗ α).

Let Vχ be the kernel of logp : O×
H,p

[χ] → Qp. Then Vχ is a one dimensional space
generated by

(1.3) u := uχ
p
· (1⊗ logp u

χ)− uχ · (1⊗ logp u
χ
p
).

The L -invariant L (χ) is defined by

(1.4) L (χ) := −
logp(u)

ordp(u)
=

1

logp u
χ · ordP(uχ

p
)
· det

(
logp u

χ
p

logp u
χ

logp u
χ
p

logp u
χ

)
.

Note that L (χ) is a Gross-style regulator for imaginary quadratic fields. The above
definition does not depend on the choice of basis. Let ϕf(OK) be the Robert’s unit
in H× ⊗Z Qp introduced in [dS87, p.55, (17)] and put

(1.5) eχ :=
∑

σ∈Gal(H/K)

σ(ϕf(OK))⊗ χ−1(σ) ∈ (O×H ⊗Qp)[χ].

We have the following Gross conjecture in the setting of imaginary quadratic fields

Conjecture 1. For all primitive ray class characters χ of K modulo f satisfying
(1.2), we have

Lp(s, χ)

s

∣∣∣
s=0

=
−1

12wf

(
1−

χ(Fr−1
p )

p

)
logp eχ ·L (χ).

Here wf is the number of units in O×K congruent to 1 modulo f.

When p does not divide the class number of K, a proof of Conjecture 1 is
given in [BS19, Theorem 1.8]. In this paper, we offer an entirely different proof of
Conjecture 1 for ring class characters, removing the hypothesis on p-indivisibility
of the class number.

Theorem A. Let dK be the fundamental discriminant of OK . Suppose that χ is a
ring class character and that (f, dK) = 1. Then Conjecture 1 holds.

Regarding the non-vanishing of L -invariants, we remark that it is shown in
[BD21, Proposition 1.11] that either L (χ) or L (χ−1) is non-zero and that the
L -invariant L (χ) is non-zero if the Four Exponentials Conjecture holds.

The proof in [BS19] requires the full arsenal of Iwasawa theory for imaginary
quadratic fields and the existence of elliptic units. In the case of general CM fields,
their method relies on the existence of Rubin-Stark units in ray class fields, which is
one of the major open conjectures in algebraic number theory. In contrast, we adapt
the ideas in [DDP11], replacing the Eisenstein congruence with the CM congruence
for elliptic modular forms. This approach is inspired by a series of works of Hida and
Tilouine [HT91], [HT93] and [HT94] on CM congruences and the anticyclotomic
main conjecture for CM fields and a recent work [BD21]. This method is units-free
and more amenable to general CM fields as in [DDP11] at least under the Leopoldt
conjecture for totally real fields. The details for general CM fields will appear in a
future work. We now give a sketch of the proof of Theorem 1.
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Cohomological interpretation of the L -invariant. The staring point is the
observation dimF H1(K,χ) = 1 by the global Poitou-Tate duality. Let κ 6= 0 ∈
H1(K,χ). Write locp(κ) ∈ H1(Kp, χ) = Hom(GKp

,Qp). Let κur : GKp
→ E be the

unique unramified homomorphism sending the geometric Frobenius Frp to 1 and
κcyc be the p-adic logarithm of the p-adic cyclotomic character. Then

locp(κ) = x · κur + y · κcyc.

In Lemma 4.1, we show that y 6= 0 and

(1.6) L (χ) =
x

y
.

Therefore, to prove Theorem 1 we need to construct a non-zero cohomology class κ
whose x and y coordinates can be evaluated explicitly and related to the derivatives
of the Katz p-adic L-functions.

A -adic modular forms and construction of cohomology classes. The con-
struction of κ relies on the idea in [HT94] of using the congruence between p-adic
families of CM forms and non-CM forms to prove anticyclotomic main conjectures.
Let A be the ring of rigid analytic functions on the unit disk

{
s ∈ Qp | |s|p ≤ 1

}
.

For an integer k ≥ 1, a prime-to-p positive integer N and a Dirichlet character ξ
modulo N , let Sk(N,χ) be the space of elliptic cusp forms of weight k, level N
and character ξ. Denote by S(N, ξ) the space of ordinary A -adic modular forms of
tame level N and character ξ, consisting of q-expansion F(s)(q) ∈ A JqK such that
F(k)(q) is the q-expansion of some p-ordinary elliptic cusp form of weight k + 1,
level Np for all but finitely many k ≡ 0 (mod p− 1). Since χ is assumed to be a
ring class character, we can write χ = φ1−c for some ray class character φ of con-
ductor c prime to dKp. Note that the choice of φ is not unique. Let N = dKNc and
ξ := τK/Qφ+, where τK/Q : (Z/dKZ)× → C× is the quadratic character associated
with K/Q and φ+ : (Z/NcZ)× → C× is given by φ+(a) = φ(aOK). Let θφ and θφc
be A -adic CM forms in S(N,φ+τK/Q) associated with φ and φc defined in (2.3).
Let K = Frac A . The theory of A -adic newforms yields a decomposition of Hecke
modules

(1.7) S(N,φ+τK/Q) = K θφ ⊕K θφc ⊕ S⊥.

The submodule S⊥ interpolates the orthogonal complement of the space spanned by
θφ and θφc . Let T⊥ be the A -algebra generated by the Hecke operators acting on
S⊥. Suppose we are given a Hecke eigensystem λ : T⊥ → A †/(s2) and a character
Ψ : GK → A †/(s2) such that

(a) Ψ ≡ φ (mod s),
(b) λ(T`) = Ψ(Frl) + Ψ(Frl) for ` = ll split in K.

Write Ψ = φ(1 + ψ′s) (mod s2). In Theorem 4.2, we use the argument in [DDP11,
§4] to construct a non-zero cohomology class κ ∈ H1(K,χ) such that

(1.8) locp(κ) = ψ′|GKp
− φ(p)−1λ(Up)

′(0) · κur.

Here λ(Up)
′(0) is the first derivative of the Up-eigenvalue λ(Up) at s = 0.
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Construction of Hecke eigenforms modulo s2. The problem boils down to
constructing a Hecke eigensystem λ : T⊥ → A †/(s2) as above and computing
the derivative of the Up-eigenvalue λ(Up). This is the main bulk of this paper and
is achieved by applying the p-adic Rankin-Selberg method. For any C | N , let
GC(s) ∈ A JqK be the q-expansion defined by

GC(s) = 1 + 2ζp(1− s)−1
∞∑
n=1

 ∑
d|n,p-n

d−1 〈d〉s
 qCn,

where ζp(s) is the p-adic Riemann zeta function. For k ≥ 2, GC(k) is the q-expansion
of an p-ordinary Eisenstein series of weight k and level Γ0(Cp). From the spectral
decomposition of eord(θ◦φGC) ∈ S(N,φ+τK/Q) in (1.7), we find that there exist
C(φ, φc) and C(φc, φ) in K such that

eord(θ◦φGC) = C(φ, φc)θφ + C(φc, φ)θφc + H

for some A -adic form H ∈ S⊥. According to [HT93, Theorem 8.1], the coeffi-
cients C(φ, φc) and C(φc, φ) are essentially a product of two-variable Katz p-adic L-
functions Lp(s, t, χ) (See (3.3) for the definition). By Hida’s p-adic Rankin-Selberg
method, we will prove in Proposition 3.7 the following precise identity

(1.9) C(φc, φ)(s) =
2Lp(s, 0,1)Lp(s, 0, χ)

L(0, τK/Q)Lp(s,−s, χ)ζp(1− s)
· 〈dK〉s

(1− εsp(Frp))2

for some good choices of φ and C. Following a similar calculation in [Ven15, §3],
we will see in Theorem 4.4 that the A -adic form H produces an explicit Hecke
eigensystem λH : T⊥ → A †/(s2) with the properties (a) and (b) and use (1.9)
to show that the first derivative of λH (Up) is given by the derivatives of the Katz
p-adic L-functions. Putting all ingredients together, we prove Theorem 1 in §4.3.

Finally, in §5 we compare the definition of L -invariants in (1.4) and Benois’
L -invariant in the setting of imaginary quadratic fields. First, Perrin-Riou [PR95]
formulated a general conjecture for special values of p-adic L-functions at all integer
points except for the exceptional zero case. Using an idea of Greenberg [Gre94] in
the ordinary case, Benois [Ben14] gave a general definition of L -invariant using
(ϕ,Γ)-modules and formulated a trivial zero conjecture including the non-critical
case. We will confirm that our formula is compatible with his conjecture in §5.2.

Notation and convention. If F is a local or global field of characteristic zero,
let OF be the ring of integers of F . Let GF denote the absolute Galois group of
F and let CF := F× if F is local and CF be the idele class group A×F /F

× if F
is global. Let recF : CF → GabF be the geometrically normalized reciprocity law
homomorphism.

Let F be a global field. If q is a prime ideal of OF (resp. v is a place of F ), let
Fq (resp. Fv) be the completion of F at q (resp. v). Then recFq

: F×q → GabFq
sends

a uniformizer $q of OFq
to the corresponding geometric Frobenius Frq. If S is a

finite set of prime ideals of OF , let FS be the maximal algebraic extension of F
unramified outside S and let GF,S = Gal(FS/F ). For a fractional ideal a of a global
field F , we let Fra :=

∏
q Fr

nq
q if a has the prime ideal factorization

∏
q q

nq .
If χ : CF → C× is an idele class character of F× unramified outside S. If v is a

place of F , let χv : F×v → C× be the local component of χ at v and let L(s, χv) be
the local L-factor of χv in [Tat79, (3.1)]. Let L(s, χ) =

∏
v L(s, χv) is the complete
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L-function of χ and ε(s, χ) be the epsilon factor [Tat79, (3.5.1-2)]. If χ = 1 is the
trivial character, then we put ζFv (s) = L(s,1v) and ζF (s) = L(s,1). In particular,
ζR(s) = π−

s
2 Γ( s2 ) and ζQ(2) = π/6 under this definition. If χ is a character of GF,S ,

we shall view χ as a Hecke character of CF via recF and still denote by χ if there
is no fear for confusion. Therefore,

χ(q) := χ(Frq) = χq($q) for q 6∈ S.

In particular, a primitive ray class character χ modulo c shall be identified with an
idele class character χ of F of conductor c.

We write A = AQ for simplicity. Denote by e =
∏

ev : A/Q→ C× the unique
additive character with e∞(x) = exp(2π

√
−1x). If χ : A×/Q× → C× is a finite

order idele class character of Q of level N , then let χDir be the Dirichlet character
modulo N obtained by the restriction of χ to

∏
`|N Z×` . With our convention, if

q - N is a prime, then

(1.10) χq(q) = χ((q)) = χDir(q)
−1.

We fix an isomorphism ιp : C ' Qp once and for all. Let ω : Gal(Q(ζp)/Q)→ C×

be Galois character such that ιp ◦ω is the p-adic Teichmüller character. Identifying
ω with an idele class character of Q, we have

ιp(ωDir(a)) ≡ a (mod p); L(s,ω) = L(s,ω−1
Dir).

2. Ordinary Λ-adic CM forms

2.1. Ordinary Λ-adic forms. If N is a positive integer, let Sk(N,χ) denote the
space of elliptic cusp forms of level Γ1(N) and nebentypus χ−1

Dir. If f ∈ Sk(N,χ) is a
Hecke eigenform, let ϕf := Φ(f) be the associated automorphic form. LetQ∞ be the
cyclotomic Zp-extension of Q and ΓQ = Gal(Q∞/Q). Define the Iwasawa algebra
Λ :=WJΓQK and write σ 7→ [σ] for the inclusion of group-like elements ΓQ → Λ×.
If ν : ΓQ → Q

×
p is a continuous character, we extend ν uniquely to a W-algebra

homomorphism ν : Λ→ Q
×
p by the formula ν([γ]) = ν(γ). Let εcyc : ΓQ → 1 + pZp

be the cyclotomic character. For s ∈ Zp, let Ps be the kernel of εscyc : Λ → Zp,
i.e. the ideal of Λ generated by

{
[σ]− εscyc(σ) | σ ∈ ΓQ

}
. For a positive prime-to-p

integer N and a finite order idele class character χ modulo pN , let Sord(N,χ,Λ) be
the space of (ordinary) Λ-adic cusp forms of tame level N with nebentypus χ−1

Dir,
consisting of q-expansions F(q) =

∑
n a(n,F)qn ∈ ΛJqK such that for k ≥ 1, the

specialization F (mod Pk) =
∑
n ε

k
cyc(a(n,F))qn is the q-expansion of some cusp

form Fk in Sord
k+1(pN, χωk)⊗C,ιp Qp at the infinity cusp.

IfR is a Λ-algebra which is an integral domain and finite over Λ, let Sord(N,χ,R) :=
Sord(N,χ,Λ) ⊗Λ R be the space of Λ-adic forms defined over R. A basic result in
Hida theory asserts that Sord(N,χ,R) is a free R-module of finite rank equipped
with the action of Hecke operators {T`}`-pN , {Uq}q|pN . We let

T(N,χ,R) = R[{T`}`-pN , {Uq}q|pN ] ⊂ EndR Sord(N,R, χ)

be the big ordinary cuspidal Hecke algebra generated by these Hecke operators
over R. By the freeness of Sord(N,χ,R), we have T(N,χ,R) = T(N,χ,Λ)⊗ΛR. A
prime ideal Q in SpecR is called an arithmetic point if Q is lying above Pk for some
k ≥ 2. A Λ-adic form F in Sord(N,χ,R) is a newform of tame level NF | N if for
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all but finite many arithmetic primes Q of SpecR, the specialization F (mod Q) ∈
Sord
k+1(pNF , χω

k) is the q-expansion of a p-stabilized normalized elliptic newform of
tame level NF .

2.2. Classical CM forms. Let K be an imaginary quadratic field and let dK > 0
be the fundamental discriminant of OK . If ψ is an idele class character of K of
conductor c with ψ∞(z) = z−k for some non-negative integer k, we recall that the
CM form associated with ψ is the elliptic modular form θ◦ψ of weight k + 1 defined
by the q-expansion

θ◦ψ =
∑

(a,c)=1

ψ(a)qNa,

where a runs over ideals of OK prime to c and Na := NK/Q(a) is the norm of a.
Write ψ+ := ψ|A×Q = |·|kAQ

ω for some finite order idele class character ω of Q. Then

θ◦ψ is a newform of weight k+ 1, level NcdK and nebentypus ω−1
Dir. Let p be a prime

of OK lying above p. The p-stabilization θ(p)
ψ is defined by

θ
(p)
ψ =

∑
(a,pc)=1

ψ(a)qNa.

2.3. Λ-adic CM forms. Suppose that pOK = pp, where p is the prime induced by
the fixed embedding Q ↪→ C ' Cp. Let Kp∞ be the Zp-extension of K in K(p∞)
and ΓK,p = Gal(Kp∞/K). Let c be an ideal of OK coprime to p. The transfer map
V : GabQ → GabK induces a map V : ΓQ → Gal(K(p∞)/K) → ΓK,p, which in turns
gives rise to an embedding

(2.1) V : Λ =WJΓQK→ ΛK :=WJΓK,pK

such that V (recQp
(z)|Q∞) = recKp

(z)|Kp∞ for z ∈ Q×p . Let Ψuniv : GK → Λ×K be
the universal character defined by the inclusion of group-like elements ΓK,p → Λ×K

(2.2) Ψuniv(σ) = [σ−1|Kp∞ ] ∈ ΛK .

For any primitive ray class character φ modulo c, we define

(2.3) θφ(q) =
∑

(a,pc)=1

φ(a) ·Ψuniv(Fra)qNa ∈ ΛKJqK.

Let φ+ = φ ◦ V , regarded as an idele class character of Q. Then θφ is a Λ-
adic newform of tame level N := dKNc and nebentypus φ+τK/Q, where τK/Q
is the quadratic character associated with K/Q. Let S := Sord(N,φ+τK/Q,ΛK)
and T := T(N,φ+τK/Q,ΛK). Then S is a free ΛK-module with T-action. Denote
K = Frac(ΛK). Let S⊥ be the subspace of S⊗K generated by the following set

Ξ⊥ =
{
F(qM ) | F 6= θφ or θφc a newform in S of tame level NF and MNF | N

}
.

By the theory of Λ-adic newforms [Wil88, Prop. 1.5.2], we have the decomposition
of T-modules

(2.4) S⊗ΛK K = K · θφ ⊕K · θφc ⊕ S⊥.
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3. The p-adic Rankin-Selberg convolutions

3.1. A classical Eisenstein series. We recall a general construction of Eisenstein
series in the theory of automorphic forms. If ω is a finite order idele class character
of Q and k is an integer, let Ak(ω) denote the space of automorphic forms ϕ :
GL2(Q)\GL2(A)→ C such that

ϕ(zgκθ) = ω(z)ϕ(g)e2π
√
−1kθ, z ∈ A×, κθ =

(
cos θ sin θ
− sin θ cos θ

)
∈ SO2(R).

Let A0
k(ω) ⊂ Ak(ω) be the subspace of cusp forms. For a ∈ Z×p , put 〈a〉 := a · (ιp ◦

ω)(a)−1. For each place v, let ωv be the local component of ω at v. Let D be the
pair

D = (k,C), C ∈ Z>0 and p - C.
Let S(A2) be the space of Bruhat-Schwartz functions on A2. Define ΦD = ΦD,∞⊗′`
ΦD,` ∈ S(A2) by

— ΦD,∞(x, y) = 2−k(x+
√
−1y)ke−π(x2+y2),

— ΦD,`(x, y) = ICZ`(x)IZ`(y),
— ΦD,p(x, y) = ω−kp (x)IZ×p (x)IZp(y).

Recall that fD,s = ⊗vfD,s,v, where fD,s,v = fωkv ,1,ΦD,v,s : GL2(Qv) → C is the
Godement section associated with ΦD,v defined by

fD,s,v(gv) = ωkv(det g) |det gv|s+
1
2

v

∫
Q×v

ΦD,v((0, tv)gv)ω
k(tv) |tv|2s+1

v d×tv

(cf. [CH20, (4.1)]). Let B(Q) be the upper triangular matrices in GL2(Q). Then
the Eisenstein series EA(−, fD,s) : GL2(A)→ C is the series defined by

EA(g, fD,s) =
∑

γ∈B(Q)\GL2(Q)

fD,s(γg) ∈ Ak(1)

(cf. [Bum97, (7.8), page 351]). The series EA(g, fD,s) is absolutely convergent for
Re (s) > 1/2 and can be analytically continued to the whole complex plane except
at s = ± 1

2 . Suppose that k ≥ 2. For z = x+
√
−1y ∈ H = {z ∈ C | Im(z) > 0}, put

Ek(C)(z) = y−
k
2EA(

(
y x
0 1

)
, fD,s)|s= 1−k

2
.

Then Ek(C)(z) defines a classical Eisenstein series of weight k and level Γ0(pC).

Proposition 3.1. The Fourier expansion of Ek(C) is given by

Ek(C) =
〈C〉k

2C
ζp(1− k) +

∑
n>0,C|n

a(n,Ek(C))qn,

where

(3.1) a(n,Ek(C)) =
∑

C|d|n, p-d

dk−1ωDir(d)−k.

Proof. For each positive integer n, the Fourier coefficient a(n,Ek(C)) is the prod-
uct of local Whittaker functions

a(n,Ek(C)) = n
k
2

∏
`

W (

(
n 0
0 1

)
, fD,s,`)|s= 1−k

2
,
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where W (−, fD,s,`) : GL2(Q`)→ C is the local Whittaker function defined by

W (g, fD,s,`) = lim
n→∞

∫
`−nZ`

fD,s,`(

(
0 −1
1 0

)(
1 x
0 1

)
g)e`(−x)dx`,

and the Haar measure dx` is normalized so that vol(Z`,dx`) = 1 (cf. [CH20, Corol-
lary 4.7] and [Bum97, (7.14)]). Hence we get (3.1) from the explicit formulae of
these local Whittaker functions in [CH20, Lemma 4.6].

On the other hand, the constant term a(0, Ek(C)) of Ek(C) at the infinity cusp
is given by

a(0, Ek(C)) = fD, 1−k2
(1) + (MfD,s)(1)

∣∣∣
s= 1−k

2

,

whereMfD,s(g) is obtained by the analytic continuation of the intertwining integral

MfD,s(g) =

∫
A

fD,s(

(
0 −1
1 0

)(
1 x
0 1

)
)dx, g ∈ GL2(A)

(cf. [Bum97, (7.15)]). A direct computation shows that for Re (s)� 0,

MfD,s(1) =
∏
v

∫
Qv

fD,s,v(

(
0 −1
1 x

)
)dxv

=
C2s

∏
`|C ω

k
` (C)

2
· L(2s,ωk)

L(2s,ωkp)

=
C2sω((C))k

2
· L(2s,ωk) ·

{
(1− p−2sωkp(p)) if ωkp is unramified,
1 if ωkp is ramified,

(cf. [Bum97, Proposition 2.6.3 and (7.27)]). Since fD,s,p(1) = 0, we see that

a(0, Ek(C)) = MfD,s(1)|s= 1−k
2

=
〈C〉k

2C
(1− pk−1ω−kDir(p))L(1− k,ω−kDir) =

〈C〉k

2C
ζp(1− k).

This finishes the computation of the Fourier expansion of Ek(C). �

Remark 3.2. Let Ek(z) be the standard classical Eisenstein series with the q-
expansion

Ek =
ζ(1− k)

2
+
∑
n>0

σk−1(n)qn.

Let E(p)
k (z) := Ek(z)−pk−1Ek(pz) be the p-stabilization of Ek. From the inspection

of Fourier expansions, we have

Ek(C)(z) = C−1 〈C〉k · E(p)
k (Cz).

The adelic construction of Ek(C) will be used in the later computation of the adelic
Rankin-Selberg convolution.
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3.2. A Λ-adic Eisenstein series. Let P be the augmentation ideal of Λ. Let
LKL
p (1) ∈ P−1Λ be the Kubota-Leopoldt p-adic L-function associated with trivial

character, i.e. εscyc(LKL
p (1)) = ζp(1− s). Define the q-expansion

EC :=
[FrC ]−1

2C
· LKL

p (1) +
∑

n>0, C|n

a(n, EC)qn,

a(n, EC) =
∑

C|d|n, p-d

d−1[Frd]
−1 ∈ Λ.

Proposition 3.3. The q-expansion EC defines a Λ-adic form of Eisenstein series.
More precisely, for k ≥ 2, we have

εkcyc(EC) = Ek(C)(q).

Proof. Note that with our convention (1.10), for any positive integer a prime to p,
Fra is an element in GQ corresponding to the ideal (a) = aZ and

εcyc(Fra) = 〈a〉−1
= a−1ωDir(a).

The assertion thus follows from Proposition 3.1 immediately. �

3.3. Two-variable and improved Katz p-adic L-functions. Let f be an in-
tegral ideal of K. If χ is an idele class character of K with the conductor f. The
(finite) Hecke L-function for χ is defined by the Dirichlet series

Lfin(s, χ) =
∑

(a,f)=1

χ(a)Na−s.

If the infinity type of χ is (a, b) ∈ Z2, i.e. χ∞(z) = zazb, then the Hecke L-function
associated with χ is given by

(3.2) L(s, χ) := 2(2π)−(s+max{a,b})Γ(s+ max {a, b})Lfin(s, χ)

Suppose that (pp, f) = 1. We consider the p-adic L-functions Lp,fp∞ and Lp,f of
K defined in [dS87, (49), page 86]. Let χ be a primitive ray class character modulo
f. Let Lp(χ) be the unique element in the Iwasawa algebraWJGal(K(p∞)/KK such
that for every p-adic continuous character ε on Gal(K(p∞)/K), we have

ε(Lp(χ)) = Lp,fp∞(χε)ε(σδ),

where σδ ∈ Gal(K(fp∞)/K(fp∞)) is the element defined in [dS87, (7), page 92].
We call Lp(χ) the two-variable Katz p-adic L-function associated with χ. Let εp :
ΓK,p = Gal(Kp∞/K)→W× be a p-adic character such that

εp(recK(z)) = 〈zp〉 , z ∈ Ô×K .

By definition, εp ◦V = εcyc. Let εp(σ) := εp(cσc). It is convenient to introduce the
two-variable Katz p-adic L-function Lp(s, t, χ) : Z2

p →W defined by

(3.3) Lp(s, t, χ) := (εspε
t
p) (Lp(χ)) for (s, t) ∈ Z2

p.

Let ψ be the idele class character of K× such that ψ̂ = εp, i.e. ψ : A×K/K
× → C×

is an idele class character of K unramified outside p and ψ∞(z) = z and ψ(q) =
ψq($q) = εp(Frq) for any prime q 6= p.
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Proposition 3.4. There exists periods (Ω∞,Ωp) ∈ C× × W× such that for all
(k, j) ∈ Z2 such that k ≥ 1 and j ≥ 0 or k ≤ 1 and k + j > 0, we have

Lp(k + j,−j, χ)

Ωk+2j
p

=
1

2(
√
−1)k+j

(1−χψk+j(1−c)(p))(1−χψk+j(1−c)(p−1)p−1)
L(0, χψk+j(1−c))

Ωk+2j
∞

.

Proof. Let (Ω,Ωp) ∈ C××W× be the periods introduced in [dS87, Theorem 4.14,
page 80] and put Ω∞ := (2π)−1Ω

√
dK . Write ε = εk+j

p ε−j
p

. One deduces the desired
interpolation formula of Lp(k + j,−j, χ) = Lp,fp∞(χε)ε(σδ) from [dS87, (50), page
86 and Lemma (i), page 92]. �

Likewise we define L∗p(χ) to be the unique element in WJGal(K(p∞)/K)K such
that

ε(L∗p(χ)) = Lp,f(χε)ε(σδ)

for any p-adic character ε on Gal(K(p∞)/K). Put

L∗p(s, χ) := εsp(L∗p(χ)).

Then L∗p(χ) is called the (one-variable) improved p-adic L-function associated with
χ in the sense that

(3.4) Lp(s, 0, χ) = (1− χ(p)εsp(Frp))L∗p(s, χ).

If χ 6= 1, then by the p-adic Kronecker limit formula [dS87, Theorem 5.2, page 88],
we have

(3.5) L∗p(0, χ) =
−1

12wf

(
1− χ(p−1)

p

)
logp eχ,

where eχ is the Robert’s unit in (1.5). It follows that L∗p(0, χ) 6= 0 by the Brumer-
Baker Theorem.

Remark 3.5. Recall that the cyclotomic p-adic L-function Lp(s, χ) := εscyc(Lp(χ)).
Let h be the class number of K. Since εhpεhp = εhcyc, we have

Lp(ht, ht, χ) = Lp(ht, χ) for t ∈ Zp.

3.4. Rankin-Selberg convolution with CM forms. Let χ be a ring class char-
acter unramified outside pdK . There exists a ray class character φ such that

χ = φ1−c

(cf. [Hid06, Lemma 5.31]). Replacing φ by φ · ξ ◦ NK/Q for a suitable Dirichlet
character ξ, we may further assume φ satisfies the following minimal condition

(min) the conductor of φ is minimal among Dirichlet twists.

Since χ = φ1−c is unramified outside pdK , this in particular implies that the con-
ductor c of φ has a decomposition

c = cics, (c, pdK) = 1; (cs, cs) = 1,

where ci is only divisible by primes inert in K and cs is only divisible by primes
split in K. The level of the associated CM form θ◦φ is N = dKC

2
i Cs, where Ci and

Cs are positive integers satisfying (Ci) = ci ∩ Z and (Cs) = cs ∩ Z. Put

C = dKCiCs.
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With the transfer map V : Λ→ ΛK in (2.1), we define

(3.6) GC := V

(
2C

LKL
p (1)

· EC
)
∈ ΛP JqK,

where ΛP is the localization of ΛK at P . By construction and the fact that ζp(s)
has a simple pole at s = 1, we find that

(3.7) GC ≡ [Fr−1
C ] ≡ 1 (mod P ).

Let eord be Hida’s ordinary projector on the space of Λ-adic forms. The spectral
decomposition of

eord(θ◦φGC) ∈ S = Sord(N,φ+τK/Q,ΛK)

according to (2.4) allows us to make the following definition.

Definition 3.6. Let C(φ, φc) and C(φc, φ) be the unique elements in K such that

(3.8) H := eord(θ◦φGC)− C(φ, φc) · θφ − C(φc, φ) · θφc ∈ S⊥.

Let c be the positive integer such that cOK is the conductor of χ.

Proposition 3.7. With the ray class character φ and the integer C as above, we
have

εsp(C(φc, φ)) =
2Lp(s, 0,1)Lp(s, 0, χ)

L(0, τK/Q)Lp(s,−s, χ)ζp(1− s)
· 〈dKc〉s

(1− εsp(Frp))2
.

Proof. This can be proved by Hida’s p-adic Rankin-Selberg method. We shall use
the representation theoretic approach in [CH20]. We follow the notation in [CH20,
Section 5, Section 6]. It suffices to show that for all but finitely many positive integer
k with k ≡ 0 (mod p− 1),

(3.9) εkp(C(φc, φ)) =
2Lp(k, 0,1)Lp(k, 0, χ)

L(0, τK/Q)Lp(k,−k, χ)ζp(1− k)
· (dKc)k

(1− ψk(Frp))2
.

Here recall that ψ is the idele class character ofK corresponding to εp with ψ∞(z) =
z. To evaluate εkp(C(φc, φ)), we consider the spectral decomposition

(3.10)

2C

ζp(1− k)
· eord(θ◦φEk(C))

=Ck(φ, φc) · θ(p)

φψ−k
+ Ck(φc, φ) · θ(p)

φcψ−k
+ Hk ∈ Sk+1(Np, φ−1

+ τK/Q),

where Hk is orthogonal to the space spanned by θφ−1ψ−k , θ
(p)

φ−1ψ−k
, θφ−cψ−k and

θ
(p)

φ−cψ−k
under the Petersson inner product. Since εkp(θφ) = θ

(p)

φψ−k
is a p-stabilized

newform of weight k+ 1, the decomposition (3.10) is indeed obtained by the image
of (3.8) under the map εkp, and hence

εkp(C(φc, φ)) = ι−1
p (Ck(φc, φ)).

Now we use the adelic Rankin-Selberg method to compute the value Ck(φc, φ). Let
f◦ = θφ−1ψ−k and g◦ = θ◦φ be the newforms associated with Hecke characters
φ−1ψ−1 and φ. Let ω := φ−1

+ τ−1
K/Q viewed as an idele class character of Q. Let

ϕf◦ := Φ(f◦) ∈ Ak+1(ω) and ϕg◦ = Φ(g◦) ∈ A1(ω−1) be the automorphic newforms
corresponding to f◦ and g◦ via the map Φ in [CH20, (2.4)]. Let π1 and π2 be the
unitary cuspidal automorphic representation of GL2(A) associated with ϕf◦ and
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ϕg◦ . The π1 and π2 are the automorphic inductions of the idele class characters

φ−1ψ−k|·|
k
2

AK
and φ, and the automorphic forms ϕf◦ and ϕg◦ are normalized new

vectors in π1 and π2. In addition, we have the equality of automorphic L-functions
and Dirichlet series of modular forms

L(s, π1) =ΓC(s+
k

2
)D(s+

k

2
, f◦) = L(s+

k

2
, φ−1ψ−k);

L(s, π2) =ΓC(s)L(s, g◦) = L(s, φ).

Let f = θ
(p)

φ−1ψ−k
be the p-stablized newform associated with f◦ and let f̆ := θ

(p)

φcψ−k

be the specialization of εsp(θφc) at s = k. Then the automorphic representation gen-
erated by the associated automorphic forms ϕf̆ is the contragredient representation
π∨1 = π1 ⊗ ω−1. Define the C-linear pairing 〈 , 〉 : A0

−k−1(ω)×Ak+1(ω−1)→ C by

〈ϕ1, ϕ2〉 =

∫
A×Q GL2(Q)\GL2(AQ)

ϕ1(g)ϕ2(g)dtg.

Here dtg is the Tamagawa measure of PGL2(A). By [CH20, Proposition 5.2], for
n� 0 large enough, we have

Ck(φc, φ) =
〈ρ(J∞tn)ϕf , ϕg◦ · EA(−, fD,s−1/2)〉|s=1− k2

〈ρ(J∞tn)ϕf , ϕf̆ 〉
· 2C

ζp(1− k)
,

where J∞ =

(
−1 0
0 1

)
∈ GL2(R) and tn =

(
0 p−n

−pn 0

)
∈ GL2(Qp). In order to

explain the calculation of Ck(φc, φ) by the adelic Rankin-Selberg method, we need
to prepare some notation from the theory of automorphic representations. For any
cuspidal automorphic representation π of GL2(A), let W(π) denote the Whittaker
model of π associated with the additive character e : A/Q → C×. For each place
v of Q, let Wv(π) be the local component of W(π) at v. For (W1,W2) ∈ Wv(π1)×
Wv(π2), let Ψ(W1,W2, fD,s,v) be the local zeta integral defined in [CH20, (5.10)].
If v is finite, let Wπ,v ∈ Wv(π) be the new Whittaker function with Wπ,v(1) = 1
and if v = ∞ and π∞ is discrete series, let Wπ,v be the Whittaker of minimal
SO(2)-type with Wπ,∞(1) = 1 (cf. [CH20, §2.6.4]). For ϕ ∈ A0(ω), the Whittaker
function Wϕ : GL2(A)→ C is defined by

Wϕ(g) =

∫
A/Q

ϕ(

(
1 x
0 1

)
g)e(−x)dx.

In our setting, the Whittaker functions of ϕf ∈ π1 and ϕg◦ ∈ π2 are given by

Wϕf = W ord
π1,p

∏
v 6=p

Wπ1,v; Wϕg◦ =
∏
v

Wπ2,v,

whereW ord
π1,p ∈ W(π1,p) is the ordinaryWhittaker function characterized byW ord

π1,p(

(
a 0
0 1

)
) =

αf (a) |a|
1
2

Qp
IZp(a), where αf : Q×p → C× is the unramified character with αf (p) =

φ−1ψ−k(p)p−
k
2 (See [CH20, Definition 2.1]). Following [Jac72, Chapter V] (cf. [CH20,



14 M. CHIDA AND M.-L. HSIEH

(5.11)]), we have the identity

〈ρ(J∞tn)ϕf , ϕg◦ · EA(−, fD,s)〉 =

∫
PGL2(Q)\PGL2(A)

ϕf (gJ∞tn)ϕg◦(g)EA(g, fD,s)d
tg

=
1

ζQ(2)
Ψ(W ord

π1,p,Wπ2,p, fD,s,p)Ψ(ρ(J∞)Wπ1,∞,Wπ2,∞, fD,s,∞)
∏

v 6=p,∞

Ψ(Wπ1,v,Wπ2,v, fD,s,v).

By the calculation in [CH20, Proposition 5.3] with k1 = k3 = k + 1 and k2 = 1, we
find that

(3.11)

〈ρ(J∞tn)ϕf , ϕg◦ · EA(−, fD,s−1/2)〉|s=1− k2

=
L(s, π1 × π2)

ζQ(2)[SL2(Z) : Γ0(N)]
· (
√
−1)k

2k+2
·Ψp(s)

∏
`|N

Ψ∗` (s)
∣∣∣
s=1− k2

,

where L(s, π1 × π2) is the Rankin-Selberg L-function for π1 × π2, Ψ∗` (s) and Ψp(s)
are local zeta integrals defined by

Ψ∗` (s) =
ζQ`

(1)

ζQ`
(2) |N |Q`

Ψ(Wπ1,`
,Wπ2,`

, fΦD,`,s−1/2)

L(s, π1,` × π2,`)
if ` 6= p,

Ψp(s) =
Ψ(ρ(tn)W ord

π1,p
,Wπ2,p, fΦD,p,s−1/2)

L(s, π1,p × π2,p)
.

Note that N is the conductor of π1 and π2. Let supp(N) be the set of prime
divisors of N . In [CH20, §5.1, page 220], to (π1, π2), we associate a decomposition
supp(N) = Σ(i) tΣ(ii) tΣ(iii), and in our case, ` ∈ Σ(i) if ` | dKCs, ` ∈ Σ(ii) if ` | Ci

and Σ(iii) = ∅. According to the computation of local zeta integrals Ψ∗` (s) in [CH20,
Lemma 6.3, Lemma 6.5] at ` | N , we have

Ψ∗` (s) = 1 if ` | dKCs; Ψ∗` (s) = |Ci|−1
Q`

(1 + `−1) if ` | Ci.

We compute the local zeta integral Ψp(s) by a similar calculation in [CH20, Lemma
6.1]. Put W1 = W ord

π1,p and W2 = Wπ2,p. Then Ψ(ρ(tn)W ord
π1,p

,Wπ2,p, fΦD,p,s−1/2)
equals

ζQp(2)

ζQp
(1)

∫
Q×p

∫
Qp

W1(

(
y 0
0 1

)(
0 −1
1 x

)
tn)W2(

(
−y 0
0 1

)(
0 −1
1 x

)
) |y|s−1

Qp

× fΦD,p,s− 1
2
(

(
0 −1
1 x

)
)dxd×y

=
ζQp(2)

ζQp
(1)

∫
Qp

∫
Q×p

W1(

(
ypn 0
0 p−n

)(
1 0

−p2nx 1

)
)W2(

(
−y 0
0 1

)(
0 −1
1 x

)
) |y|s−1

Qp

× IZp(x)d×ydx

=
ζQp(2)αf |·|

1
2

Qp
(p2n)ω−1

p (pn)

ζQp
(1)

∫
Q×p

W2(

(
−y 0
0 1

)
)αf |·|

s− 1
2

Qp
(y)d×y

=
ω−1
p α2

f |·|Qp
(pn)ζQp

(2)

ζQp(1)
· L(s, π2,p ⊗ αf ),
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so we obtain that

Ψp(s) =
ω−1
p α2

f |·|Qp
(pn)ζQp(2)

ζQp(1)
·L(s, π1,p×π2,p)(1−ψ−k(p)p−s−

k
2 )(1−φc−1ψ−k(p)p−s−

k
2 ).

From the above equations with the equality of L-functions

L(s, π1 × π2) = L(s+ k/2, θ◦φ ⊗ θφ−1ψ−k) = L(s+ k/2, ψ−k)L(s+ k/2, φc−1ψ−k),

we find that (3.11) equals

〈ρ(J∞tn)ϕf , ϕg◦ · EA(−, fD,s−1/2)〉|s=1− k2
=
L(1, ψ−k)L(1, φc−1ψ−k)

ζQ(2)[SL2(Z) : Γ0(N)]
· (
√
−1)k

2k+2

× (1− ψ−k(p)p−1)(1− φc−1ψ−k(p)p−1) ·
ω−1
p α2

f |·|Qp
(pn)ζQp

(2)

ζQp(1)
· Ci

∏
q|Ci

(1 + q−1).

On the other hand, by [Hsi21, Lemma 3.6],

〈ρ(J∞tn)ϕf , ϕf̆ 〉 =
‖f◦‖2Γ0(N)E(f,Ad)

ζQ(2)[SL2(Z) : Γ0(N)]
·
ω−1
p α2

f |·|Qp
(pn)ζQp

(2)

ζQp
(1)

,

where E(f,Ad) = (1− χψ(1−c)k(p−1)p−1)(1− χψ(1−c)k(p)). By the minimal condi-
tion (min) of φ, the level of the newform f◦ = θ◦φ is minimal among its Dirichlet
twists. By [HT93, Theorem 7.1],

‖f◦‖2Γ0(N) = 2−(k+1)L(1, π1,Ad) ·N
∏
`|Ci

(1 + `−1) (N = CCi).

Put ψ− = ψ1−c. From the above equations, we deduce that
(3.12)

Ck(φc, φ) =
(
√
−1)kL(1, ψ−k)L(1, φc−1ψ−k)

2L(1, π1,Ad)
· (1− ψ

−k(p)p−1)(1− φc−1ψ−k(p)p−1)

(1− χψk−(p)−1p−1)(1− χψk−(p))
· 2

ζp(1− k)
.

By the functional equations of L-functions, one has

L(1, ψ−k)L(1, φc−1ψ−k) = ε(1, ψ−k)ε(1, χ−1ψ−k)L(0, ψk)L(0, χψk),

L(1, π1,Ad) = L(1, τK/Q)L(1, φ1−cψ(1−c)k)

=
√
dK
−1
ε(1, χψk−) · L(0, τK/Q)L(0, χψk−).

Since ψk is unramified everywhere and ψ−|A×Q = 1, we have

ε(1, ψ−k) =
√
dK
−1

(
√
−dK)k, ε(1, χψ−k) = ε(1, χ)(

√
−dKc)k,

ε(1, χψk−) = ε(1, χ).

It follows that

(3.13)
(
√
−1)kL(1, ψ−k)L(1, φc−1ψ−k)

L(1, π1,Ad)
=

L(0, ψk)L(0, χψk)

(
√
−1)kL(0, τK/Q)L(0, χψk−)

· (dKc)k.
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By the interpolation formulae of the Katz p-adic L-function in Proposition 3.4, we
find that
(3.14)
Lp(k, 0, χ)Lp(k, 0,1)

Lp(k,−k, χ)
=

1

2(
√
−1)k

L(0, χψk)L(0, ψk)

L(0, χψk−)

× (1− ψk(p−1)p−1)(1− χψk(p−1)p−1)(1− ψk(p))2

(1− χψk−(p−1)p−1)(1− χψk−(p))
.

Combining (3.12), (3.13) and (3.14), we obtain (3.9). �

Recall that ΛP is the localization of ΛK at the augmentation ideal P . Let h be
the class number of K and let $ ∈ K× be a generator of ph. Put

L (1) := −
logp$

h
=

logp$

h
6= 0.

Corollary 3.8. We have C(φc, φ)−1 ∈ PΛP . Let B(s) := εsp(C(φc, φ)−1). Then

d

ds
B(s)

∣∣∣
s=0

=
L′p(s,−s, χ)|s=0

L∗p(0, χ)
.

Proof. By Proposition 3.7,

(3.15) B(s) = Lp(s,−s, χ) ·
L(0, τK/Q)

2Lp(s, 0,1)L∗p(s, χ)
·
ζp(1− s)(1− εsp(Frp))

〈dKc〉s
.

By the residue formula of the p-adic zeta function,

ζp(1− s)(1− εsp(Frp))|s=0 = (p−1 − 1)L (1) 6= 0.

On the other hand, from Katz’s p-adic Kronecker limit formula [dS87, Theorem 5.2,
page 88] and the fact that L(0, τK/Q) = 2h/#(O×K), we deduce that

Lp(0, 0,1) = (1− p−1)
logp$

−1

#(O×K)
= (p−1 − 1)L (1) · 2−1L(0, τK/Q) 6= 0.

By (3.5) and the Brumer-Baker theorem, L∗p(0, χ) 6= 0 and B(0) = 0. We thus con-
clude from (3.15) that C(φc, φ)−1 ∈ PΛP and the desired formula of the derivative
B′(0). �

4. Galois cohomology classes and L -invariants

4.1. Cohomological interpretation of L -invariants. Let F = FracW. As in
the previous section, χ : Gal(K(c)/K) → F× is a non-trivial ring class character
unramified outside pdK with χ(p) = 1, and φ is a ray class character of conduc-
tor c with χ = φ1−c. For a finite set S of primes of OK , denote by H1

S(K,χ)
the subspace of cohomology classes unramified outside S. By the global Poitu-
Tate duality, it is known that H1

∅(K,χ) = H1
{p}(K,χ) = {0} and dimF H1(K,χ) =

dimF H1
{p,p}(K,χ) = 1 (cf. [BD21, Proposition 1.3]). Let locp : H1(K,χ)→ H1(Kp, χ) =

Hom(GKp
, F ) be the localization at p. With the embedding ιp : K ↪→ Qp, we iden-

tity Kp := K ⊗Qp ' Qp ⊕Qp by α⊗ x 7→ (ιp(α)x, ιp(α)x). Let

recKp : K×p = Q×p ⊕Q×p → CK
recK−→ GabK
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be the composition of the natural inclusion K×p ↪→ CK = K×\A×K and the reci-
procity law map recK . Therefore, for any κ ∈ H1(K,χ), we can identify locp(κ) ∈
Hom(GKp

,Qp) with an element in Hom(Q×p ,Qp) by

locp(κ)(a) = κ(recKp(1, a)) for a ∈ Q×p .

Lemma 4.1. Let κ be a non-zero class in H1(K,χ) and write

locp(κ) = x · ordp + y · logp .

Then y 6= 0, and
L (χ) =

x

y
.

Proof. First we note that y 6= 0 since H1
{p}(K,χ) = 0. Let locp(κ) = w·ordp+z·logp.

By the relation 〈locp(κ), locp(x)〉+〈locp(κ), locp(x)〉 = 0 for x = uχ or uχ
p
, we obtain

the equations

z · logp u
χ + y · logp(uχ) = 0;

z · logp u
χ
p

+ x · ordP(uχ
p
) + y · logp u

χ
p

= 0.

The lemma now follows. �

4.2. Construction of a cohomology classes. Let S be the set of prime factors
of pc. Let GK,S = Gal(KS/K), where KS is the maximal algebraic extension of
K unramified outside S. Let T⊥ ⊂ EndS⊥ be the image of the Hecke algebra
T = T(N,φ+τK/Q,ΛK) restricted to S⊥. Then T⊥ is a finite flat ΛK-algebra. Fix
a generator γ0 of ΓK,p. Then ΛK can be identified withWJXK and the augmentation
ideal P of ΛK is the principal ideal generated by X = γ0− 1. We use the argument
in [DDP11, Theorem 4.2] to construct nonzero cohomology classes in the following

Theorem 4.2. Let λ : T⊥ → ΛP /(X
n+2) be a ΛK-algebra homomorphism. Let

α : GKp
→ Λ×P be the unique unramified character such that α(Frp) = λ(Up).

Suppose that there exists a character Ψ̃ : GK,S → ΛP /(X
n+2) such that

(i) Ψ̃ ≡ 1 (mod X),
(ii) λ(T`) = φΨ̃(Frl) + φΨ̃(Frl) for all ` - p splits in K and
(iii) Ψ̃|GKp

≡ φ−1α − ηXn+1 (mod Xn+2) for some non-zero homomorphism
η : GKp

→ Qp.
Then there exists κ 6= 0 ∈ H1(K,χ) such that

locp(κ) =
φ−1α− Ψ̃|GKp

Xn+1

∣∣∣
X=0

= η.

Proof. Let Λ† ⊃ ΛP be the local ring of rigid analytic functions around X = 0, i.e.

Λ† =

{ ∞∑
n=0

anX
n ∈ F JXK

∣∣∣∣∣ there exist r > 0 such that lim
n→∞

|an| rn = 0

}
.

Let T† = T⊥⊗ΛK Λ† be a finite Λ†-algebra, and hence a finite product of henselian
local rings. Let I be the kernel of the map λ : T† → Λ†/(Xn+2). Let T : GQ,S →
T⊥ → T† be the pseudo character defined by T (Fr`) = T`. The assumption (ii)
implies that

T |GK,S ≡ φΨ̃ + φcΨ̃c (mod I).
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Since φ 6= φc, applying the theory of residually multiplicity free pseudo characters
[BC09, Theorem 1.4.4]) to T |GK,S , we obtain a continuous representation ρλ :

GK,S → GL2(FracT†) such that the image of ρλ(T†[GK,S ]) is a generalized matrix
algebra of the form

ρλ(T†[GK,S ]) =

(
T† t12

t21 T†

)
,

where tij are fractional T†-ideals in FracT† and t12t21 ⊂ I. Writing

ρλ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
for σ ∈ GK,S ,

then we have

a(σ) ≡ φΨ̃(σ) (mod I); d(σ) ≡ φΨ̃(cσc) (mod I).

Note that T†/I ' Λ†/(Xn+2) is a local ring. Let Q be the maximal ideal of T†

containing I. Let R = T†Q be the localization of T† at Q. Then R is a finite flat
and reduced Λ†-algebra since N is the tame conductor of θ◦φ. Put Rij := tij ⊗T† R.

By [HT94, Theorem 6.12], there exists
(
A B
C D

)
∈ GL2(FracR) such that(

a(σ) b(σ)
c(σ) d(σ)

)(
A B
C D

)
=

(
A B
C D

)(
α(σ) ∗

0 ∗

)
for all σ ∈ GKp

,

and hence

(4.1) C · b(σ) = A · (α(σ)− a(σ)) for σ ∈ GKp
.

Note that R12 is a faithful R-module. Otherwise writing R ⊗Λ† Frac Λ† = ⊕iLi as
a product of fields, we would have R12 ⊗R Li = 0 for some i, which implies that
there exists a Hida family F1 = Θφ1 of CM forms in SpecT⊥ for some ray class
character φ1 6= φ or φc whose specialization at some arithmetic point P ′ above P
agree with θ(p)

φ , which in turns suggests that φ1 + φc1 = φ + φc, and φ1 = φ or φc,
a contradiction.

Define the function K : GK,S → R12 by K (σ) = b(σ)/d(σ). For any R-
submodule J ⊃ QR12 of R12, the reduction of K modulo J

K := b/d (mod J) = φ−cb (mod J) : GK,S → R12/J

is a continuous one-cocycle in Z1(GK,S , χ ⊗ R12/J). We claim that if the class
[K ] ∈ H1(K,χ ⊗ R12/J) represented by K is zero, then R12 = J . We can write
b(σ) (mod J) = (φc(σ) − φ(σ))z for some z ∈ R12/J . Consider the ρλ(R[GK,S ])-
module (R12/J,R/Q)t. Then the line R(z, 1)t ⊂ (R12/J,R/Q)t is stable under the

action of ρλ(R[GK,S ]). On the other hand,
(

0 0
0 1

)
∈ ρλ(R[GK,S ]), so we find that

(0, 1)t ∈ R(z, 1)t. This implies z = 0 and b(σ) (mod J) is zero. Since R12 is the
R-module generated by {b(σ)}σ∈GK,S , we conclude R12 = J . In particular, this
shows that K (mod QR12) represents a non-zero class κ in H1(K,χ⊗R12/Q).

Let R′12 be the submodule of R12 generated by {bσ}σ∈GKp
and let J := QR12 +

R′12. Then K : GK → R12/J is a cocycle which is trivial at p, and [K ] ∈
H1
{p}(K,χ) = {0}. By the above claim, we find that J = R12 and hence R′12 = R12
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by Nakayama’s lemma. Then the assumption (iii) and (4.1) suggest that C ∈
(FracR)× and

R12 =
A

C
Xn+1R.

Since χ(p) = 1, φ = φc on GKp
, and it follows that for σ ∈ GKp

,

K (σ) (mod QR12) =
A

C
Xn+1η(σ) (mod

A

C
Xn+2R) = η(σ) (mod QR12).

Therefore, the non-zero class κ = [K (mod QR12)] ∈ H1(K,χ) enjoys the required
local description. This finishes the proof. �

Let Ψuniv : GK,S → Λ×K be the universal character in (2.2). By definition,
Ψ is unramified outside p. For each σ ∈ GK,S , we can write Ψuniv(σ) ≡ 1 +

ηp(σ)X (mod X2) for some ηp ∈ Hom(GabK,S ,Qp). By definition,

(4.2) εp(Ψuniv(recKp(u, 1))) = 〈u〉−1 for u ∈ Z×p .

Let v := εp(γ0) and put

ηp(σ) = ηp(cσc); η∗v = logp v · ηv, v = p or p.

Lemma 4.3. We have

locp(η∗p) = L (1) · ordp and locp(η∗p) = − logp−L (1) · ordp.

Proof. Write Ψs(σ) := εsp(Ψuniv(σ)) = εp(σ)−s, and then by definition we have

(4.3)
d

ds
Ψs(σ)|s=0 = ηp(σ) · logp v = η∗p(σ) (εsp(X) = vs − 1).

Recall that L (1) =
logp$

h , where h is the class number of K and $ ∈ K× with
ph = $OK . Evaluating both sides of (4.3) for σ = recKp(1, $), we obtain

h·η∗p(Frp) =
d

ds
Ψs(recKp(1, $))|s=0 =

d

ds
Ψs(recKp($−1, 1))|s=0 = logp$ = h·L (1).

Since η∗p is unramified at p,

locp(η∗p) = η∗p(Frp) · ordp = L (1) · ordp.

From (4.2) and (4.3), we find that

η∗p(recKp(1, a)) = η∗p(recKp(a, 1)) = − logp a for a ∈ Z×p .

On other hand, Ψs(recKp($, 1)) = Ψs(recKp(1, $−1)) = 1, so η∗p(recKp(1, $)) =

η∗p(recKp($, 1)) = 0. These equations imply that

locp(η∗p)(a) = η∗p(recKp(1, a)) = − logp(a)−L (1) · ordp(a) for a ∈ Q×p . �

Theorem 4.4. We have the following formula for L -invariant:

L (χ) = 2L (1)−
L′p(s,−s, χ)|s=0

L∗p(0, χ)
.

Proof. Let B(s) = εsp(C(φc, φ)−1) be as in Corollary 3.8. In view of Lemma 4.1,
Lemma 4.3 and the formula Corollary 3.8, it suffices to construct a nonzero element
κ ∈ H1(K,χ) such that locp(κ) is a nonzero multiple of
(4.4)

locp(η∗p)− locp(η∗p)− d

ds
B(s)

∣∣∣
s=0
· ordp = logp +

(
2L (1)− d

ds
B(s)

∣∣∣
s=0

)
· ordp.
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We shall use Theorem 4.2 and adapt the calculations in [Ven15, §3] to construct
such a class. Recall that the Fourier expansion

θφ =

∞∑
n=1

a(n,θφ)qn

of the Λ-adic CM form θφ is given by

(4.5) a(`,θφ) =


φΨuniv(Frl) + φΨuniv(Frl) if `OK = ll is split,
0 if ` is inert,
φΨuniv(Frl) if ` | dKCs and l | (dKcs, `).

The CM form θφ is a Λ-adic newform of tame level N = dKCsC
2
i , so we have

(4.6) T`θφ = a(`,θφ)θφ if ` - N, U`θφ = a(`,θφ)θφ if ` | N.

Consider the Λ-adic cusp form H ∈ S⊥ constructed in (3.8):

H = − 1

A
θφ −

1

B
θφc + eord(θ◦φGC), where A = C(φ, φc)−1 and B = C(φc, φ)−1.

Put
b1 :=

B

X

∣∣∣
X=0

=
1

logp v
· d
ds
B(s)

∣∣∣
s=0

.

There are three cases.

Case (i): ordP (A+B) = ordP (A). Define

H1 := (−B) ·H (mod X2) =
B

A
· θφ + θφc −B · eord(GCθ◦φ) (mod X2).

Let F =W[ 1
p ]. Put

u1 =
A

A+B

∣∣∣
X=0

∈ F×.

Then a(1,H1) ≡ u−1
1 (mod X). Define the additive homomorphism ψ1 : GK,S → F

by
ψ1 := (1− u1)ηp + u1ηp

and the character Ψ1 : GK,S → ΛP /(X
2) by

Ψ1 = 1 + ψ1X (mod X2).

By (4.6), GC ≡ 1 (mod X) (3.15) and the equations

Xθφ ≡ Xθφc ≡ Xθ(p)
φ (mod X2), XH1 = u−1

1 Xθ
(p)
φ (mod X2);(4.7)

Upθ
◦
φ = φ(p)θ◦φ + φ(p)θ

(p)
φ (φ(p) = φ(p)),(4.8)

we verify that H1 is an eigenform modulo X2 with

T`H1 =(φΨ1(Frl) + φΨ1(Frl))H1 if ` - pN and `OK = ll is split,

UpH1 =φ(p)(1 +X(ηp(Frp)− u1b1))H1.

Since H ∈ S⊥, this induces a homomorphism λH : T⊥ → ΛP /(X
2) defined by

λH (t) := a(1, t ·H1)/a(1,H1) = a(1, t ·H )/a(1,H ) (mod X2)

with

λH (T`) = φΨ1(Frl)+φΨ1(Frl) if `OK = ll is split, φ(p)−1λH (Up) = 1+X(ηp(Frp)−u1b1).
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By Theorem 4.2 with Ψ̃ = Ψ1 and n = 0, we find that there exists a nonzero class
κ ∈ H1(K,χ) with

locp(κ) = locp(ηp)− u1b1 · ordp − locp(ψ1) = u1(locp(ηp)− locp(ηp)− b1 · ordp).

Case (ii): ordP (A+B) > ordP (B) = ordP (A). In this case, H1 is not an eigenform
of the Hecke algebra T but a generalized eigenform. Put

u2 =
B

A

∣∣∣
X=0

∈ F×.

Define the additive homomorphism ψ2 : GK,S → F by

ψ2 := u2ηp + ηp

and define the character Ψ2 : GK,S → ΛK/(X
2) by Ψ2 = 1 + Xψ2. Using the

relations (4.6), (4.7) and (4.8), we find that the Hecke algebra T stabilizes the
two-dimensional subspace spanned by Xθ(p)

φ and H1. In addition, we have

T`H1 = (φ(l) + φ(l))H1 + (φ(l)ψ2(Frl) + φ(l)ψ2(Frl))Xθ
(p)
φ ,

T`Xθ
(p)
φ = (φ(l) + φ(l))Xθ

(p)
φ if ` - pN and `OK = ll is split,

UpH1 = φ(p)H1 + φ(p)((1 + u2)ηp(Frp)− b1) ·Xθ(p)
φ

UpXθ
(p)
φ = φ(p)Xθ

(p)
φ .

This yields a homomorphism λH : T→ U ⊂ M2(Qp), where U =

{(
a b
0 a

) ∣∣∣∣ a, b ∈ W}.
It is clear that λH factors through T⊥, and with the identification ΛK/(X

2)
∼→

U, X 7→
(

0 1
0 0

)
, we obtain the homomorphism λH : T⊥ → ΛP /(X

2) with

λH (T`) = φΨ2(Frl) + φΨ2(Frl) if ` - pN and `OK = ll is split,

φ(p)−1λH (Up) = 1 +X
(
(1 + u2)ηp(Frp)− b1

)
.

It follows from Theorem 4.2 that

locp(κ) = (1 + u2) · locp(ηp)− b1 · ordp − locp(ψ2) = locp(ηp)− locp(ηp)− b1 · ordp.

Case (iii): ordP (A) > ordP (B) > 0. Let n = ordP (A/B) and

u3 =
A

BXn

∣∣∣
X=0

∈ F×.

Let

H2 := (−A)H (mod Xn+2) = θφ +
A

B
· θφc −A · eord(θ◦φGC) (mod Xn+2).

Then a(1,H2) ≡ 1 (mod X). Define the additive homomorphism ψ3 : GK → F by

ψ3 = u3(ηp − χ−1ηp),

and define the character Ψ3 : GK,S → ΛP /(X
n+2) by

Ψ3 = Ψuniv + ψ3X
n+1 (mod Xn+2).
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Using the equations (4.6), (4.8),
A

B
H2X ≡

A

B
θφX ≡

A

B
θ

(p)
φ X ≡ A

B
θφcX (mod Xn+2);(

1− A

B

)
H2X = θφX (mod Xn+2),

we can verify that H2 is an eigenform modulo Xn+2 and

T`H2 = (φΨ3(Frl) + φΨ3(Frl))H2 if ` - pN and `OK = ll is split in K,

UpH2 = φ(p)
(
Ψuniv(Frp)− b1u3

)
Xn+1H2 (mod Xn+2).

Likewise we obtain a homomorphism λH : T⊥ → ΛP /(X
n+2) defined by λH (t) =

a(1, t ·H2)/a(1,H2) with

λH (T`) = φΨ3(Frl) + φΨ3(Frl) if `OK = ll is split,

φ(p)−1λH (Up) = (Ψuniv(Frp)− b1u3)Xn+1.

It follows from Theorem 4.2 that

locp(κ) = −b1u3 · ordp − locp(ψ3) = u3(locp(ηp)− locp(ηp)− b1 · ordp).

In each cases, we see immediately that locp(κ) is a multiple of the function in (4.4),
and the theorem follows. �

4.3. Proof of Theorem 1. We are ready to prove Theorem 1. By Remark 3.5,

L′p(0, χ) =
Lp(s, χ)

s

∣∣∣
t=0

= L′p(s, s, χ)|s=0.

By Theorem 4.4 and Corollary 3.8, we find that the cyclotomic derivative L′p(0, χ)
equals

L′p(s, s, χ)|s=0 = 2L′p(s, 0, χ)|s=0 − L′p(s,−s, χ)|s=0

= 2L (1) · L∗p(0, χ)− L′p(s,−s, χ)|s=0

= L∗p(0, χ) ·L (χ).

Now Theorem 1 follows from (3.5).

5. Comparison of L -invariants

5.1. Benois’ L -invariant. Here we briefly recall the definition of L -invariant by
Benois [Ben11, Ben14, BH20]. Let p be an odd prime. Let ε = (ζpn)n≥0 be primitive
pn-th roots of unity such that ζppn+1 = ζpn for any n ≥ 0. We put Kn = Qp(ζpn)

and K∞ =
⋃
n≥0Kn. Denote Γ = Gal(K∞/Qp) and decompose Γ = ∆×Γ1, where

Γ1 = Gal(K∞/K1). Let χcyc : Γ → Z×p be the cyclotomic character. Let E/Qp be
a finite extension. For r ∈ [0, 1), we set

R
(r)
E =

{
f(x) =

∑
n∈Z

anX
n

∣∣∣∣∣ an ∈ E, f(X) converges on {X ∈ Cp | r ≤ |X|p < 1}

}
.

Then the Robba ring with coefficients in E is defined by RE =
⋃

0≤r<1 R
(r)
E . The

Robba ring RE has actions of Γ and a Frobenius operator ϕ.
For a (ϕ,Γ)-module D over the Robba ring RE , we put Dcris(D) = (D[1/t])Γ,

where t =
∑∞
n=1

Xn

n . For each p-adic representation V of GQp = Gal(Qp/Qp), we
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can associate a (ϕ,Γ)-module D†rig(V ). Fix a generator γ1 ∈ Γ1. For any (ϕ,Γ)-
module D, let H i(D) be the cohomology of Fontaine-Herr complex

Cϕ,γ1 : D∆ d0−→ D∆ ⊕ D∆ d1−→ D∆,

where d0(x) = ((ϕ − 1)x, (γ1 − 1)x) and d1(y, z) = (γ1 − 1)y − (ϕ − 1)z. Let
D∗(χcyc) = HomRE

(D,RE(χcyc)) be the Tate dual. For a (ϕ,Γ)-module D, define

H 1
f (D) =

{
α ∈ H 1(D)

∣∣Dα is crystalline
}
,

where Dα is the extension class associated to α.
From now on, we consider the global situation. Fix a finite set of primes S

containing p and denote by QS/Q the maximal Galois extension of Q unramified
outside S ∪ {∞}. We set GQ,S = Gal(QS/Q). Let V be a p-adic representation
of GQ = Gal(Q/Q) unramified outside S with coefficient in a p-adic field E. Let
H 1
f (Q, V ) be the Bloch-Kato Selmer group defined by

H 1
f (Q, V ) = Ker

[
H 1(GQ,S , V )→

⊕
v∈S

H 1(Qv, V )

H 1
f (Qv, V )

]
.

We also denote the relaxed Selmer group by

H 1
f,{p}(Q, V ) = Ker

H 1(GQ,S , V )→
⊕

v∈Sr{p}

H 1(Qv, V )

H 1
f (Qv, V )

 .
We assume the following conditions:
— C1) H 0(GQ,S , V ) = H 0(GQ,S , V

∗(1)) = 0.
— C2) V is crystalline at p and Dcris(V )ϕ=1 = 0.
— C3) The action of ϕ is semisimple on Dcris(V ) at p−1.
— C4) H 1

f (Q, V ∗(1)) = 0.
— C5) locp : H 1

f (Q, V )→ H 1
f (Qp, V ) is injective.

Definition 5.1. A ϕ-submodule D of Dcris(V ) is regular if D ∩ Fil0 Dcris(V ) = 0
and rV,D : H 1

f (Q, V )→ Dcris(V )/(Fil0 Dcris(V )+D) is an isomorphism, where rV,D
is the map induced by rV = logV ◦locp : H 1

f (Q, V ) → Dcris(V )/Fil0 Dcris(V ) and
logV is the Bloch-Kato logarithm.

Let D ⊂ Dcris(V ) be a regular submodule. Then we can decompose D0 = D into
D = D−1⊕Dϕ=p−1

with Dϕ=p−1

−1 = 0. Let F0D
†
rig(V ) and F−1D

†
rig(V ) be the (ϕ,Γ)-

modules associated to D0 and D−1 by Berger’s theory. We set W = gr0D
†
rig(V ).

Assume that all the Hodge-Tate weights are non-negative. Then

iW : Dcris(W )⊕Dcris(W )→ H 1(W )

defined by (x, y) 7→ cl(−x, y logχcyc) is an isomorphism ([Ben11, Proposition 1.5.9]).
Let iW,f and iW,c denote the restriction of iW on the first and second direct
summand respectively. Then we have Im(iW,f ) = H 1

f (W ) and a decomposition
H 1(W ) = H 1

f (W )⊕H 1
c (W ), where H 1

c (W ) = Im(iW,c).
For the dual module W ∗(χcyc), let

iW∗(χcyc) : Dcris(W
∗(χcyc))⊕Dcris(W

∗(χcyc))→ H 1(W ∗(χcyc))
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be the unique linear map such that iW∗(χcyc)(α, β) ∪ iW (x, y) = [β, x]W − [α, y]W ,
where [ , ]W : Dcris(W

∗(χcyc)) × Dcris(W ) → E denotes the canonical pairing in-
duced byW ∗(χcyc)×W → RE(χcyc). Similarly, we can define iW∗(χcyc),f , iW∗(χcyc),c

and H 1
c (W ∗(χcyc)) using the map iW∗(χcyc).

Let

κD : H 1
f,{p}(Q, V )→ H 1(Qp, V )

H 1
f (F0D

†
rig(V ))

be the composition of the map locp : H 1
f,{p}(Q, V )→ H 1(Qp, V ) and the canonical

projection. Then κD is an isomorphism ([Ben14, Lemma 3.1.4]). We denote

H 1(V,D) = κ−1
D (H 1(F0D

†
rig(V ))/H 1

f (F0D
†
rig(V ))).

Then the composition of the map H 1(V,D) → H 1(F0D
†
rig(V )) → H 1(W ) induces

an isomorphism H 1(V,D) ' H 1(W )/H 1
f (W ). We consider the following diagram:

Dcris(W )
iW,f // H 1

f (W )

H 1(V,D)

ρW,f

OO

//

ρW,c

��

H 1(W )

pW,f

OO

pW,c

��
Dcris(W )

iW,c // H 1
c (W ),

where pW,f and pW,c are the canonical projections, and ρW,f and ρW,c are defined as
the unique maps making this diagram commute. Note that ρW,c is an isomorphism.

Now we define the L -invariant associated to V and D by

L (V,D) = det
(
ρW,f ◦ ρ−1

W,c

∣∣∣Dcris(W )
)
.

Remark. In [Ben11], the choice of the sign of the L -invariant is slightly different
from [Ben14, BH20]. Here we follow the definition given in [Ben14, BH20].

Next we consider the dual construction of the L -invariant. Let D be a regular
submodule of Dcris(V ) and put

D⊥ = D⊥0 = HomE(Dcris(V )/D,Dcris(E(1)))

and
D⊥1 = HomE(Dcris(V )/D−1,Dcris(E(1))).

We denote by F0D
†
rig(V ∗(1)) (resp. F1D

†
rig(V ∗(1))) the (ϕ,Γ)-submodule ofD†rig(V ∗(1))

associated to D⊥0 (resp. D⊥1 ). Then we have a short exact sequence

0→ F1D
†
rig(V ∗(1))→ F0D

†
rig(V ∗(1))→W ∗(χcyc)→ 0.

Let

κD⊥ : H 1
f (Q, V ∗(1))→ H 1(Qp, V ∗(1))

H 1
f (Qp, V ∗(1)) + H 1(F0D

†
rig(V ∗(1)))

be the map obtained by the composition of locp with the canonical projection. We
set

H 1(V ∗(1), D⊥) = κ−1
D⊥

(
H 1(F1D

†
rig(V ∗(1)))/(H 1

f (Qp, V ∗(1)) + H 1(F0D
†
rig(V ∗(1))))

)
.
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Then the composition of the maps

H 1(V ∗(1), D⊥)→ H 1(F1D
†
rig(V ∗(1)))→ H 1(W ∗(χcyc))

induces an isomorphism H 1(V ∗(1), D⊥) ' H 1(W ∗(χcyc))/H 1
f (W ∗(χcyc)). We con-

sider the following diagram:

Dcris(W
∗(χcyc))

iW∗(χcyc),f // H 1
f (W ∗(χcyc))

H 1(V ∗(1), D⊥)

ρW∗(χcyc),f

OO

//

ρW∗(χcyc),c

��

H 1(W ∗(χcyc))

pW∗(χcyc),f

OO

pW∗(χcyc),c

��
Dcris(W

∗(χcyc))
iW∗(χcyc),c // H 1

c (W ∗(χcyc)),

where pW∗(χcyc),f and pW∗(χcyc),c are the canonical projections, and ρW∗(χcyc),f and
ρW∗(χcyc),c are defined as the unique maps making this diagram commute. Note
that ρW∗(χcyc),c is an isomorphism.

We define the L -invariant associated to V ∗(1) and D⊥ by

L (V ∗(1), D⊥) = (−1)e det
(
ρW∗(χcyc),f ◦ ρ−1

W∗(χcyc),c

∣∣∣Dcris(W
∗(χcyc))

)
,

where e = dimE Dcris(W
∗(χcyc)).

Proposition 5.2. L (V ∗(1), D⊥) = (−1)eL (V,D).

Proof. See [Ben11, Proposition 2.2.7] and [BH20, Proposition 2.3.8]. �

Using this L -invariant, Benois formulated the exceptional zero conjecture for
general crystalline case including non-critical range.

5.2. Comparison of L -invariants. Let K be an imaginary quadratic field and
p a prime such that pOK = pp. Let χ : Gal(H/K) → Q×p be a non-trivial ring
class character. Let E be a p-adic field containing all of the values of χ. Assume
that χ is unramified at places above p and χ(p) = 1. Now we consider the case
V = (IndQ

K χ)∗(εcyc). In this case, we have V ∗(1) = IndQ
K χ and it is known that

H 1
f (Q, V ) = H 1

f (K,χ−1(1)) = (O×H ⊗ E)[χ], H 1
f,{p}(Q, V ) = H 1

{p,p}(K,χ
−1(1)) =

(OH [1/p]× ⊗E)[χ] and H 1
f (Q, V ∗(1)) = H 1

f (K,χ) = 0. For V = (IndQ
K χ)∗(1), it is

easy to see that V satisfies the conditions C1) – C5).
Denote

V + = {v ∈ V |GK | σ(v) = χ−1(σ)εcyc(σ)v for all σ ∈ GK}

and
V − = {v ∈ V |GK | σ(v) = χ−1(cσc)εcyc(σ)v for all σ ∈ GK}.

Since χ 6= χc, we have a canonical decomposition V |GK = V + ⊕ V −. Put Vp =
V +|GKp

and Vp = V −|GKp
. Then the natural map ι : V |Qp → Vp ⊕ Vp becomes

an isomorphism. Hence, H 1(Qp, V ) = H 1(Qp, (IndQ
K χ)∗(1)) can be identified with

H 1(Kp, χ
−1(1))⊕H 1(Kp, χ

−1(1)).

Definition 5.3. We choose a regular submoduleD ofDcris(V ) asD = Dcris(ι
−1(Vp)).
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Then H 1(F0D
†
rig(V )) is identified with H 1(Kp, χ

−1(1)) under the isomorphism
H 1(D†rig(V )) ' H 1(Qp, V ). Here we recall that F0D

†
rig(V ) is the (ϕ,Γ)-submodule

of D†rig(V ) associated toD. This property also characterizes the choice of the regular
submodule D. Then the modified Euler factor associated to (V,D) is given by

E(V,D) = det(1−p−1ϕ−1|D) det(1−ϕ|Dcris(V )/D) = (1−χ(p))(1−χ−1(p)p−1) = 0

and

E+(V,D) = det(1− p−1ϕ−1|D−1) det(1− p−1ϕ−1|D⊥) = (1− χ(p)p−1),

where E+(V,D) is the modified Euler factor which is used in the formula of the
exceptional zero conjecture ([Ben14, Conjecture 4]). Note that E+(V,D) coincides
with the Euler factor appeared in Conjecture 1. Therefore Conjecture 1 is compat-
ible with the exceptional zero conjecture formulated by Benois.

Proposition 5.4. We have L (V,D) = −L (χ), where L (χ) is the L -invariant
defined in (1.4).

Proof. In this case, F0D
†
rig(V ) ' RE(|x|x) and F−1D

†
rig(V ) = 0, where we write x

for the character given by the identity map and |x| for |x| = pvp(x). Hence we have
W = gr0 D

†
rig(V ) ' RE(|x|x) and H 1(W ) ' H 1(RE(|x|x)) ' H 1(RE(χcyc)) '

H 1(Qp, E(1)).
Define αW = iW,f (1) and βW = iW,c(1). Let κ : Q×p ⊗E → H 1(Qp, E(1)) be the

Kummer map. Then we have pW,f (κ(u)) = logp u·αW and pW,c(κ(u)) = ordp(u)·βW
for u ∈ Q×p ⊗ E (see [Ben11, 1.5.6 and 1.5.10] for details). Since H 1

f,{p}(Q, V ) =

(OH [1/p]× ⊗ E)[χ] and H 1(F0D
†
rig(V )) = H 1(Kp, χ

∗(1)), one has

H 1(V,D) = κ−1
D (H 1(F0D

†
rig(V ))/H 1

f (F0D
†
rig(V )))

= Ker
[
H 1
f,{p}(Q, V )→ H 1(Kp, χ

∗(1))
]

= Ker
[
(OH [1/p]× ⊗ E)[χ]→ H×p ⊗ E

]
.

In this case, H 1(V,D) is an one-dimensional E-vector space.
Let ordp and logp be the elements in H 1(Kp,Qp) = Hom(GKp

,Qp) correspond-
ing to ordp and logp under the identification Hom(GKp

,Qp) = Hom(GQp ,Qp). They
can be viewed as maps ordp, logp : K×

p
→ Qp via the geometrically normalized reci-

procity law map recp : K×
p
→ GKp

.
We fix a non-zero element u in the one-dimensional E-vector space H 1(V,D).

Then we have

L (V,D) =
logp(u)

ordp(u)

by the definition. This shows L (V,D) = −L (χ). �

Next we compute the dual construction. In this case, it is easy to see

H 1(F1D
†
rig(V ∗(1))) = H 1(D†rig(V ∗(1))) = H 1(Qp, V ∗(1)) = H 1(Kp, χ)⊕H 1(Kp, χ),

H 1(F0D
†
rig(V ∗(1))) = H 1(Kp, χ)

and
H 1
f (Qp, V ∗(1)) = H 1

f (Kp, χ)⊕H 1
f (Kp, χ) = 0.
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Hence we have

H 1(V ∗(1), D⊥) = H 1
f,{p}(Q, V

∗(1)) = H 1
f,{p,p}(K,χ) = H 1(K,χ),

which is an one-dimensional E-vector space. Moreover

H 1(W ∗(χcyc)) ' H 1(F1D
†
rig(V ∗(1)))/H 1(F0D

†
rig(V ∗(1))) ' H 1(Kp, χ) ' H 1(Qp, E).

Define αW∗(χcyc) = iW∗(χcyc),f (1) and βW∗(χcyc) = iW∗(χcyc),c(1). Under the identi-
fication

H 1(W ∗(χcyc)) ' H 1(RE) ' H 1(Qp, E),

one has αW∗(χcyc) = − ordp and βW∗(χcyc) = logp (see [Ben11, 1.5.6 and 1.5.10]).
Note that our normalization of the reciprocity law map is different from Benois
[Ben11, Ben14, BH20]. More precisely, we have ordp(Frp) = 1, where Frp is the
geometric Frobenius. This gives the difference of the sign with Benois’ description.

Fix a non-zero element η ∈ H 1(V ∗(1), D⊥) = H 1(K,χ). Then we can write

κD⊥(η) = x · ordp +y · logp = (−x) · (− ordp) + y · logp

in H 1(W ∗(χcyc)) ' H 1(Kp, χ) and we have L (V ∗(1), D⊥) = (−1)e
(
−x
y

)
, where

e = dimE D
ϕ=p−1

= 1. By Proposition 5.2, we get L (V ∗(1), D⊥) = −L (V,D) =
L (χ) again. Therefore this gives an alternative proof of Lemma 4.1.

References

[BC09] J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups,
Astérisque (2009), no. 324, xii+314.

[BD21] Betina and Dimitrov, Geometry of the eigencurve at CM points and trivial zeros of Katz
p-adic L-functions, preprint, arXiv:1907.09422.

[Ben11] Denis Benois, A generalization of Greenberg’s L -invariant, Amer. J. Math. 133 (2011),
no. 6, 1573–1632. MR 2863371

[Ben14] , On extra zeros of p-adic L-functions: the crystalline case, Iwasawa theory
2012, Contrib. Math. Comput. Sci., vol. 7, Springer, Heidelberg, 2014, pp. 65–133.
MR 3586811

[BH20] Denis Benois and Stéphane Horte, On extra zeros of p-adic Rankin-Selberg L-functions,
preprint, arXiv:2009.01096.

[BS19] Kâzim Büyükboduk and Ryotaro Sakamoto, On the non-critial exceptional zeros of Katz
p-adic L-functions for CM fields, preprint, arXiv:1904.01644.

[Bum97] D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced
Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997.

[CH20] Shih-Yu Chen and Ming-Lun Hsieh, On primitive p-adic Rankin-Selberg L-functions,
Development of Iwasawa theory - The Centennial of K. Iwasawa’s Birth, Adv. Stud.
Pure Math., vol. 86, 2020, pp. 195–242.

[DDP11] Samit Dasgupta, Henri Darmon, and Robert Pollack, Hilbert modular forms and the
Gross-Stark conjecture, Ann. of Math. (2) 174 (2011), no. 1, 439–484. MR 2811604

[dS87] E. de Shalit, Iwasawa theory of elliptic curves with complex multiplication, Perspectives
in Mathematics, vol. 3, Academic Press Inc., Boston, MA, 1987, p-adic L functions.

[Gre94] Ralph Greenberg, Trivial zeros of p-adic L-functions, p-adic monodromy and the Birch
and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer.
Math. Soc., Providence, RI, 1994, pp. 149–174. MR 1279608

[Hid06] H. Hida, Hilbert modular forms and Iwasawa theory, Oxford Mathematical Monographs,
The Clarendon Press Oxford University Press, Oxford, 2006.



28 M. CHIDA AND M.-L. HSIEH

[Hsi21] Ming-Lun Hsieh, Hida families and p-adic triple product L-functions, American Journal
of Mathematics 143 (2021), no. 2, 411–532.

[HT91] H. Hida and J. Tilouine, Katz p-adic L-functions, congruence modules and deformation
of Galois representations, L-functions and arithmetic (Durham, 1989), London Math.
Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 271–293.

[HT93] , Anti-cyclotomic Katz p-adic L-functions and congruence modules, Ann. Sci.
École Norm. Sup. (4) 26 (1993), no. 2, 189–259.

[HT94] , On the anticyclotomic main conjecture for CM fields, Invent. Math. 117 (1994),
no. 1, 89–147.

[Jac72] H. Jacquet, Automorphic forms on GL(2). Part II, Lecture Notes in Mathematics, Vol.
278, Springer-Verlag, Berlin, 1972.

[Kat78] N. Katz, p-adic L-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199–297.

[PR95] B. Perrin-Riou, Fonctions L p-adiques des représentations p-adiques, Astérisque (1995),
no. 229, 198.

[Tat79] J. Tate, Number theoretic background, Automorphic forms, representations and L-
functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2,
Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26.

[Ven15] Kevin Ventullo, On the rank one abelian Gross-Stark conjecture, Comment. Math. Helv.
90 (2015), no. 4, 939–963. MR 3433283

[Wil88] A. Wiles,On ordinary λ-adic representations associated to modular forms, Invent. Math.
94 (1988), no. 3, 529–573. MR 969243

Tokyo Denki University, Tokyo 120-8551, Japan.
E-mail address: chida@mail.dendai.ac.jp

Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan
E-mail address: mlhsieh@math.sinica.edu.tw


	1. Introduction
	2. Ordinary -adic CM forms
	3. The p-adic Rankin-Selberg convolutions
	4. Galois cohomology classes and L-invariants
	5. Comparison of L-invariants
	References

