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Abstract. Let E be an elliptic curve over the rationals, and suppose that L(E, s) has sign
+1 in its functional equation and vanishes at s = 1. Let p > 3 be a prime of good ordinary
reduction for E. A construction of Darmon–Rotger attaches to E, and an auxiliary weight one
cuspidal eigenform g, a Selmer class κp ∈ Sel(Q, VpE). Assuming that L(E, ad0(g), 1) 6= 0,
they conjectured that the following are equivalent: (1) κp 6= 0, (2) dimQpSel(Q, VpE) = 2.

In this paper we prove the Darmon–Rotger conjecture when #Ш(E/Q)[p∞] <∞ (in fact,
a weaker condition suffices) and g has CM. The key new ingredient in the proof is a formula
for the leading term of a p-adic L-function attached to E in terms of derived p-adic heights,
which allows us to realize κp as an explicit nonzero multiple of a p-adic regulator constructed
from a Mordell–Weil basis (P,Q) of E(Q)⊗Q.
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1. Introduction

Let E be an elliptic curve over Q (hence modular, [Wil95, TW95, BCDT01]) with associated
L-function L(E, s). In the late 1980s, a major advance towards the Birch and Swinnerton-Dyer
conjecture was the proof, by Gross–Zagier and Kolyvagin, of the implication

ords=1L(E, s) = 1 =⇒ rankZE(Q) = 1 and #Ш(E/Q) <∞. (1.1)

The proof of (1.1) resorts to choosing an auxiliary imaginary quadratic field K/Q such that
ords=1L(E/K, s) = 1 and for which a Heegner point yK ∈ E(Q) can be constructed using the
theory of complex multiplication. By the Gross–Zagier formula [GZ86], the non-vanishing of
L′(E/K, 1) implies that yK has infinite order, and the proof of (1.1) is reduced to the proof
of the implication

yK /∈ E(Q)tors
[Kol88]
=⇒ rankZE(Q) = 1 and #Ш(E/Q) <∞, (1.2)

which was a celebrated theorem by Kolyvagin [Kol88].
A more recent major advance towards the Birch and Swinnerton-Dyer conjecture arises from

the works of Kato [Kat04], Skinner–Urban [SU14], Xin Wan [Wan20], and Skinner [Ski20] on
the Iwasawa main conjectures for elliptic modular forms, which in particular combine to yield
a proof of a p-converse to (1.2):

rankZE(Q) = 1 and #Ш(E/Q)[p∞] <∞ [Ski20]
=⇒ yK /∈ E(Q)tors (1.3)

for certain primes p of good ordinary reduction for E. (A slightly different proof of (1.3) was
independently found by W. Zhang [Zha14].) When combined with the Gross–Zagier formula,
(1.3) yields a p-converse to the Gross–Zagier–Kolyvagin theorem (1.1).

It is natural to ask about the extension of these results to elliptic curves E/Q of rank r > 1.
As a modest step in this direction, in this paper we prove certain analogues of (1.2) and (1.3)
in rank 2, with yK replaced by a generalized Kato class

κp ∈ Sel(Q, VpE)

introduced by Darmon–Rotger, [DR17, DR16]. Here Sel(Q, VpE) ⊂ H1(Q, VpE) is the p-adic
Selmer group fitting into the exact sequence

0→ E(Q)⊗Z Qp → Sel(Q, VpE)→ TpШ(E/Q)⊗Zp Qp → 0,

where TpШ(E/Q) is the p-adic Tate module of the Tate–Shafarevich group Ш(E/Q).

1.1. The Darmon–Rotger conjecture. We begin by briefly recalling the construction of
κp by Darmon–Rotger. One starts by associating to the following data:

• a triple of eigenforms (f, g, h) ∈ S2(Γ0(Nf ))×S1(Γ0(Ng), χ)×S1(Γ0(Nh), χ̄) of weights
(2, 1, 1) and level prime-to-p with

gcd(Nf , NgNh) = 1, (1.4)

• a choice of roots γ ∈ {αg, βg} and δ ∈ {αh, βh} of the Hecke polynomials of g and h
at p, respectively,

a global cohomology class

κγ,δ(f, g, h) ∈ H1(Q, Vfgh),
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where Vfgh = Vp(f)⊗Vp(g)⊗Vp(h) is the tensor product of the p-adic Galois representations

associated to f , g and h. Letting g[ and h[ be the p-stabilizations of g and h with Up-eigenvalue
γ and δ, respectively, this is defined as the p-adic limit

κγ,δ(f, g, h) := lim
`→1

κ(f, g`,h`), (1.5)

where (g`,h`) ranges over the classical weight ` > 2 specializations of Hida families g and h

passing through g[ and h[, respectively, in weight 1, and κ(f,h`,h`) is obtained from the p-adic
étale Abel–Jacobi image of generalized Gross–Kudla–Schoen diagonal cycles, [GK92, GS95],
on a triple product of Kuga–Sato varieties fibered over modular curves.

Remark 1.1. Under assumption (1.4) on the levels, the sign in the functional equation for the
triple product L-series L(s, f⊗g`⊗h`) is −1 for all ` > 2; in particular, L(1, f⊗g`⊗h`) = 0,
and by the Gross–Zagier formula for diagonal cycles (proved in [YZZ12] for ` = 2), the classes
κ(f, g`,h`) should be non-trivial precisely when L′(1, f⊗g`⊗h`) 6= 0. On the other hand, the
global root number of L(s, f ⊗ g ⊗ h) is +1, and it is precisely this sign-change phenomenon
between weight ` > 2 and ` = 1 that makes it possible for the p-adic limit construction (1.5)
to yield interesting cohomology classes in situations of even analytic rank; in fact, as we recall
below, classes that are crystalline at p precisely when ords=1L(s, f ⊗ g ⊗ h) > 2.

Assuming p > 3 is a prime of good ordinary reduction for f , the explicit reciprocity law of
[DR17] yields a formula of the form

exp∗p(κγ,δ(f, g, h)) = L(1, f ⊗ g ⊗ h) · (nonzero constant), (1.6)

where exp∗p : H1(Q, Vfgh)→ Qp is the composition of the restriction map Locp : H1(Q, Vfgh)→
H1(Qp, Vfgh) with the Bloch–Kato dual exponential map (paired against a differential attached
to (f, g, h)). In particular, the class κγ,δ(f, g, h) is crystalline at p, and therefore lands in the
Bloch–Kato Selmer group Sel(Q, Vfgh) ⊂ H1(Q, Vfgh), precisely when L(s, f ⊗g⊗h) vanishes
at s = 1.

With the different choices for γ and δ, one thus obtains up to four a priori distinct classes
κγ,δ(f, g, h) ∈ Sel(Q, Vfgh) whenever L(1, f ⊗ g ⊗ h) = 0, which Darmon–Rotger conjectured
to span a non-trivial subspace of Sel(Q, Vfgh) if and only if Sel(Q, Vfgh) is two-dimensional.
In particular, this construction of κγ,δ(f, g, h) yields Selmer classes with a bearing on the
arithmetic of elliptic curves E/Q by taking f to be the newform associated to E, and h = g∗

to be the dual of g, so that the triple tensor product Vfgh decomposes as

Vfgh ' VpE ⊕
(
VpE ⊗ ad0Vp(g)

)
, (1.7)

where ad0Vp(g) is the three-dimensional GQ-representation on the space of trace zero endo-
morphisms of Vp(g). Correspondingly, L(s, f ⊗ g ⊗ h) factors as

L(s, f ⊗ g ⊗ h) = L(E, s) · L(E, ad0(g), s).

In particular, by (1.6), whenever L(E, 1) = 0 the above construction yields the four generalized
Kato classes

καg ,α−1
g

(f, g, g∗), καg ,β−1
g

(f, g, g∗), κβg ,α−1
g

(f, g, g∗), κβg ,β−1
g

(f, g, g∗) (1.8)

in the Selmer group

Sel(Q, Vfgh) ' Sel(Q, VpE)⊕ Sel(Q, VpE ⊗ ad0Vp(g)).

Assuming that L(E, ad0(g), 1) 6= 0 (which implies that Sel(Q, VpE ⊗ ad0Vp(g)) = 0 by the
Bloch–Kato conjecture), the non-vanishing criterion conjectured in [DR16, Conj. 3.2] leads to
the following prediction (see the “adjoint rank (2, 0) setting” discussed in [DR17, §4.5.3]).

Conjecture 1.2 (Darmon–Rotger). Suppose that L(E, s) has sign +1 and vanishes at s = 1,
and that L(E, ad0(g), 1) 6= 0. Then the following are equivalent:
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(i) The four classes in (1.8) span a non-trivial subspace of Sel(Q, VpE).
(ii) dimQpSel(Q, VpE) = 2.

Remark 1.3. Of course, by the Birch and Swinnerton-Dyer conjecture, condition (ii) should be
equivalent to the condition ords=1L(E, s) = 2, but unfortunately this still seems completely
out of reach. More generally, [DR16, Conj. 3.2] posits a similar non-vanishing criterion for the
span of the classes κγ,δ(f, g, h) attached to any triple (f, g, h) as above, but Conjecture 1.2
encompasses all the cases of relevance for the study of elliptic curves E/Q of rank 2.

Note that Conjecture 1.2 does not predict that the four classes in (1.8) generate Sel(Q, VpE).
In fact, a strengthtening of the elliptic Stark conjectures in [DLR15] predicts that in the setting
of Conjecture 1.2 only the classes καg ,α−1

g
(f, g, g∗) and κβg ,β−1

g
(f, g, g∗) are nonzero, and they

are the same class up to a nonzero algebraic constant. Our results also provide evidence for
this remarkable prediction (see Remark 1.5 below and §5.6 for further details).

1.2. Statement of the main result. In this paper we prove Conjecture 1.2 in the case when
g has CM, assuming #Ш(E/Q)[p∞] <∞ (in fact, a weaker condition suffices) for one of the
implications.

As before, let E/Q be an elliptic curve with good ordinary reduction at p > 3, and let f ∈
S2(Γ0(Nf )) be the associated newform. Let K be an imaginary quadratic field of discriminant
prime of Nf in which (p) = pp splits, and let ψ be a ray class character of K of conductor
prime to pNf valued in a number field L. The weight one theta series g = θψ then satisfies

L(E, ad0(g), s) = L(EK , s) · L(E/K,χ, s),

where EK is the twist of E by the quadratic character associated to K, and χ is the ring class
character given by ψ/ψτ , for ψτ the composition of ψ with the action of complex conjugation.
Clearly, in this case we may take αg = ψ(p) and βg = ψ(p), which we shall simply denote by α
and β, respectively, and g∗ is the theta series of ψ−1. As in the formulation of the conjectures
in [DR16], we assume that αg 6= βg, i.e., χ(p) 6= 1.

Let ρ̄E,p : GQ → AutFp(E[p]) the mod p representation associated to E, and denote by N−f
the largest factor of Nf divisible only by primes that are inert in K. Finally, let

Locp : Sel(Q, VpE)→ H1(Qp, VpE)

be the restriction map at p.

Theorem A. Suppose that L(E, s) has sign +1 and vanishes at s = 1, and that L(EK , 1) ·
L(E/K,χ, 1) 6= 0. Suppose also that:

(a) ρ̄E,p is irreducible,

(b) N−f is squarefree,

(c) ρ̄E,p is ramified at every prime q|N−f .

Then κα,β−1(f, g, g∗) = κβ,α−1(f, g, g∗) = 0, and the following hold:

κα,α−1(f, g, g∗) 6= 0 =⇒ dimQpSel(Q, VpE) = 2, (1.9)

and conversely,

dimQpSel(Q, VpE) = 2

Sel(Q, VpE) 6= ker(Locp)

}
=⇒ κα,α−1(f, g, g∗) 6= 0. (1.10)

In particular, if Sel(Q, Vp) 6= ker(Locp) then Conjecture 1.2 holds.

If L(E, s) has sign +1 and ρ̄E,p is irreducible and ramified at some prime q 6= p (as is
automatic if e.g. E is semistable and p > 11 is good ordinary for E, by [Rib90] and [Maz78]),
the non-vanishing results of [BFH90] and [Vat03] assure the existence of infinitely many imag-
inary quadratic fields K and ring class characters χ such that L(EK , 1) · L(E/K,χ, 1) 6= 0.
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Therefore, Theorem A suggests a general construction of non-trivial p-adic Selmer classes for
elliptic curves of rank two.

Remark 1.4. The condition Sel(Q, VpE) 6= ker(Locp) should always hold when Sel(Q, VpE) 6=
0. Indeed, if Sel(Q, VpE) equals ker(Locp), then E(Q) must be finite (since E(Q) injects into
E(Qp)), so if also Sel(Q, VpE) 6= 0 we would conclude that Ш(E/Q)[p∞] is infinite.

Remark 1.5. It also follows from our results that, for g = θψ as above, the classes κα,α−1(f, g, g∗)
and κβ,β−1(f, g, g∗) are the same up to a nonzero algebraic constant, and they span the p-adic
line

Lp := ker(logp) ⊂ Sel(Q, VpE),

where logp : Sel(Q, VpE)→ Qp is the composition of Locp with the formal group logarithm of
E. When #Ш(E/Q)[p∞] <∞, it is suggestive to view Lp as the line spanned by the image

of P ∧Q := P ⊗Q−Q⊗ P ∈
∧2(E(Q)⊗Q) under the natural map

Logp :

2∧
(E(Q)⊗Q)→ E(Q)⊗Qp

induced by the p-adic logarithm map logp : E(Q)⊗Q→ E(Qp)⊗Q→ Qp. This is consistent
with the refined predictions by Darmon–Rotger (see [DR16, §4.5.3]), and substantiates viewing
implications (1.9) and (1.10) in Theorem A as counterparts of (1.2) and (1.3), respectively, in
rank 2.

Remark 1.6. Assuming rankZE(Q) = 2 and the finiteness of #Ш(E/Q)[p∞], a refinement of
Conjecture 1.2 predicting the position of κγ,δ(f, g, g

∗) relative to the natural rational structure
on Sel(Q, VpE) = E(Q)⊗Qp leads to the expectation

κα,α−1(f, g, g∗)
?∼
Q
× Logp(P ∧Q)

?∼
Q
× κβ,β−1(f, g, g∗) (1.11)

where (P,Q) is any basis for E(Q) ⊗ Q and ∼
Q
× denotes equality up to multiplication

by an non-zero algebraic number. Our methods confirm the relation κα,α−1(f, g, g∗) ∼
Q
×

κβ,β−1(f, g, g∗) and in Theorem 5.5, we show that

κα,α−1(f, g, g∗) ∼Q× C · Logp(P ∧Q), (1.12)

where C ∈ Q×p is the ratio between the the leading coefficient of the anticyclotomic p-adic L-
function of E/K and the derived p-adic height pairing of P and Q. In particular, this implies
that the conjectured algebraicity in (1.11) can be linked to a p-adic Birch and Swinnerton-Dyer
conjecture refining [BD96, Conjecture 4.3] (see §5.6 for details).

The essential new ingredient in the proof of Theorem A is a formula for the leading term
at T = 0 of an anticyclotomic p-adic L-function Θf/K ∈ ZpJT K attached to E/K in terms of
anticyclotomic derived p-adic heights (see Theorem 5.3). This leading term formula also leads
to the expression for κα,α−1(f, g, g∗) yielding (1.12) and is used in the Appendix of this paper
to exhibit the first examples of non-vanishing generalized Kato classes for elliptic curves E
over Q of rank two, answering a question (or “an interesting challenge”; see [DR16, p. 31])
posed by Darmon–Rotger.

1.3. Relation to previous work. Prior to this paper, the only general results known to the
present authors on the existence on nonzero Selmer classes for elliptic curves E/Q of rank r > 1
are those to appear in forthcoming work by Skinner–Urban, as reported on in [Urb13]. Their
methods, which extend those outlined in their ICM address [SU06] for cuspidal eigenforms of
weight k > 4, are completely different form ours.

On the other hand, the celebrated work of Darmon–Rotger [DR17] exhibited, under a non-
vanishing hypothesis, the existence of two linearly independent classes in the Selmer groups
Sel(Q, VpE ⊗ %) of elliptic curves E/Q twisted by degree four Artin representations %. The
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required non-vanishing is that of a special value L gα
p of a certain p-adic L-function playing the

role of a second derivative. Both their works and ours exploit the construction of generalized
Kato classes introduced in [DR17], but in the setting we have placed ourselves in, the special
value L gα

p vanishes. Our analysis in this paper fundamentally exploits anticyclotomic Iwasawa
theory and derived p-adic heights, both of which make no appearance in [DR17].

Finally, as alluded to above, a key ingredient in the proof of our main results is a leading
term formula for Θf/K in terms of anticyclotomic derived p-adic heights. In the cyclotomic
setting, and for the usual p-adic height pairing, a formula of this sort for the first derivative of
a p-adic L-function is due to Rubin [Rub94]. An abstract generalization of Rubin’s formula for
derived p-adic heights was given by Howard [How04] in terms of a cohomologically defined “p-
adic L-function”. Howard’s foundational results on derived p-adic heights will be our starting
point in §4, which, as far as we know, contains the first explicit computation of a generalized
Rubin formula for genuinely derived p-adic heights.

2. Triple products and theta elements

In this section we describe the triple product p-adic L-function for Hida families [Hsi21], and
recall its relation with the square-root anticyclotomic p-adic L-functions of Bertolini–Darmon
[BD96].

2.1. Ordinary Λ-adic forms. Fix a prime p > 2. Let I be a normal domain finite flat over
Λ := OJ1 + pZpK, where O is the ring of integers of a finite extension L/Qp. We say that a

point x ∈ Spec I(Qp) is locally algebraic if its restriction to 1+pZp is given by x(γ) = γkxεx(γ)
for some integer kx, called the weight of x, and some finite order character εx : 1+pZp → µp∞ ;
we say that x is arithmetic if it has weight kx > 2. Let X+

I be the set of arithmetic points.
Fix a positive integer N prime to p, and let χ : (Z/NpZ)× → O× be a Dirichlet character

modulo Np. Let So(N,χ, I) be the space of ordinary I-adic cusp forms of tame level N and
branch character χ, consisting of formal power series

f(q) =

∞∑
n=1

an(f)qn ∈ IJqK

such that for every x ∈ X+
I the specialization fx(q) is the q-expansion of a p-ordinary cusp

form fx ∈ Skx(Nprx+1, χω2−kxεx). Here rx > 0 is such that εx(1 +p) has exact order prx , and
ω : (Z/pZ)× → µp−1 is the Teichmüller character.

We say that f ∈ So(N,χ, I) is a primitive Hida family if for every x ∈ X+
I we have that fx

is an ordinary p-stabilized newform (in the sense of [Hsi21, Def. 2.4]) of tame level N . Given
a primitive Hida family f ∈ So(N,χ, I), and writing χ = χ′χp with χ′ (resp. χp) a Dirichlet
modulo N (resp. p), there is a primitive f ι ∈ So(N,χpχ′, I) with Fourier coefficients

a`(f
ι) =

{
χ′(`)a`(f) if ` - N ,

a`(f)−1χpω
2(`)〈`〉I`−1 if ` | N ,

having the property that for every x ∈ X+
I the specialization f ιx is the p-stabilized newform

attached to the character twist fx ⊗ χ′. Let T o(N,χ, I) be the I-algebra generated by Hecke
operators acting on S0(N,χ, I) and let λf : T o(N,χ, I) → I be the I-algebra homomoprhism
induced by f . Let C(λf ) be the congruence module associated with λf ([Hid88, (5.1)]) and
let ηf := AnnI(C(λf )) be the congruence ideal of f .

By [Hid86] (cf. [Wil88, Thm. 2.2.1]), attached to every primitive Hida family f ∈ So(N,χ, I)
there is a continuous I-adic representation ρf : GQ → GL2(Frac I) which is unramified outside
Np and such that for every prime ` - Np,

tr ρf (Frob`) = a`(f), det ρf (Frob`) = χω2(`)〈`〉I`−1,
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where 〈`〉I ∈ I× is the image of 〈`〉 := `ω−1(`) ∈ 1 + pZp under the natural map 1 + pZp →
OJ1 + pZpK× = Λ× → I×. In particular, letting 〈εcyc〉I : GQ → I× be defined by 〈εcyc〉I(σ) =

〈εcyc(σ)〉I, it follows that ρf has determinant χ−1
I ε−1

cyc, where χI : GQ → I× is given by

χI := σχ〈εcyc〉−2〈εcyc〉I, with σχ the Galois character sending Frob` 7→ χ(`)−1. Moreover, by
[Wil88, Thm. 2.2.2] the restriction of ρf to GQp is given by

ρf |GQp
∼
(
ψf ∗
0 ψ−1

f χ−1
I ε−1

cyc

)
(2.1)

where ψf : GQp → I× is the unramified character with ψf (Frobp) = ap(f).

2.2. Triple product p-adic L-function. Let

(f , g,h) ∈ So(Nf , χf , If )× So(Ng, χg, Ig)× So(Nh, χh, Ih)

be a triple of primitive Hida families. Set

R := If ⊗̂OIg⊗̂OIh,
which is a finite extension of the three-variable Iwasawa algebra R0 := Λ⊗̂OΛ⊗̂OΛ, and define

the weight space XfR for the triple (f , g,h) in the f -dominated unbalanced range by

XfR :=
{

(x, y, z) ∈ X+
If × Xcls

Ig × Xcls
Ih : kx > ky + kz and kx ≡ ky + kz (mod 2)

}
, (2.2)

where Xcls
Ig ⊃ X+

Ig (and similarly Xcls
Ih ) is the set of locally algebraic points in Spec Ig(Qp) for

which gx(q) is the q-expansion of a classical modular form.
For φ ∈ {f , g,h} and a positive integer N prime to p and divisible by Nφ, define the space

of Λ-adic test vectors So(N,χφ, Iφ)[φ] of level N to be the Iφ-submodule of So(N,χφ, Iφ)

generated by {φ(qd)}, as d ranges over the positive divisors of N/Nφ.
For the next result, set N := lcm(Nf , Ng, Nh), and consider the following hypothesis:

for some (x, y, z) ∈ XfR, we have εq(f
◦
x, g
◦
y,h

◦
z) = +1 for all q | N . (Σ− = ∅)

Here εq(f
◦
x, g
◦
y,h

◦
z) denotes the local root number of the Kummer self-dual twist of the Galois

representations attached to the newforms f◦x, g◦y, and h◦z corresponding to fx, gy, and hz.

Theorem 2.1. In addition to the condition (Σ− = ∅), assume that the triple (f , g,h) satisfies

(ev) χfχgχh = ω2a for some a ∈ Z,
(sq) gcd(Nf , Ng, Nh) is squarefree.

Then there exist Λ-adic test vectors (f̆ , ğ, h̆) and an element

L f
p (f̆ , ğ, h̆) ∈ R⊗I Frac If

such that H · L f
p (f̆ , ğ, h̆) ∈ R for any H ∈ ηf and that for all (x, y, z) ∈ XfR of weight

(k, `,m):

L f
p (f̆ , ğ, h̆)(x, y, z)2 =

Γ(k, `,m)

2α(k,`,m)
·
E(fx, gy,hz)

2

E0(fx)2 · E1(fx)2
·
∏
q|N

cq ·
L(f◦x ⊗ g◦y ⊗ h◦z, c)
π2(k−2) · ‖f◦x‖2

,

where:

• c = (k + `+m− 2)/2,
• Γ(k, `,m) = (c− 1)! · (c−m)! · (c− `)! · (c+ 1− `−m)!,
• α(k, `,m) ∈ R is a linear form in the variables k, `, m,

• E(fx, gy,hz) = (1− βfxαgyαhz

pc )(1− βfxβgyαhz

pc )(1− βfxαgyβhz
pc )(1− βfxβgyβhz

pc ),

• E0(fx) = (1− βfx
αfx

), E1(fx) = (1− βfx
pαfx

),

and ‖f◦x‖2 is the Petersson norm of f◦x on Γ0(Nf ).
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Proof. This is [Hsi21, Theorem A]. The construction of L f
p (f̆ , ğ, h̆) under hypotheses (CR),

(ev), and (sq) is given in [Hsi21, §3.6] (where it is denoted L f
F ), and the proof of its interpo-

lation property assuming (Σ− = ∅) is contained in [Hsi21, §7]. �

Remark 2.2. The definition of L f
p (f̆ , ğ, h̆) makes sense for any choice of test vectors f̆ , ğ, h̆),

and even though in our applications we shall use the choice provided by Theorem 2.1, in the
following we shall also consider other choices (see esp. Theorem 3.6).

2.3. Triple tensor product of big Galois representations. Let (f , g,h) be a triple of
primitive Hida families with χfχgχh = ω2a for some a ∈ Z. For φ ∈ {f , g,h}, let Vφ be the
natural lattice in (Frac Iφ)2 realizing the Galois representation ρφ in the étale cohomology of
modular curves (see [Oht00]), and set

Vfgh := Vf ⊗̂OVg⊗̂OVh.

This has rank 8 overR, and by hypothesis its determinant can be written as detVfgh = X 2εcyc

for a p-ramified Galois character X taking the value (−1)a at complex conjugation. Similarly
as in [How07, Def. 2.1.3], we define the critical twist

V†fgh := Vfgh ⊗X−1.

More generally, for any multiple N of Nφ one can define Galois modules Vφ(N) by working in
tame level N ; these split non-canonically into a finite direct sum of the Iφ-adic representations

Vφ (see [DR17, §1.5.3]), and they define V†fgh(N) for any N divisible by lcm(Nf , Ng, Nh).

If f is a classical specialization of f with associated p-adic Galois representation Vf , we let
Vf,gh be the quotient of Vfgh given by

Vf,gh := Vf ⊗O Vg⊗̂IVh.

Denote by V†f,gh the corresponding quotient of V†fgh, and by V†f,gh(N) its level N counterpart.

2.4. Theta elements and factorization. We recall the factorization proven in [Hsi21, §8].
Let f ∈ S2(pNf ) be a p-stabilized newform of tame level Nf defined over O, let f◦ ∈ S2(Nf )
be the associated newform, and let αp = αp(f) ∈ O× be the Up-eigenvalue of f . Let K be an
imaginary quadratic field of discriminant DK prime to Nf . Write

Nf = N+N−

with N+ (resp. N−) divisible only by primes which are split (resp. inert) in K, and choose
an ideal N+ ⊂ OK with OK/N+ ' Z/N+Z.

Assume that (p) = pp splits in K, with our fixed embedding ιp : Q ↪→ Cp inducing the prime
p. Let Γ∞ be the Galois group of the anticyclotomic Zp-extension K∞/K, fix a topological
generator γ ∈ Γ∞, and identity OJΓ∞K with the power series ring OJT K via γ 7→ 1 + T . For
any prime-to-p ideal a of K, let σa be the image of a in the Galois group of the ray class field
K(p∞)/K of conductor p∞ under the geometrically normalized reciprocity law map.

Theorem 2.3. Let χ be a ring class character of K of conductor cOK with values in O, and
assume that:

(i) (pNf , cDK) = 1,
(ii) N− is the squarefree product of an odd number of primes,
(iii) if q|N− is a prime with q ≡ 1 (mod p), then ρ̄f is ramified at q.

There exists a unique element Θf/K,χ(T ) ∈ OJT K⊗O FracO such that for every p-power root
of unity ζ:

Θf/K,χ(ζ − 1)2 =
pn

α2n
p

· Ep(f, χ, ζ)2 ·
L(f◦/K ⊗ χεζ , 1)

(2π)2 · 4‖f◦‖2Γ0(Nf◦ )

· u2
K

√
DKχεζ(σN+) · εp,
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where:

• n > 0 is such that ζ has exact order pn,
• εζ : Γ∞ → µp∞ be the character defined by εζ(γ) = ζ,

• Ep(f, χ, ζ) =

{
(1− α−1

p χ(p))(1− αpχ(p)) if n = 0,

1 if n > 0,

• σN+ ∈ Γ∞ is the image of N+ under the geometrically normalized Artin’s reciprocity
map,
• uK = |O×K |/2, and εp ∈ {±1} is the local root number of f◦ at p.

Proof. See [BD96] for the first construction, and [CH18, Thm. A] for the stated interpolation
property. �

When χ is the trivial character, we write Θf/K,χ(T ) simply as Θf/K(T ). Suppose now that
the newform f as in Theorem 2.3 is the specialization of a primitive Hida family f ∈ So(Nf , I)
with branch character χf = 1 at an arithmetic point x1 ∈ X+

I of weight 2. Let ` - pNf be a
prime split in K, and let χ be a ring class character of K of conductor `mOK for some m > 0.
Suppose that χ = ψ1−τ with ψ a ray class character modulo `mOK . Set C = DK`

2m and let

g = θψ(S2) ∈ OJS2KJqK, g∗ = θψ−1(S3) ∈ OJS3KJqK

be the primitive CM Hida families of level C constructed in [Hsi21, §8.3]. The p-adic triple
product L-function of Theorem 2.1 attached to the triple (f , g, g∗) (taking a = −1 in (ev)) is
an element in R = IJS2, S3K; in the following we let

L f
p (f̆ , ğğ∗) ∈ OJSK

denote the restriction to the “line” S = S2 = S3 of its image under the specialization map at
x1.

Let K∞ be the Z2
p-extension of K, and let Kp∞ denote the p-ramified Zp-extension in K∞,

with Galois group Γp∞ = Gal(Kp∞/K). Let γp ∈ Γp∞ be a topological generator, and for the
formal variable T let ΨT : Gal(K∞/K)→ OJT K× be the universal character defined by

ΨT (σ) = (1 + T )l(σ), where σ|Kp∞ = γ
l(σ)
p . (2.3)

Denoting by the superscript τ the action of the non-trivial automorphism of K/Q, the char-
acter Ψ1−τ

T factors through Γ∞ and yields an identification OJΓ∞K ' OJT K corresponding to

the topological generator γ1−τ
p ∈ Γ∞. Let pb be the order of the p-part of the class number

of K. Hereafter, we shall fix v ∈ Z
×
p such that vp

b
= εcyc(γ

pb

p ) ∈ 1 + pZp. Let K(χ, αp)/K
(resp. K(χ)/K) be the finite extension obtained by adjoining to K the values of χ and αp
(resp. the values of χ).

Proposition 2.4. Set T = v−1(1 + S)− 1. Then

L f
p (f̆ , ğğ∗) = ±Ψτ−1

T (σN+) ·Θf/K(T ) · Cf,χ ·
√
Lalg(f/K ⊗ χ, 1),

where Cf,χ ∈ K(χ, αp)
×and

Lalg(f/K ⊗ χ, 1) :=
L(f/K ⊗ χ, 1)

4π2‖f◦‖2Γ0(Nf◦ )

∈ K(χ).

Proof. This is the factorization formula of [Hsi21, Prop. 8.1] specialized to S = S2 = S3, using
the interpolation property of Θf/K,χ(T ) at ζ = 1. �

Remark 2.5. The factorization of Proposition 2.4 reflects the decomposition of Galois repre-
sentations

V†f,gg∗ =
(
Vf (1)⊗ IndQ

KΨ1−τ
T

)
⊕
(
Vf (1)⊗ IndQ

Kχ
)
. (2.4)
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Note that the first summand is the anticyclotomic deformation of Vf (1), while the second is
a fixed character twist of Vf (1).

3. Coleman map for relative Lubin–Tate groups

In this section we review some elements of Perrin-Riou’s theory [PR94] of big exponential
maps, as extended by Kobayashi [Kob18] to Zp-extensions arising from relative Lubin–Tate
groups of height one. Applied to local extensions arising from the anticyclotomic Zp-extension
of an imaginary quadratic field K in which p splits, we deduce, by the results of §2 and [DR17],
a Coleman power series construction of the p-adic L-function Θf/K of Theorem 2.3 that will
play an important role later.

3.1. Preliminaries. Fix a complete algebraic closure Cp of Qp. Let Qur
p ⊂ Cp be the

maximal unramified extension of Qp, and let Fr ∈ Gal(Qur
p /Qp) be the absolute Frobenius.

Let F ⊂ Qur
p be a finite unramified extension of Qp with valuation ring O and set

R = OJXK.

Let F = Spf R be a relative Lubin–Tate formal group of height one defined over O, and for
each n ∈ Z set

F (n) := F ×Spec O,Fr−n Spec O.

The Frobenius morphism ϕF ∈ Hom(F ,F (−1)) induces a homomorphism ϕF : R→ R defined
by

ϕF (f) := fFr ◦ ϕF ,
where fFr is the conjugate of f by Fr. Let ψF be the left inverse of ϕF satisfying

ϕF ◦ ψF (f) = p−1
∑
x∈F [p]

f(X ⊕F x). (3.1)

Let F∞/F be the Lubin–Tate Z×p -extension of F associated with F , i.e., F∞ =
⋃∞
n=1 F (F [pn]),

and for every n > −1 let Fn be the subfield of F∞ with Gal(Fn/F ) ' (Z/pn+1Z)×. (Hence,
F−1 = F .) Letting G∞ = Gal(F∞/F ), there is a canonical decomposition

G∞ ' ∆× ΓF∞,

with ∆ the torsion subgroup of G∞ and ΓF∞ ' Zp the maximal torsion-free quotient of G∞.
For every a ∈ Z×p , there is a unique formal power series [a] ∈ R such that

[a]Fr ◦ ϕF = ϕF ◦ [a] and [a](X) ≡ aX (mod X2).

Letting εF : G∞
∼→ Z×p be the Lubin–Tate character, we let σ ∈ G∞ act on f ∈ R by

σ.f(X) := f([εF (σ)](X)),

thus making R into an OJG∞K-module.

Lemma 3.1. RψF=0 is free of rank one over OJG∞K.

Proof. This is a standard fact, see e.g. [Kob18, Prop. 5.4]. �

Let V be a crystalline GQp-representation defined over a finite extension L of Qp with ring
of integers OL. Let D(V ) = Dcris,Qp(V ) be the filtered ϕ-module associated with V and set

D∞(V ) := D(V )⊗Zp R
ψF=0.

Fix an invariant differential ωF ∈ ΩR, and let logF ∈ R⊗̂Qp be the logarithm map satisfying

logF (0) = 0 and d logF = ωF ,

where d : R→ ΩR be the standard derivation.
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Let ε = (εn) ∈ TpF = lim←−F
(n)[pn] be a basis of the Tate module of F , where the limit is

with respect to the transition maps

ϕFr−(n+1)

: F (n+1)[pn+1]→ F (n)[pn].

One can associate to ε and ωF a p-adic period tε ∈ B+
cris such that

Dcris,F (εF ) = Ft−1
ε and ϕtε = $tε, (3.2)

where $ is the uniformizer in F such that ϕ∗F (ωFr
F ) = $ · ωF (see [Kob18, §9.2]). For j ∈ Z,

the Lubin–Tate twist V 〈j〉 := V ⊗L εjF then satisfies

Dcris,F (V 〈j〉) = D(V )⊗Qp Ft
−j
ε .

There is a derivation dε : D∞(V 〈j〉) = Dcris,F (V 〈j〉)⊗O R
ψF=0 → D∞(V 〈j − 1〉) given by

dε : f = η ⊗ g 7→ ηtε ⊗ ∂g,
where ∂ : R→ R is defined by df = ∂f · ωF . These give rise to the map

∆̃: D∞(V )→
⊕
j∈Z

Dcris,F (V 〈−j〉)
1− ϕ

(3.3)

sending f 7→ (∂jf(0)tjε (mod 1− ϕ))j .

3.2. Perrin-Riou’s big exponential map. For a finite extension K over Qp, let

expK,V : D(V )⊗Qp K → H1(K,V )

be Bloch–Kato’s exponential map [BK90, §3]. In this subsection, we recall the main properties
of Perrin-Riou’s map ΩV,h interpolating expK,V 〈j〉 over non-negative j ∈ Z.

Let V ∗ := HomL(V,L(1)) be the Kummer dual of V and denote by

[−,−]V : D(V ∗)⊗K ×D(V )⊗K → L⊗ K
the K-linear extension of the de Rham pairing

〈 , 〉dR : D(V ∗)×D(V )→ L.

Let exp∗K,V : H1(K,V ) → D(V ) ⊗ K be the Bloch–Kato dual exponential map, which is
characterized uniquely by

TrK/Qp
([x, exp∗K,V (y)]V ) = 〈expK,V ∗(x), y〉dR,

for all x ∈ D(V ∗)⊗K and y ∈ H1(K,V ).

Choose aOL-lattice T ⊂ V stable under the Galois action, and set Ĥ1(F∞, T ) = lim←−H1(Fn, T )
and

Ĥ1(F∞, V ) = Ĥ1(F∞, T )⊗Zp Qp,

which does not depend on the choice of T . Denote by

Twj : Ĥ1(F∞, V ) ' Ĥ1(F∞, V 〈j〉)

the twisting map by εjF . For a non-negative real number r, put

Hr,K(X) =

 ∑
n>0,τ∈∆

cn,τ · τ ·Xn ∈ K[∆]JXK | sup
n
|cn,τ |p n

−r <∞ for all τ ∈ ∆

 ,

where |·|p is the normalized valuation of K with |p|p = p−1. Let γ be a topological generator of

ΓF∞, and denote by Hr,K(G∞) the ring of elements {f(γ−1) : f ∈Hr,K(X)}, so in particular
H0,K(G∞) = OKJG∞K⊗OK K. Put

H∞,K(G∞) =
⋃
r>0

Hr,K(G∞).
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Define the map
Ξn,V : D(V )⊗Qp H∞,F (X)→ D(V )⊗Qp Fn

by

Ξn,V (G) :=

{
p−(n+1)ϕ−(n+1)(GFr−(n+1)

(εn)) if n > 0,

(1− p−1ϕ−1)(G(0)) if n = −1,
(3.4)

and let Λ̃ = ZpJG∞K.

Theorem 3.2. Let ε = (εn) be a basis of TpF , let h > 0 be such that D(V ) = Fil−h D(V ),

and assume that H0(F∞, V ) = 0. There exists Λ̃-linear “big exponential map”

Ωε
V,h : D∞(V )∆̃=0 → Ĥ1(F∞, T )⊗

Λ̃
H∞,F (G∞)

such that for every g ∈ D∞(V )∆̃=0 and j > 1− h satisfies the interpolation property

prFn(Twj ◦ Ωε
V,h(g)) = (−1)h+j−1(h+ j − 1)! · expFn,V 〈j〉(Ξn,V 〈j〉(d

−j
ε G)) ∈ H1(Fn, V 〈j〉),

where G ∈ D(V )⊗Qp Hh,F (X) is a solution of the equation

(1− ϕ⊗ ϕF )G = g.

Moreover, these maps satisfy

Twj ◦ Ωε
V,h ◦ djε = Ωε

V 〈j〉,h+j ,

and if j 6 −h then

exp∗Fn,V 〈j〉(prFn(Twj ◦ Ωε
V,h(g))) =

1

(−h− j)!
· Ξn,V 〈j〉(d−jε G)) ∈ D(V 〈j〉)⊗Qp Fn;

and if D[s] ⊂ D(V ) is a ϕ-invariant subspace in which all ϕ-eigenvalues have p-adic valuation

at most s, then Ωε
V,h maps (D[s] ⊗Zp R

ψF=0)∆̃=0 into Ĥ1(F∞, T )⊗
Λ̃

Hs+h,F (G∞).

Proof. For F = Ĝm, the construction of Ωε
V,h and its interpolation property for j > 1 − h is

due to Perrin-Riou [PR94]; the interpolation formula for j 6 −h is due to Colmez [Col98].
The extension of these results to Zp-extensions arising from relative Lubin–Tate formal groups
of height one is given in [Kob18, Appendix]. �

3.3. The Coleman map. From now on, we assume that

D∞(V )∆̃=0 = D∞(V ), (3.5)

i.e., ∆̃ = 0 (note that by (3.3) this is a condition on the ϕ-eigenvalues on Dcris,F (V )), and for
simplicity for any field extension M/Qp we write HM for H0,M (G∞). Let

[−,−]V : D(V ∗)⊗Qp HF ×D(V )⊗Qp HF → L⊗Qp HF

be the pairing defined by

[η1 ⊗ λ1, η2 ⊗ λ2]V = 〈η1, η2〉dR ⊗ λ1λ
ι
2

for all λ1, λ2 ∈HF .
Recall that F∞ =

⋃
n Fn, and let 〈−,−〉Fn be the local Tate pairing H1(Fn, T

∗)×H1(Fn, T )→
OL. Letting x = (xn)n and y = (yn)n be sequences in Ĥ1(F∞, T

∗) and Ĥ1(F∞, T ), these ex-
tend to a OLJG∞K-linear pairing

〈−,−〉F∞ : Ĥ1(F∞, T
∗)× Ĥ1(F∞, T )→ OLJG∞K

by defining 〈x, y〉F∞ to be the limit of the compatible elements
∑

σ∈Gal(Fn/F )〈xσ
−1

n , yn〉Fn [σ] ∈
OL[Gal(Fn/F )]. After inverting p, this extends to a pairing

〈−,−〉F∞ : Ĥ1(F∞, V
∗)× Ĥ1(F∞, V )→ L⊗Qp HQp . (3.6)



ON THE NON-VANISHING OF GENERALIZED KATO CLASSES 13

Definition 3.3. Let e ∈ RψF=0 be a OJG∞K-module generator, and let ε a generator of TpF .
The Coleman map

Colεe : Ĥ1(F∞, V
∗)→ D(V ∗)⊗Qp HF

is the L⊗Qp HF -linear map uniquely characterized by

TrF/Qp
([Colεe(z), η]V ) = 〈z,Ωε

V,h(η ⊗ e)〉F∞ (3.7)

for all η ∈ D(V ).

Let Q be the completion of Qur
p in Cp, with ring of integers W, and set F ur

n = FnQ
ur
p for

−1 6 n 6∞ (so F ur
−1 = F ur). Let σ0 ∈ Gal(F ur

∞/Qp) be such that σ0|Qur
p

= Fr is the absolute
Frobenius.

Fix an isomorphism

ρ : Ĝm ' F (3.8)

defined over W and let ρ :WJT K ' R⊗O W be the map defined by ρ(f) = f ◦ ρ−1, so

ϕF ◦ ρ = ρFr ◦ ϕ
Ĝm

.

Fix also a OJG∞K-generator e ∈ RψF=0, and let he ∈ WJG∞K be such that ρ(1 +X) = he · e.
Note that e(0) ∈ O×. Fix a sequence (ζpn) of primitive pn-th root of unity giving a generator

of TpĜm, and let ε = (εn) be the generator of TpF given by

εn = ρFr−(n+1)

(ζpn+1 − 1) ∈ F (n+1)[pn+1].

Let t ∈ B+
cris be the p-adic period as in §3.1 associated to the generator (ζpn+1 − 1) ∈ TpĜm

and the invariant differential ω
Ĝm

= dX
1+X .

From now on, we suppose that Fil−1 D(V ) = D(V ) and H0(F∞, V ) = 0, so the big expo-
nential map Ωε

V,1 of Theorem 3.2 is defined. Let η ∈ D(V ) be such that ϕη = αη, and suppose

that η has slope s (i.e. |α|p = p−s). For every z ∈ Ĥ1(F∞, V
∗), we define

Colη(z) :=

[F :Qp]∑
j=1

[
Colεe(z

σ−j0 ), η
]
· he · σj0 ∈Hs+h,LQ(G̃∞), (3.9)

where G̃∞ = Gal(F∞/Qp), and [−,−] : D(V ∗)⊗HQ ×D(V )⊗HQ → HLQ is the image of
[−,−]V under the natural map L⊗Qp HQ →HLQ. We put

z−j,n := prFn(Tw−j(z)) ∈ H1(Fn, V
∗〈−j〉),

and say that a finite order character χ of G̃∞ has conductor pn+1 if n is the smallest integer
such that χ factors through Gal(Fn/Qp).

Theorem 3.4. Let z ∈ Ĥ1(F∞, V
∗) and let ψ be a p-adic character of G̃∞ such that ψ = χεjF

with χ a finite order character of conductor pn+1. If j < 0, then

Colη(z)(ψ) =
(−1)j−1

(−j − 1)!

×


[
logF,V ∗〈−j〉(z−j,n)⊗ t−j , (1− pj−1ϕ−1)(1− p−jϕ)−1η

]
if n = −1,

p(n+1)(j−1)τ (ψ)
∑

τ∈Gal(Fn/Qp)

χ−1(τ)
[
logFn,V ∗〈−j〉(z

τ
−j,n)⊗ t−j , ϕ−(n+1)η

]
if n > 0.
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If j > 0, then

Colη(z)(ψ) = j!(−1)j

×


[
exp∗F,V ∗〈−j〉(z−j,n)⊗ t−j , (1− pj−1ϕ−1)(1− p−jϕ)−1η

]
if n = −1,

p(n+1)(j−1)τ (ψ)
∑

τ∈Gal(Fn/Qp)

χ−1(τ)
[
exp∗Fn,V ∗〈−j〉(z

τ
−j,n)⊗ t−j , ϕ−(n+1)η

]
if n > 0.

Here τ (ψ) is the Gauss sum defined by

τ (ψ) :=
∑

τ∈Gal(Fur
n /Fur)

ψε−jcyc(τσ
n+1
0 )ζ

τσn+1
0

pn+1 .

Proof. This follows from Theorem 3.2 by a direct computation (see [Kob18, Thm. 5.10], and
[LZ14, Thm. 4.15] for a related computation). �

3.4. Diagonal cycles and theta elements. We now apply the local results of the preceding
section to the global setting of §2. Assume that f , g = θψ(S) and g∗ = θψ−1(S) are as in
§2.4. Keeping the notations from §2.3, by [DR17, §1] there exists a class

κ(f, gg∗) ∈ H1(Q,V†f,gg∗(N)) (3.10)

constructed from twisted diagonal cycles on the triple product of modular curves of tame level
N . (See also [DR21] and [BSV21].)

Every triple of test vectors F̆ = (f̆ , ğ, ğ∗) defines a GQ-equivariant projection V†f,gg∗(N)→
V†f,gg∗ , and we put

κ(f̆ , ğğ∗) := prF̆ (κ(f, gg∗)) ∈ H1(Q,V†f,gg∗), (3.11)

where prF̆ : H1(Q,V†f,gg∗(N))→ H1(Q,V†f,gg∗) is the induced map on cohomology.

Since Ψ1−τ
T gives the universal character of Gal(K∞/K), by the GQ-isomorphism (2.4) and

Shapiro’s lemma we have the identifications

H1(Q,V†f,gg∗) ' H1(Q, Vf (1)⊗ IndQ
KΨ1−τ

T )⊕H1(Q, Vf (1)⊗ IndQ
K χ)

' Ĥ1(K∞, Vf (1))⊕H1(K,Vf (1)⊗ χ).
(3.12)

In the following, we write

κ(f̆ , ğğ∗) = (κ∞(f̆ , ğğ∗), κ0(f̆ , ğğ∗)) (3.13)

according to this decomposition.
Let g and g∗ be the weight 1 eigenform θψ and θψ−1 , respectively, so that the specialization

of (g, g∗) at T = 0 (or equivalently, S = v − 1) is a p-stabilization of the pair (g, g∗).

Lemma 3.5. Assume that L(f ⊗ g ⊗ g∗, 1) = 0 and that L(f/K ⊗ χ, 1) 6= 0. Then for every

choice of test vectors F̆ = (f̆ , ğ, ğ∗) we have κ0(f̆ , ğğ∗) = 0.

Proof. Let κ = κ(f̆ , ğğ∗) and for every ? ∈ {f, g, g∗}, let F+V? be the rank one subspace of
V? fixed by the inertia group at p. By (3.12), in order to prove (1) it suffices to show that
some specialization of κ has trivial image in H1(K,Vf (1)⊗ χ). Let

κf̆ ,ğğ∗ := κ|S=v−1 ∈ H1(Q, Vfgg∗) = H1(K,Vf (1))⊕H1(K,Vf (1)⊗ χ),

where Vfgg∗ := Vf (1) ⊗ Vg ⊗ Vg∗ . By considering Hodge–Tate weights, it is easily seen that
the Bloch–Kato Selmer group Sel(Q, Vfgg∗) ⊂ H1(Q, Vfgg∗) is given by

Sel(Q, Vfgh) = ker

(
H1(Q, Vfgg∗)

∂p◦locp→ H1(Qp,F
−Vf (1)⊗ Vg ⊗ Vg∗)

)
,
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where ∂p is the natural map induced by the projection Vf � F−Vf := Vf/F
+Vf (see e.g.

[DR17, p. 634]). Thus it follows that

Sel(Q, Vfgg∗) = Sel(K,Vf (1))⊕ Sel(K,Vf (1)⊗ χ).

The implications L(f ⊗ g ⊗ g∗, 1) = 0 =⇒ κf̆ ,ğğ∗ ∈ Sel(Q, Vfgg∗) and L(f/K ⊗ χ, 1) 6= 0 =⇒
Sel(K,Vf (1)⊗ χ) = 0, which follow from [DR17, Thm. C] and [CH15, Thm. 1], respectively,
therefore yield the result. �

Suppose from now on that f◦ ∈ S2(Nf ) is the newform associated to an elliptic curve E/Q
with good ordinary reduction at p. Thus Vf (1) ' VpE and from (3.13) we obtain an Iwasawa
cohomology class

κ∞(f̆ , ğğ∗) ∈ Ĥ1(K∞, VpE).

Set V = VpE for the ease of notation. Note that Fil−1 D(V ) = D(V ) and, by the Weil pairing,

V ∗ ' V . Let P be the prime of Q above p induced by our fixed embedding ιp (inducing p on

K), and for any subfield H ⊂ Q denote by Ĥ = HP the completion of H with respect to P.

Then Gal(K̂∞/Qp) is identified with the decomposition group of P in Γ∞ = Gal(K∞/K)

Let Hc be the ring class field of K of conductor c, and put F = Ĥc for a fixed c prime to p.
Let $ ∈ K be a generator of p[F :Qp] and let F∞/F be the Lubin–Tate Zp-extension associated
with the uniformizer $/$ ∈ OF (see [Kob18, §3.1]). As is well-known, we have

F∞ =
∞⋃
n=0

Ĥcpn

(see e.g. [Shn16, Prop. 8.3]). In particular, F∞ contains K̂∞.
Let ωE be the Néron differential of E, regarded as an element in D(H1

et(E/Q,Qp)) ' D(V ∗).

Let αp ∈ Z×p be the p-adic unit eigenvalue of the Frobenius map ϕ acting on D(V ), and let

η ∈ D(V ) ' D(H1
et(E/Q,Qp))⊗D(Qp(1)) be a ϕ-eigenvector of slope −1 such that

ϕη = p−1αp · η and 〈η, ωE ⊗ t−1〉dR = 1. (3.14)

Finally, note that hypothesis (3.5) holds since D(V )ϕ
[F :Qp]=($/$)j = 0 for any j ∈ Z, given

that the ϕ-eigenvalues of D(V ) are p-Weil numbers while $/$ is a 1-Weil number.
The second part of the next result recasts the “explicit reciprocity law” of [DR17, Thm. 5.3]

(see also [DR21, Thm. 5.1] and [BSV21, Thm. A]) in terms of the Coleman map of §3.3.

Theorem 3.6. Assume that L(f ⊗ g⊗ g∗, 1) = 0 and that L(f/K ⊗χ, 1) 6= 0. Then, for any

test vectors (f̆ , ğ, ğ∗), we have

Locp(κ∞(f̆ , ğğ∗)) = 0,

and

Colη(Locp(κ∞(f̆ , ğğ∗))) = L f
p (f̆ , ğğ∗) · 2α−1

p (1− α−1
p χ(p))−1.

Proof. Let F++V†fgg∗ be the rank four GQp-stable submodule of V†fgg∗ defined by[
F+V ⊗F+Vg ⊗ Vg∗ + F+V ⊗ Vg ⊗F+Vg∗ + V ⊗F+Vg ⊗F+Vg∗

]
⊗X−1,

The class κ(f̆ , ğğ∗) = (κ∞(f̆ , ğğ∗), κ0(f̆ , ğğ∗)) ∈ H1(Q,V†fgg∗) is known to land in the kernel

of the composite map

H1(Q,V†fgg∗)
Locp−−−→ H1(Qp,V†fgg∗)→ H1(Qp,V†fgg∗/F

++V†fgg∗)

(see e.g. [DR21, Prop. 5.8]). Using (2.4), we immediately find that

F++V†fgg∗ = V ⊗Ψ1−τ
T + F+V ⊗ (χ + χ−1),
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and therefore, identifying GQp with GKp via our fixed embedding Q ↪→ Qp, we obtain

H1(Qp,F
++V†fgg∗) ' H1(Kp, V ⊗Ψ1−τ

T )⊕H1(Kp,F
+V ⊗ χ)⊕H1(Kp,F

+V ⊗ χ).

This shows the vanishing of Locp(κ∞(f̆ , ğğ∗)), and the second equality in the theorem follows
from Lemma 3.5 and [DR17, Thm. 5.3]. �

Corollary 3.7. Assume that L(f ⊗ g ⊗ g∗, 1) = 0 and that L(f/K, χ, 1) 6= 0. Let (f̆ , ğ, ğ∗)
be the triple of test vectors from Theorem 2.1. Then

Locp(κ∞(f̆ , ğğ∗)) = 0,

and

Colη(Locp(κ∞(f̆ , ğğ∗))) = ±Ψτ−1
T (σN+) ·Θf/K(T ) ·

√
Lalg(f/K ⊗ χ, 1) · Cf,χ

2Cf,χ

αp(1− α−1
p χ(p))

,

where Cf,χ ∈ K(χ, αp)
× is the non-zero algebraic number.

Proof. This is the combination of Theorem 3.6 and the factorization in Proposition 2.4. �

4. Anticyclotomic derived p-adic heights

The goal of this section is Theorem 4.5, giving a formula for the anticyclotomic derived p-
adic heights in terms of the Coleman map introduced before. This formula is a generalization
of Rubin’s height formula [Rub94] in arbitrary rank.

4.1. The general theory. Initiated in [BD95] and further developed in [How04], the theory
of derived p-adic heights relates the degeneracies of the p-adic height to the failure of the p∞-
Selmer group of elliptic curves over a Zp-extension to be semi-simple as an Iwasawa module.
Derived p-adic heights seem to have been rarely used for arithmetic applications in the previous
literature1, but they will play a key role in the proof of our results.

In this section we briefly recall the results from [How04] (with a slight generalization) that
we will need.

Let E be an elliptic curve over Q of conductor N with good ordinary reduction at p > 2.
For any number field F , let Selpr(E/F ) ⊂ H1(F,E[pr]) be the pr-Selmer group of E over F ,
and put

Sel(F, TpE) = lim←−
r

Selpr(E/F )

and Sel(F, VpE) = Sel(F, TpE)⊗Zp Qp. Let K be an imaginary quadratic field of discriminant
prime to Np, and let K∞/K be the anticyclotomic Zp-extension of K. Denote by Kn the
subsection of K∞ with [Kn : K] = pn, and put

Selp∞(E/K∞) = lim−→
n

Selp∞(E/Kn).

Finally, let Λ = ZpJGal(K∞/K)K be the anticyclotomic Iwasawa algebra, and denote by J ⊂ Λ
the augmentation ideal.

Theorem 4.1. Let N− be the largest factor of N divisible only by primes that are inert in
K, and suppose that

• N− is squarefree,
• E[p] is ramified at every prime q|N−.

1Perhaps by influence of cyclotomic Iwasawa theory, a context in which the p-adic height is conjectured to
be non-degenerate, see [Sch85].
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Then there is a filtration

Sel(K,VpE) = S(1)
p (E/K) ⊃ · · · ⊃ S(i)

p (E/K) ⊃ S(i+1)
p (E/K) ⊃ · · · ⊃ S(∞)

p (E/K)

and a sequence of height pairings

h(i)
p : S(i)

p (E/K)× S(i)
p (E/K)→ (J i/J i+1)⊗Zp Qp

with the following properties:

(a) S
(i+1)
p (E/K) is the null-space of h

(r)
p .

(b) S
(∞)
p (E/K) is the subspace of Sel(K,VpE) consisting of universal norms for K∞/K:

S(∞)
p (E/K) =

∞⋂
n=1

corKn/K(Sel(Kn, VpE)).

(c) h
(i)
p is symmetric (resp. alternating) for i odd (resp. i even).

(d) h
(i)
p (xτ , yτ ) = (−1)ih

(i)
p (x, y), where τ ∈ Gal(K/Q) is complex conjugation.

(e) Let

ei :=

{
dimQp(S

(i)
p (E/K)/S

(i+1)
p (E/K)) if i <∞,

dimQpS
(∞)
p (E/K) if i =∞.

Then there is a Λ-module pseudo-isomorphism

Selp∞(E/K∞)∨ ∼
(
(Λ/J)⊕e1 ⊕ · · · ⊕ (Λ/J i)⊕ei ⊕ · · ·

)
⊕ Λ⊕e∞ ⊕M ′

with M ′ a torsion Λ-module with characteristic ideal prime to J .

Proof. This follows from Theorem 4.2 and Corollary 4.3 of [How04] when N− = 1. We explain
how to extend the result to squarefree N− under the above hypothesis on E[p].

Following the discussion in [op.cit., §3] and adopting the notations there, we see that it
suffices to show the vanishing of

H1
ur(Kv,S[pk]) := ker

(
H1(Kv,S[pk])→ H1(Kur

v ,S[pk])
)
. (4.1)

for every prime v - p inert in K, where S[pk] = lim−→n
IndKn/KE[pk]. Since such primes v split

completely in K∞/K, by Shapiro’s lemma and inflation-restriction we find

H1
ur(Kv,S[pk]) ' ker

(
H1(Kv, E[pk])⊗ Λ∨ → H1(Kur

v , E[pk])⊗ Λ∨
)

' H1(Fv, E[pk]Iv)⊗ Λ∨

= (E[pk]Iv/(Frv − 1)E[pk]Iv)⊗ Λ∨,

(4.2)

where Fv is the residue field ofKv, Frv is a Frobenius element at v, and Λ∨ = HomZp(Λ,Qp/Zp).

Since N− is squarefree, any prime v as above is a prime of multiplicative reduction for E,
so by Tate’s uniformization we have

E[p∞] ∼
(
ε ∗
0 1

)
as GKv -modules, where ε is the p-adic cyclotomic character. Since ρ̄E,p is ramified at v, the
image of ‘∗’ in the above matrix generates Qp/Zp. Thus we see that

E[p∞]Iv/(Frv − 1)E[p∞]Iv = 0,

which by (4.2) implies the vanishing of H1
ur(Kv,S[pk]). �
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We conclude this section by recalling Howard’s abstract generalization of Rubin’s height
formula for derived p-adic heights. For every prime v of K above p, let F+

v TpE be the kernel

of the reduction map TpE → TpẼ, where Ẽ is the reduction of E modulo v. Letting V = VpE,
this induces the filtration F+

v V ⊂ V . For every prime v|p of K write

Ĥ1
fin(K∞,v, V ) =

⊕
w|v

Ĥ1(K∞,w,F
+
v V ),

where w runs over the places of K∞ above v. The local pairings in (3.6) induce a semi-local
pairing

〈−,−〉K∞,v : Ĥ1(K∞,v, V )× Ĥ1
fin(K∞,v, V )→ Λ⊗Zp Qp

which induces a perfect duality between the Ĥ1(K∞,v, V )/Ĥ1
fin(K∞,v, V ) and Ĥ1

fin(K∞,v, V ).

Every class z ∈ Ĥ1(K∞, V ) defines a linear map

Lp,z =
∑
v|p

〈Locv(z),−〉K∞,v : Ĥ1
fin(K∞,p, V ) =

⊕
v|p

Ĥ1
fin(K∞,v, V )→ Λ⊗Zp Qp,

Let ord(Lp,z) be the largest integer r such that the image of Lp,z is contained in Jr.

Theorem 4.2. Suppose 0 < r 6 ord(Lp,z). Then z = prK(z) belongs to S
(r)
p (E/K) and for

any w ∈ S(r)
p (E/K), we have

h(r)
p (z, w) = −Lp,z(wp) (mod Jr+1)

where wp = (wv)v|p ∈ Ĥ1
fin(K∞,p, V ) is any semi-local class with prKv(wv) = Locv(w), v|p.

Proof. This is a reformulation of part (c) of Theorem 2.5 in [How04]. Note that the existence of

wp follows from the definition of S
(r)
p (E/K) in op.cit., and the fact that the image Lp,z(wp) ∈

Jr/Jr+1 is independent of the choice of wp is shown in the proof. �

4.2. Derived p-adic heights and the Coleman map. Now we compute the local expres-
sion in Theorem 4.2 for the derived p-adic height pairing in terms of the Coleman map from §3,
yielding our higher rank generalization of Rubin’s formula (Theorem 4.5), which in addition
to playing a key role in the proof of our results, may be of independent interest.

We use the setting and notations introduced after Lemma 3.5. In particular, (p) = pp splits

in K, with p the prime of K above p induced by our fixed embedding Q ↪→ Qp. Let K̂∞ be

the closure of the image of K∞ in Qp under this embedding, and put

Γ∞ = Gal(K∞/K), Γ̂∞ = Gal(K̂∞/Qp),

so naturally Γ̂∞ is a subgroup of Γ∞. Also, we put F = Ĥc for some fixed c prime to p, and
F∞ = Ĥcp∞ , which is a finite extension of K̂∞.

Let e ∈ RψF=0 be a generator over OJG∞K such that e(0) = 1. Define

wη = Ωε
V,1(η ⊗ e) ∈ Ĥ1(F∞, V ), (4.3)

where Ωε
V,1 in is the big exponential map in Theorem 3.2.

As in §3.3, we let σ0 ∈ Gal(F ur
∞/Qp) be such that σ0|Qur

p
= Fr is the absolute Frobenius.

Proposition 4.3. Let Qcyc
p be the cyclotomic Z×p -extension of Qp. Let σcyc ∈ Gal(F ur

∞/Qp)

be the Frobenius such that σcyc|Qcyc
p

= 1 and σcyc|Qur
p

= Fr. For each ẑ ∈ Ĥ1(K̂∞, V ), we have

〈ẑ, corF∞/K̂∞(wη)〉K̂∞ = prK̂∞(Colη(ẑ))

[F :Qp]∑
i=1

σicyc|K̂∞
[F∞ : K̂∞] · hFri

e

∈ WJΓ̂∞K⊗Qp.
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Proof. We first recall that for every e ∈ (R⊗O W)ψF=0, the big exponential map Ωε
V,1(η ⊗ e)

in Theorem 3.2 is given by

Ωε
V,1(η ⊗ e) = (expFn,V (Ξn,V (Ge)))n=0,1,2,..., (4.4)

where Ge ∈ D(V )⊗H1,Q(X) is a solution of (1− ϕ⊗ ϕF )Ge = η ⊗ e and Ξn,V is as in (3.4).
Taking

Ge = Ge =
∞∑
m=0

(ϕ⊗ ϕF )m(η ⊗ e) =
∞∑
m=0

ϕmη ⊗ eFrm ,

we obtain

Ξn,V (Ge) = p−(n+1)(ϕ−(n+1) ⊗ 1)GFr−(n+1)

e (εn)

=
∞∑
m=0

(pϕ)−(n+1)ϕmη ⊗ eFrm−(n+1)

(εn−m).
(4.5)

Put zn = prK̂n(ẑ) and Ĝn = Gal(K̂n/Qp). From the definition of the Coleman map Colεe, and

using in (4.4) and (4.5), we thus find that[
prK̂n(Colεe(ẑ)), η

]
V

=

∞∑
m=0

∑
γ∈Ĝn

exp∗
K̂n,V

(z
γ−1σn+1−m

0
n )γ,

∑
τ∈Ĝn

(pϕ)−(n+1)ϕmη ⊗ eFrm−(n+1)

(εn−m)τσ
n+1−m
0 τ |K̂n


V

,

(4.6)

where exp∗
K̂n,V

is the Bloch–Kato dual exponential map.

On the other hand, it is immediately seen that

prK̂n(〈ẑ, corF∞/K̂∞(wη)〉K̂∞) =
1

[F∞ : K̂∞]

[F :Qp]∑
j=1

prK̂n(〈ẑσ
−j
0 ,wη〉F∞)σj0|K̂n ,

and from (4.6) we find that

prK̂n(〈ẑσ
−j
0 ,wη〉F∞) =

∑
γ∈Ĝn

〈zσ
−j
0 γ−1

n , expFn,V (Ξn,V (Ge)〉Fnγ|K̂n

= TrFn/Qp

∑
γ∈Ĝn

exp∗
K̂n,V

(z
σ−j0 γ−1

n )γ|K̂∞ ,Ξn,V (Ge)


V


=

∞∑
m=0

[F :Qp]∑
i=1

∑
γ∈Ĝn

exp∗
K̂n,V

(z
γ−1σi−j+n+1−m

0
n )γ,

∑
τ∈Ĝn

(pϕ)−(n+1)ϕmη ⊗ eFrm−(n+1)

(εn−m)τσ
i+n+1−m
0 τ |K̂n


=

[F :Qp]∑
i=1

[
prK̂n(Colεe(z

σ−j0 )σ
i
0), η

]
.

Taking the limit over n, we thus arrive at

〈ẑ, corF∞/K̂∞(wη)〉K̂∞ =
1

[F∞ : K̂∞]

[F :Qp]∑
j=1

[F :Qp]∑
i=1

[
prK̂∞(Colεe(ẑ

σ−j0 )σ
i
0), η

]
σj0

=
1

[F∞ : K̂∞]

[F :Qp]∑
i=1

prK̂∞(Colη(ẑ)σ
i
0) · 1

h
σi0
e

,

(4.7)
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using (3.9) for the second equality. Finally, writing gρ = ϕ(1 + X) for the isomorphism ϕ in

(3.8), one has g
σ−i0
ρ (εi−1) = ζpi ∈ Qcyc

p , which immediately implies the relation

prK̂∞(Colη(ẑ)) · σicyc = prK̂∞(Colη(ẑ)σ
i
0).

Together with (4.7), this concludes the proof. �

We shall also need the following result.

Lemma 4.4. The projection of wη to H1(F, V ) is given by

prF (wη) = expF,V

(
1− p−1ϕ−1

1− ϕ
η

)
.

Proof. Let g = η ⊗ e and let G(X) ∈ D(V )⊗H1,Q(X) such that (1− ϕ⊗ ϕF )G = g. Then

G(ε0) = η ⊗ e(ε0)− η + (1− ϕ)−1η,

and by definition,
prF (wη) = corF0/F (Ξ0,V (G)), (4.8)

where Ξ0,V (G) is as in (3.4). Equation (3.1) and the fact that ψFe(X) = 0 imply that∑
ζ∈FFr−1 [p]

eFr−1

(X ⊕F ζ) = 0,

from where we obtain

TrF0/F (GFr−1

(ε0)) =
∑

τ∈Gal(F0/F )

η ⊗ e(ετ0)− η + (1− ϕ)−1η =
pϕ− 1

1− ϕ
η.

Together with (4.8), we thus see that

prF (wη) = expF,V TrF0/F

(
p−1ϕ−1(GFr−1

(ε0))
)

= expF,V
(
(1− p−1ϕ−1)(1− ϕ)−1η

)
,

concluding the proof. �

Recall the identification Kp = Qp, and let H1
fin(Qp, V ) ⊂ H1(Qp, V ) be the subspace given

by H1(Qp,F
+
p V ). As is well-known, H1

fin(Qp, V ) agrees with the Bloch–Kato finite subspace.

Let logQ,V : H1
fin(Qp, V ) → D(V ) be the Bloch–Kato logarithm map, and denote by logωE ,p

the composition

logω,p : H1(Qp, V )
logQ,V−−−−→ D(V )

〈−,ωE⊗t−1〉dR−−−−−−−−−→ Qp (4.9)

For a global class z ∈ Ĥ1(K∞, V ), put

Colη(Locp(z)) :=
∑

σ∈Γ∞/Γ̂∞

Colη(LocP(zσ
−1

))σ ∈ WJΓ∞K, (4.10)

where LocP : Ĥ1(K∞, V )→ Ĥ1(K̂∞, V ) is the restriction map, and let J be the augmentation
ideal of WJΓ∞K.

Theorem 4.5. Let z ∈ Ĥ1(K∞, V ), and denote by r be the largest integer r such that

Colη(Locp(z)) ∈ Jr and Colη(Locp(z)) ∈ Jr,
where z = zτ for the complex conjugation τ ∈ Gal(K/Q). Then for every 0 < r 6 r, the class

z = prK(z) belongs to S
(r)
p (E/K) and for every x ∈ S(r)

p (E/K), we have

h(r)
p (z, x) = −1− p−1αp

1− α−1
p
·
(
Colη(Locp(z)) · logω,p(x) + Colη(Locp(z)) · logω,p(x)

)
(mod Jr+1),

where x = xτ .
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Proof. The inclusion z ∈ S(r)
p (E/K) follows immediately from Theorem 4.2. Let x ∈ S(r)

p (E/K),
and put

wP := corF∞/K̂∞(wη) ∈ Ĥ1
fin(K̂∞, V ).

Then, since dimQp H1
fin(Qp, V ) = 1, we can write

Locp(x) = c · prQp
(wP)

for some c ∈ Qp. Since prQp
(wP) = corF/Qp

(wη), from Lemma 4.4 and (3.14) we see that

〈logQp,V (prQp
(wP)), ωE ⊗ t−1〉dR = [F : Qp] ·

1− α−1
p

1− p−1αp
,

from where we deduce that

c =
1− p−1αp

1− α−1
p
· [F : Qp]

−1 · logωE ,p(x).

Together with the formula in Theorem 4.2, this gives the equality

h(r)
p (z, x) = −1− p−1αp

1− α−1
p
· [F : Qp]

−1

×

 ∑
σ∈Γ∞/Γ̂∞

logωE ,p(x) · 〈LocP(zσ
−1

),wP〉K̂∞σ + logωE ,p(x) · 〈LocP(zσ
−1

),wP〉K̂∞σ


in Jr/Jr+1. Since he ≡ 1 (mod J), as is immediate from the defining relation ρ(1+X) = he ·e
and the fact that e(0) = 1, the result now follows from Proposition 4.3. �

5. Proof of Theorem A

We begin by recalling the setting before concluding the proof. Let E/Q be an elliptic curve
of conductor N with good ordinary reduction at p > 3, and assume that E has root number
+1 and L(E, 1) = 0 (so, of course, ords=1L(E, s) ≥ 2). Let K be an imaginary quadratic field
of discriminant prime to N in which (p) = pp splits, with p the prime of K above p induced
by our fixed embedding Q ↪→ Qp. Let ψ be a ray class character of K of conductor prime to
Np, and as in Conjecture 1.2 assume that

(a) L(EK , 1) · L(E/K,χ, 1) 6= 0,
(b) χ(p) 6= 1,

where χ = ψ/ψτ . In addition, we assume that

(c) E[p] is irreducible as a GQ-module,
(d) N− is square-free,
(e) E[p] is ramified at every prime q|N−,

where N− is the maximal factor of N divisible only by primes inert in K. Let (f, g, g∗) be
the triple consisting of the newform f ∈ S2(Γ0(N)) associated to E and the weight one theta
series associated to ψ and ψ−1, respectively. Finally, put α = ψ(p) and β = ψ(p).

5.1. Generalized Kato classes. By construction, the Hida families

g = gα = θψ(S), g∗ = g∗α−1 = θψ−1(S) ∈ OJSKJqK

considered in §2.4 specialize at S = v−1 to gα and g∗α−1 , the p-stabilizations of g and g∗ with

Up-eigenvalue α and α−1, respectively. Thus for every choice of test vectors (f̆ , ğα, ğ
∗
α−1) the

OJSK-adic class κ(f̆ , ğαğ
∗
α−1) in (3.11) specializes to the generalized Kato class

κα,α−1(f, g, g∗) := κ(f̆ , ğαğ
∗
α−1)|S=v−1 ∈ H1(Q, Vfgg∗),

where Vfgh := Vf ⊗ Vg ⊗ Vh.
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Varying over the possible combinations of roots of the Hecke polynomial at p for g and g∗,
we thus obtain the four generalized Kato classes

κα,α−1(f, g, g∗), κα,β−1(f, g, g∗), κβ,α−1(f, g, g∗), κβ,β−1(f, g, g∗) ∈ H1(Q, Vfgg∗). (5.1)

Note the GQ-module decomposition (1.7) yields

H1(Q, Vfgg∗) ' H1(Q, VpE)⊕H1(Q, VpE ⊗ ad0Vp(g))

' H1(Q, VpE)⊕H1(Q, VpE
K)⊕H1(K,VpE ⊗ χ),

where EK is the twist of E by the quadratic character corresponding to K.

Lemma 5.1. The projections to H1(Q, VpE) of each of the classes in (5.1) lands in Sel(Q, VpE).

Proof. Since we are assuming L(E, 1) = 0 and (a) above, the result follows from the vanishing
of Sel(Q, VpE

K) and Sel(K,VpE ⊗ χ) by the same argument as in Lemma 3.5. �

5.2. Vanishing of κα,β−1(f, g, g∗) and κβ,α−1(f, g, g∗). This part follows easily from the work
of Darmon–Rotger [DR21] and Bertolini–Seveso–Venerucci [BSV21].

Proposition 5.2. κα,β−1(f, g, g∗) = κβ,α−1(f, g, g∗) = 0.

Proof. Let

gα = θψ,α(S2) ∈ OJS2KJqK, g∗β−1 = θψ−1,β−1(S3) ∈ OJS3KJqK

be CM Hida families as in §2.4, but passing through the specialization (gα, gβ−1) rather than
(gα, gα−1). Let

κ(f, gαg
∗
β−1)(S2, S3) ∈ H1(Q,V†fgαg∗β−1

) (5.2)

be the two-variable restriction of the three-variable cohomology class constructed in [DR21]
and [BSV21] (after a choice of level-N test vectors ğα, ğ∗β−1 that we omit from the notation),
and consider the further restriction

κι := κ(f, gαg
∗
β−1)(v(1 + T )− 1,v(1 + T )−1 − 1) ∈ H1(Q,V†fgα(g∗

β−1 )ι),

where V†fgα(g∗
β−1 )ι ' (VpE ⊗ IndQ

Kχ)⊕ (VpE ⊗ IndQ
KΨ1−τ

T ). Thus κι is the restriction of (5.2)

to the line of weights (`, 2− `) (cf. κ(f̆ , ğğ∗) in (3.11), where the line (`, `) is considered).
By definition, we have the equality

κα,β−1(f, g, g∗) = κι(v − 1,v − 1).

As in Theorem 3.6, by [DR21, Prop. 5.8] the restriction Locp(κ
ι) belongs to the natural image

of H1(Qp,F++V†fgα(g∗
β−1 )ι) in H1(Qp,V†fgα(g∗

β−1 )ι), where

F++V†fgα(g∗
β−1 )ι = VpE ⊗ χ−1 + F+VpE ⊗ (Ψ1−τ

T + Ψ1−τ
T ).

Thus the projection κι∞ of κι to H1(Q, VpE⊗IndQ
KΨ1−τ

T ) ' Ĥ1(K∞, VpE) is crystalline at p,
and therefore defines a Selmer class for VpE over the K∞/K. Since under our hypotheses the
space of such anticyclotomic universal norms is trivial by Cornut–Vatsal [CV05], we conclude
that κι∞ = 0. As in the proof of Theorem 3.6, it follows that κα,β−1(f, g, g∗) = 0. The
vanishing of κβ,α−1(f, g, g∗) is shown in the same manner. �
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5.3. The leading term formula. Let J ⊂ Λ be the augmentation ideal, and let

r = ordJ(Θf/K) := sup{s ≥ 0 | Θf/K ∈ Js}.
Since Θf/K is nonzero by [Vat03], r is a well-defined non-negative integer, and since L(E/K, 1) =
0 under our hypotheses, ρ > 0 by the interpolation property. Let

Sel(K,VpE) = S(1)
p ⊃ S(2)

p ⊃ · · · ⊃ S(i)
p ⊃ S(i+1)

p ⊃ · · · ⊃ S(∞)
p = 0 (5.3)

be the filtration in Theorem 4.1, where we have put S
(i)
p = S

(i)
p (E/K) for the ease of notation,

and let
h(i)
p : S(i)

p × S(i)
p → (J i/J i+1)⊗Zp Qp

be the associated derived p-adic height pairings. Note that the vanishing of S
(∞)
p follows from

[CV05]. From Corollary 3.7 and Theorem 4.5 we obtain the following key result.

Theorem 5.3. Let r = ordJ(Θf/K). Then

κα,α−1(f, g, g∗) ∈ S(r)
p , (5.4)

and that for every for every x ∈ S(r)
p we have

h(r)
p (κα,α−1(f, g, g∗), x) =

1− p−1αp

1− α−1
p
·Θf/K · logωE ,p(x) · C (mod J r+1), (5.5)

where αp is the p-adic unit root of X2−ap(E)X+p = 0 and C is a non-zero algebraic number
with C2 ∈ K(χ, αp)

×.

5.4. Non-vanishing of κα,α−1(f, g, g∗). Here we prove the implication (1.10) in Theorem A.

Thus suppose that dimQpSel(Q, VpE) = 2. Since L(EK , 1) 6= 0, we have Sel(Q, VpE
K) = 0

by [Kol88] (or, alternatively, [Kat04]), and therefore

Sel(K,VpE) = Sel(Q, VpE), (r+, r−) = (2, 0), (5.6)

where r± denotes the dimension of the ±-eigenspace of Sel(K,VpE) under the action of com-
plex conjugation τ . Since τ acts as −1 on J/J2, part (4) of Theorem 4.1 gives

h(i)
p (xτ , yτ ) = (−1)rh(i)

p (x, y), (5.7)

and hence from (5.6) we see that for i odd, the null-space of h
(i)
p (i.e., S

(i+1)
p ) is either zero or

two-dimensional, with the latter case occurring as long as S
(i)
p 6= 0. Since on the other hand

h
(i)
p is a non-degenerate alternating pairing on S

(i)
p /S

(i+1)
p for even values of i, unless S

(i)
p = 0,

it follows that (5.3) reduces to

Sel(Q, VpE) = S(1)
p = S(2)

p = · · · = S(r)
p ) S(r+1)

p = · · · = S(∞)
p = 0 (5.8)

for some even r > 2. By Theorem 4.1, we deduce that there is a Λ-module pseudo-isomorphism

Selp∞(E/K∞)∨ ∼ (Λ/Jr)⊕2 ⊕M ′,
where M ′ is a torsion Λ-module with characteristic ideal prime to J . Therefore letting Lp ∈ Λ
be any generator of the characteristic ideal of Selp∞(E/K∞)∨, we have

ordJ(Lp) = 2r.

Finally, the divisibility (Θ2
f/K) ⊃ (Lp) arising from [SU14, §3.6.3] implies that r > r, and

hence S
(r)
p = Sel(Q, VpE) by (5.8). Since by our hypothesis that Sel(Q, VpE) 6= ker(Locp)

we can find x ∈ Sel(Q, VpE) with logωE ,p(x) 6= 0, the non-vanishing of κα,α−1(f, g, g∗) now
follows from the leading term formula (5.5).

Remark 5.4. The same argument as above with β in place of α establishes the non-vanishing
of κβ,β−1(f, g, g∗) under the given hypotheses.
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5.5. Analogue of Kolyvagin’s theorem for κα,α−1(f, g, g∗). Here we prove the implication
(1.9) in Theorem A. As in §5.4, we see that Sel(K,VpE) = Sel(Q, VpE) and the non-trivial
jumps in (5.3) can only occur at even values of i. Thus (5.3) reduces to

Sel(Q, VpE) = S(1)
p = · · · = S(2r1)

p ) S(2r1+1)
p = · · · = S(2rt)

p ) S(2rt+1)
p = · · · = S(∞)

p = 0
(5.9)

for some 1 6 r1 6 · · · 6 rt, and by Theorem 4.1 we have

Selp∞(E/K∞)∨ ∼ (Λ/J2r1)d1 ⊕ · · · ⊕ (Λ/J2rt)⊕dt ⊕M ′

where di = dimQp(S
(2ri)
p /S

(2ri+1)
p ) > 2 and M ′ is as in §5.4. Letting Lp ∈ Λ be a generator of

the characteristic ideal of Selp∞(E/K∞)∨, we therefore have

ordJ(Lp) = 2(r1d1 + · · ·+ rtdt), dimQpSel(Q, VpE) = d1 + · · ·+ dt. (5.10)

Suppose now that κα,α−1(f, g, g∗) 6= 0. By (5.4), it follows that S
(r)
p 6= 0 and therefore

r 6 2rt. (5.11)

On the other hand, the divisibility (Lp) ⊃ (Θ2
f/K) established in [BD05] (as refined in [PW11])

implies that r1d1 + · · ·+ rtdt 6 r; together with (5.11) this yields

2rt > r1d1 + · · ·+ rtdt > 2(r1 + · · ·+ rt),

from which we conclude that t = 1, d1 = 2, and dimQpSel(Q, VpE) = 2.

5.6. Application to the strong elliptic Stark conjecture. We keep the setting from the
beginning of this section, but assume in addition that #Ш(E/Q)[p∞] <∞.

As explained in [DR16, §4.5.3], the p-adic regulators appearing in the elliptic Start conjec-
tures of [DLR15] all vanish in the setting we have placed ourselves in. As a remedy, in [DR16]
they formulated a strengthening of those conjectures in terms of certain enhanced regulators;
in our setting they are given (modulo Q×) by

Logp(P ∧Q) = P ⊗ logp(Q)−Q⊗ logp(P )

where (P,Q) is any basis of E(Q)⊗ZQ. The strong elliptic Stark conjecture then predicts that
the generalized Kato classes κα,α−1(f, g, g∗) and κβ,β−1(f, g, g∗) both agree with Logp(P ∧Q)
up to a nonzero algebraic constant.

In the direction of this conjecture, our methods show that κα,α−1(f, g, g∗) and κβ,β−1(f, g, g∗)
span the same p-adic line as Logp(P ∧Q) inside the 2-dimensional Sel(Q, VpE).

To state the application, we identify J r/J r+1 with Zp in the usual manner by choosing a

topological generator of Γ∞, and let Θ
(r)
f/K ∈ Zp r {0} denote the image of Θf/K (mod J r+1)

under this identification.

Theorem 5.5. Let the setting be as in the beginning of Section 5, and let r = ordJ(Θf/K).
Then, as elements of Sel(Q, VpE) ' E(Q)⊗Z Qp, we have

κα,α−1(f, g, g∗) = C · 1− p−1αp

1− α−1
p
·

Θ
(r)
f/K

h
(r)
p (P,Q)

· Logp(P ∧Q),

where C is nonzero and such that C2 ∈ K(χ, αp)
×. The same result holds of κβ,β−1(f, g, g∗).

Proof. Immediate from the leading term formula of §5.3 applied to x = P and Q. �

Remark 5.6. The term h
(r)
p (P,Q) recovers the derived regulator Rder introduced in [BD95].

Thus Theorem 5.5 links the conjectural algebraicity of the ratio between κα,α−1(f, g, g∗) and
Logp(P∧Q), as predicted in [DR16, §4.5.3], to a refinement of the p-adic Birch and Swinnerton-
Dyer conjecture in [BD96, Conjecture 4.3] formulated in terms of Rder.
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Appendix. Non-vanishing of κα,α−1(f, g, g∗): Numerical examples

In this appendix, we applied Theorem A (particularly, the leading term formula in §5.3) to
exhibit the first examples of non-vanishing generalized Kato classes for rational elliptic curves
of rank 2.

Setting. In the examples tabulated below, we take elliptic curves E/Q with

ords=1L(E, s) = 2 = rankZE(Q)

of conductor N ∈ {q, 2q}, with q an odd prime, and pairs (p,−d) consisting of a prime p > 3
and a squarefree integer −d < 0 such that:

• K = Q(
√
−d) has class number one, q is inert in K, and L(EK , 1) 6= 0,

• p splits in K and E[p] is irreducible as a GQ-module.

Note that such pairs (p,−d) can be easily produced. Indeed, [Rib90, Thm. 1.1] implies that
E[p] must ramify at N− = q, and the irreducibility of E[p] can be verified either by [Maz78]
when p > 11 or by checking (from e.g. Cremona’s tables) that E does not admit any rational
m-isogenies for m > 3.

For every such triple (E, p,−d), there is a ring class character χ of K of `-power conductor
for some prime ` - Np such that L(E/K,χ, 1) 6= 0. (In fact, there are infinitely many such χ,
as follows from [Vat03, Thm. 1.3] and its extension in [CH18, Thm. D].) Writing χ = ψ/ψτ

and letting g = θψ and g∗ = θψ−1 we then have the class

κα,α−1(f, g, g∗) ∈ Sel(Q, VpE)

as in §5.2 (see Lemma 5.1).
Viewing Θf/K as an element in the power series ring ZpJT K as usual, in each of the examples

below we checked that

ordT (Θf/K) = 2. (5.12)

By [BD05, Cor. 3] (using the extension of the main result of [BD05] contained in [PW11]), it
follows that dimQpSel(Q, VpE) = 2. Since the condition Sel(Q, VpE) 6= ker(Locp) is automatic
as long as #E(Q) = ∞, the non-vanishing of κα,α−1(f, g, g∗) in these cases follows directly
from the leading term formula of §5.3.

Verifying order of vanishing 2. Let us add some comments on the verification of (5.12) in the
examples below. Let B be the definite quaternion algebra over Q of discriminant q, let R ⊂ B
be an Eichler order of level N/q, and let Cl(R) be the class group of R. Let

φf : Cl(R)→ Z

be the Hecke eigenfunction associated to f by Jacquet–Langlands, normalized so that φf 6≡ 0
(mod p). Fix an isomorphism ip : R ⊗ Zp ' M2(Zp) and an optimal embedding OK ↪→ R
such that K is sent to a subspace consisting of diagonal matrices, and for a ∈ Z×p and n > 0
put

rn(a) = i−1
p (

(
1 ap−n

0 1

)
) ∈ B̂×,

where B̂ = B ⊗Z Ẑ is the adelic completion of B.

Consider the sequence {P an}n>0 of right R-ideals given by P an := (rn(a)R̂) ∩ B, and define
the n-th theta element Θf/K,n ∈ Zp[T ] by

Θf/K,n :=
1

αn+1
p

pn−1∑
i=0

∑
a∈µp−1

(
αp · φf (P au

i

n )− φf (P au
i

n+1)
)

(1 + T )i,

where αp is the p-adic unit root of x2 − ap(E)x+ p and u = 1 + p.
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By the definition of Θf/K (see e.g. [BD96, §2.7]), we have

Θf/K ≡ Θf/K,n (mod (1 + T )p
n − 1).

Since (pn, (1+T )p
n−1) ⊂ (pn, T p), in the examples listed in the following tables we could verify

(5.12) by computing Θf/K,n mod (pn, T p) for n = 2 and 3, respectively. The computations
were done using the Brandt module package in SAGE.

E p −d Θf/K mod (p2, T p)

389a1 11 −2 10T 2 + 69T 3 + T 4 + 103T 5 + 106T 6 + 66T 7 + 11T 8 + 55T 9 + 110T 10

433a1 11 −7 88T 2 + 22T 3 + 86T 4 + 7T 5 + 10T 6 + 12T 7 + 29T 8 + 88T 9 + 48T 10

446c1 7 −3 22T 2 + 27T 3 + 3T 4 + 16T 5 + 11T 6

563a1 5 −1 18T 2 + 9T 3 + 5T 4

643a1 5 −1 T 2 + 21T 4

709a1 11 −2 27T 2 + 114T 3 + 3T 4 + 14T 5 + 36T 6 + 15T 7 + 42T 8 + 44T 9 + 91T 10

718b1 5 −19 3T 2 + 20T 3 + 12T 4

794a1 7 −3 47T 2 + 23T 3 + 8T 4 + 24T 5 + 7T 6

997b1 11 −2 71T 2 + 41T 3 + 83T 4 + 19T 5 + 114T 6 + 111T 7 + 101T 8 + 46T 9 + 102T 10

997c1 11 −2 54T 2 + 38T 3 + 36T 4 + 81T 5 + 82T 6 + 18T 7 + 72T 8 + 95T 9 + 4T 10

1034a1 5 −19 22T 2 + 4T 3 + 6T 4

1171a1 5 −1 6T 2 + 6T 3 + 20T 4

1483a1 13 −1 128T 2 + 148T 3 + 127T 4 + 162T 5 + 30T 6 + 149T 7 + 141T 8 + 97T 9 +
49T 10 + 13T 11 + 29T 12

1531a1 5 −1 16T 2 + 7T 3 + 21T 4

1613a1 17 −2 128T 2 + 165T 3 + 224T 4 + 287T 5 + 140T 6 + 211T 7 + 147T 8 + 160T 9 +
59T 10 + 122T 11 + 195T 12 + 43T 13 + 207T 14 + 214T 15 + 285T 16

1627a1 13 −1 101T 2 + 151T 3 + 58T 4 + 104T 5 + 3T 6 + 165T 7 + 128T 8 + 63T 9 +
17T 10 + 55T 11 + 166T 12

1907a1 13 −1 72T 2 + 131T 3 + 32T 4 + 142T 5 + 84T 6 + 104T 7 + 90T 8 + 105T 9 +
38T 10 + 92T 11 + 116T 12

1913a1 7 −3 41T 2 + 16T 3 + 28T 4 + 23T 5 + 14T 6

2027a1 13 −1 54T 2 + 128T 3 + 65T 4 + 93T 5 + 83T 6 + 161T 7 + 113T 8 + 133T 9 +
49T 10 + 151T 11 + 13T 12

E p −d Θf/K mod (p3, T p)

571b1 5 −1 100T 2 + 100T 3 + 15T 4

1621a1 11 −2 1089T 2 + 807T 4 + 986T 5 + 586T 6 + 1098T 7 + 772T 8 + 228T 9 + 1296T 10
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