ON THE NON-VANISHING OF GENERALIZED KATO CLASSES FOR
ELLIPTIC CURVES OF RANK TWO

FRANCESC CASTELLA AND MING-LUN HSIEH

ABSTRACT. Let E be an elliptic curve over the rationals, and suppose that L(FE, s) has sign
+1 in its functional equation and vanishes at s = 1. Let p > 3 be a prime of good ordinary
reduction for . A construction of Darmon—Rotger attaches to E, and an auxiliary weight one
cuspidal eigenform g, a Selmer class k, € Sel(Q, V,E). Assuming that L(E,ad’(g),1) # 0,
they conjectured that the following are equivalent: (1) s, # 0, (2) dimq, Sel(Q, V,E) = 2.

In this paper we prove the Darmon—Rotger conjecture when #III(E/Q)[p*°] < oo (in fact,
a weaker condition suffices) and g has CM. The key new ingredient in the proof is a formula
for the leading term of a p-adic L-function attached to E in terms of derived p-adic heights,
which allows us to realize k;, as an explicit nonzero multiple of a p-adic regulator constructed
from a Mordell-Weil basis (P, Q) of E(Q) ® Q.
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1. INTRODUCTION

Let E be an elliptic curve over Q (hence modular, [Wil95, TW95, [BCDT01]) with associated
L-function L(E, s). In the late 1980s, a major advance towards the Birch and Swinnerton-Dyer
conjecture was the proof, by Gross—Zagier and Kolyvagin, of the implication

ords—1 L(E,s) =1 = rankzFE(Q) =1 and #1I(E/Q) < cc. (1.1)

The proof of resorts to choosing an auxiliary imaginary quadratic field K/Q such that
ords—1 L(E/K,s) =1 and for which a Heegner point yx € E(Q) can be constructed using the
theory of complex multiplication. By the Gross—Zagier formula [GZ86], the non-vanishing of
L'(E/K,1) implies that yx has infinite order, and the proof of is reduced to the proof
of the implication

uk ¢ E(Qors 2 Lankz B(Q) = 1 and #11I(E/Q) < oo, (1.2)

which was a celebrated theorem by Kolyvagin [Kol8§].

A more recent major advance towards the Birch and Swinnerton-Dyer conjecture arises from
the works of Kato [Kat04], Skinner-Urban [SU14], Xin Wan [Wan20|, and Skinner [Ski20] on
the Iwasawa main conjectures for elliptic modular forms, which in particular combine to yield
a proof of a p-converse to ((1.2)):

rankzE(Q) = 1 and #II(E/Q)[p™] < 0o 220 41 & E(Q)iors (1.3)

for certain primes p of good ordinary reduction for E. (A slightly different proof of was
independently found by W. Zhang [Zhal4].) When combined with the Gross—Zagier formula,
yields a p-converse to the Gross—Zagier—Kolyvagin theorem .

It is natural to ask about the extension of these results to elliptic curves E/Q of rank r > 1.
As a modest step in this direction, in this paper we prove certain analogues of and
in rank 2, with yx replaced by a generalized Kato class

K, € Sel(Q, V,E)
introduced by Darmon-Rotger, [DR17, DR16]. Here Sel(Q, V,E) C H'(Q, V,E) is the p-adic

Selmer group fitting into the exact sequence
0— E(Q)®z Qp — Sel(Q,V,F) — T,II(E/Q) ®z, Qp — 0,
where T,III(E/Q) is the p-adic Tate module of the Tate-Shafarevich group II(E/Q).

1.1. The Darmon—Rotger conjecture. We begin by briefly recalling the construction of
kp by Darmon-Rotger. One starts by associating to the following data:

e a triple of eigenforms (f, g, h) € Sa(L'o(Ny5)) xS1(T'o(Ng), x) xS1(T'o(Np), x) of weights
(2,1,1) and level prime-to-p with
ng(Nf,NgNh) = 1, (1.4)
e a choice of roots v € {ay, By} and § € {ay,, Br} of the Hecke polynomials of g and h
at p, respectively,

a global cohomology class
H'yﬁ(fv g, h‘) € Hl(Qv Vfgh)a
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where Vigy = Vp(f) @ Vp(g) ® V,p(h) is the tensor product of the p-adic Galois representations
associated to f, g and h. Letting ¢” and h” be the p-stabilizations of ¢ and h with U,-eigenvalue
~ and §, respectively, this is defined as the p-adic limit

K’y,ﬁ(f’gah) = %1_1& H(fag€7h€)7 (15)

where (g,, hy) ranges over the classical weight ¢ > 2 specializations of Hida families g and h
passing through ¢° and h’, respectively, in weight 1, and x(f, k¢, hy) is obtained from the p-adic
étale Abel-Jacobi image of generalized Gross—Kudla—Schoen diagonal cycles, [GK92) [GS95],
on a triple product of Kuga—Sato varieties fibered over modular curves.

Remark 1.1. Under assumption on the levels, the sign in the functional equation for the
triple product L-series L(s, f®g,® hy) is —1 for all £ > 2; in particular, L(1, f®g,®@hy) = 0,
and by the Gross—Zagier formula for diagonal cycles (proved in [YZZ12] for ¢ = 2), the classes
k(f,gg, he) should be non-trivial precisely when L'(1, f ® g,@hy) # 0. On the other hand, the
global root number of L(s, f ® g ® h) is +1, and it is precisely this sign-change phenomenon
between weight ¢ > 2 and £ = 1 that makes it possible for the p-adic limit construction
to yield interesting cohomology classes in situations of even analytic rank; in fact, as we recall
below, classes that are crystalline at p precisely when ords—; L(s, f ® g ® h) > 2.

Assuming p > 3 is a prime of good ordinary reduction for f, the explicit reciprocity law of
[DR17] yields a formula of the form

exp;(n%(g(f,g, h)) = L(1, f ® g ® h) - (nonzero constant), (1.6)

where expy, : HY(Q, Vigh) — Qp is the composition of the restriction map Loc,, : HY(Q, Vigh) =
H! (Qp, Vign) with the Bloch-Kato dual exponential map (paired against a differential attached
to (f,g,h)). In particular, the class s, 5(f,g,h) is crystalline at p, and therefore lands in the
Bloch-Kato Selmer group Sel(Q, Vy,) C HY(Q, Viyp), precisely when L(s, f ® g® h) vanishes
at s = 1.

With the different choices for v and 4, one thus obtains up to four a priori distinct classes
ky5(f,9,h) € Sel(Q, Vign) whenever L(1, f ® g ® h) = 0, which Darmon-Rotger conjectured
to span a non-trivial subspace of Sel(Q, Vygp) if and only if Sel(Q, Vign) is two-dimensional.
In particular, this construction of ,;5(f,g,h) yields Selmer classes with a bearing on the
arithmetic of elliptic curves E/Q by taking f to be the newform associated to F, and h = g*
to be the dual of g, so that the triple tensor product Vy,;, decomposes as

Vigh = V,E & (V,E ® ad'Vy(g)). (L.7)

where ad’V},(g) is the three-dimensional G q-representation on the space of trace zero endo-
morphisms of V,(g). Correspondingly, L(s, f ® g ® h) factors as

L(s,f®g®h) = L(E,s) - L(E,ad’(g), s).

In particular, by (|1.6), whenever L(E, 1) = 0 the above construction yields the four generalized
Kato classes

Fagart (1,9:9%): Koy 51 (F,9,9%), K o1 (f9,97), kg, 5-1(f,9:97) (1.8)
in the Selmer group
Sel(Q, Vign) =~ Sel(Q, V,E) @ Sel(Q, V,E @ ad’V,(g)).

Assuming that L(F,ad’(g),1) # 0 (which implies that Sel(Q, V,E ® ad’V,(g)) = 0 by the
Bloch-Kato conjecture), the non-vanishing criterion conjectured in [DR16, Conj. 3.2] leads to
the following prediction (see the “adjoint rank (2,0) setting” discussed in [DRI7, §4.5.3]).

Conjecture 1.2 (Darmon—Rotger). Suppose that L(E, s) has sign +1 and vanishes at s = 1,
and that L(E,ad’(g),1) # 0. Then the following are equivalent:
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(i) The four classes in (1.8) span a non-trivial subspace of Sel(Q, V,E).
(ii) dimg,Sel(Q, V,E) = 2.

Remark 1.3. Of course, by the Birch and Swinnerton-Dyer conjecture, condition (ii) should be
equivalent to the condition ords—; L(E,s) = 2, but unfortunately this still seems completely
out of reach. More generally, [DR16, Conj. 3.2] posits a similar non-vanishing criterion for the
span of the classes k,5(f, g, h) attached to any triple (f,g,h) as above, but Conjecture
encompasses all the cases of relevance for the study of elliptic curves F/Q of rank 2.

Note that Conjecture does not predict that the four classes in (1.8) generate Sel(Q, V,E).
In fact, a strengthtening of the elliptic Stark conjectures in [DLR15] predicts that in the setting
of Conjecture only the classes Hoég7a;1(f’ g,9%) and K, 50t (f,9,9%) are nonzero, and they

are the same class up to a nonzero algebraic constant. Our results also provide evidence for
this remarkable prediction (see Remark below and for further details).

1.2. Statement of the main result. In this paper we prove Conjecture[l.2]in the case when
g has CM, assuming #III(E/Q)[p™] < oo (in fact, a weaker condition suffices) for one of the
implications.

As before, let £/Q be an elliptic curve with good ordinary reduction at p > 3, and let f €
So(T'o(Ny)) be the associated newform. Let K be an imaginary quadratic field of discriminant
prime of Ny in which (p) = pp splits, and let 1) be a ray class character of K of conductor
prime to pN; valued in a number field L. The weight one theta series g = 0, then satisfies

L(E,ad%(g),s) = L(EX,s) - L(E/K, x, s),

where EX is the twist of F by the quadratic character associated to K, and Y is the ring class
character given by v /47, for 9™ the composition of 1) with the action of complex conjugation.
Clearly, in this case we may take ay = ¥ (p) and Sy = ¢(p), which we shall simply denote by «
and 3, respectively, and ¢* is the theta series of ¢»~1. As in the formulation of the conjectures
in [DR16], we assume that oy # g, i.e., x(p) # 1.

Let pgp : Gq — Autr, (E[p]) the mod p representation associated to E, and denote by N
the largest factor of Ny divisible only by primes that are inert in K. Finally, let

Loc, : Sel(Q, V,E) — HY(Q,, V,E)
be the restriction map at p.
Theorem A. Suppose that L(E,s) has sign +1 and vanishes at s = 1, and that L(E¥,1) -
L(E/K,x,1) # 0. Suppose also that:
(a) pE,p is irreducible,
(b) Ny is squarefree,
(c) pEp is ramified at every prime q|N .
Then ko g-1(f,9,9) = kga-1(f,9,9%) = 0, and the following hold:
Kaa-1(f,9,9") #0 = dimq,Sel(Q,V,E) = 2, (1.9)
and conversely,
dimq, Sel(Q, V, B) = 2
p — — * 0 1].0
In particular, if Sel(Q, V,) # ker(Loc,) then Conjecture holds.

If L(E,s) has sign +1 and pg, is irreducible and ramified at some prime ¢ # p (as is
automatic if e.g. E' is semistable and p > 11 is good ordinary for E, by [Rib90] and [Maz78]),
the non-vanishing results of [BEH90] and [Vat03] assure the existence of infinitely many imag-
inary quadratic fields K and ring class characters x such that L(EX 1) L(E/K,x,1) # 0.
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Therefore, Theorem A suggests a general construction of non-trivial p-adic Selmer classes for
elliptic curves of rank two.

Remark 1.4. The condition Sel(Q, V,E) # ker(Loc,) should always hold when Sel(Q, V, E) #
0. Indeed, if Sel(Q, V,E) equals ker(Locy), then E(Q) must be finite (since E(Q) injects into
E(Qp)), so if also Sel(Q, V,E) # 0 we would conclude that III(E/Q)[p™] is infinite.

Remark 1.5. 1t also follows from our results that, for g = 6, as above, the classes x, o-1(f, g, 9%)
?nd kg,-1(f,9,9") are the same up to a nonzero algebraic constant, and they span the p-adic
ine

% = ker(log,) C Sel(Q, V,E),
where log,, : Sel(Q, V,F) — Q,, is the composition of Loc, with the formal group logarithm of
E. When #III(E/Q)[p™] < oo, it is suggestive to view %), as the line spanned by the image
of PANQ:=P®Q—-Q®P e A\*(E(Q) ®Q) under the natural map

2
Log,: /\(E(Q) ®Q) - E(Q) ® Q,

induced by the p-adic logarithm map log,, : F(Q)®Q — E(Q,)®Q — Q. This is consistent
with the refined predictions by Darmon—Rotger (see [DR16], §4.5.3]), and substantiates viewing

implications (1.9) and (1.10)) in Theorem A as counterparts of ((1.2)) and ({1.3)), respectively, in
rank 2.

Remark 1.6. Assuming rankzF(Q) = 2 and the finiteness of #I1I(E/Q)[p™], a refinement of
Conjecture predicting the position of k. 5(f, g,g") relative to the natural rational structure
on Sel(Q, V,F) = E(Q) ® Q, leads to the expectation

N ? *
/{aya_1(f,g,g) ~g" Logp(P/\Q) ~q* /{ng_l(f,g,g) (1.11)

where (P,Q) is any basis for E(Q) ® Q and ~g denotes equality up to multiplication

by an non-zero algebraic number. Our methods confirm the relation r, o-1(f,g,9") ~g*
kga-1(f,9,9%) and in Theorem [5.5] we show that

K“a,afl(.ﬂgvg*) ~Qx C- LOgP(P A Q)? (112)

where C' € Q' is the ratio between the the leading coefficient of the anticyclotomic p-adic L-
function of F/K and the derived p-adic height pairing of P and @. In particular, this implies
that the conjectured algebraicity in can be linked to a p-adic Birch and Swinnerton-Dyer
conjecture refining [BD96, Conjecture 4.3] (see for details).

The essential new ingredient in the proof of Theorem A is a formula for the leading term
at T' = 0 of an anticyclotomic p-adic L-function O, € Z,[T] attached to E/K in terms of
anticyclotomic derived p-adic heights (see Theorem [5.3). This leading term formula also leads
to the expression for s, o-1(f,g,g") yielding and is used in the Appendix of this paper
to exhibit the first examples of non-vanishing generalized Kato classes for elliptic curves E
over Q of rank two, answering a question (or “an interesting challenge”; see [DR16) p. 31])
posed by Darmon—-Rotger.

1.3. Relation to previous work. Prior to this paper, the only general results known to the
present authors on the existence on nonzero Selmer classes for elliptic curves E/Q of rank r > 1
are those to appear in forthcoming work by Skinner—Urban, as reported on in [Urb13]. Their
methods, which extend those outlined in their ICM address [SUQ6] for cuspidal eigenforms of
weight k& > 4, are completely different form ours.

On the other hand, the celebrated work of Darmon—Rotger [DR17] exhibited, under a non-
vanishing hypothesis, the existence of two linearly independent classes in the Selmer groups
Sel(Q, Vo, E ® p) of elliptic curves E/Q twisted by degree four Artin representations p. The
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required non-vanishing is that of a special value %5 of a certain p-adic L-function playing the
role of a second derivative. Both their works and ours exploit the construction of generalized
Kato classes introduced in [DR17], but in the setting we have placed ourselves in, the special
value .£* vanishes. Our analysis in this paper fundamentally exploits anticyclotomic Iwasawa
theory and derived p-adic heights, both of which make no appearance in [DR17].

Finally, as alluded to above, a key ingredient in the proof of our main results is a leading
term formula for ©;/x in terms of anticyclotomic derived p-adic heights. In the cyclotomic
setting, and for the usual p-adic height pairing, a formula of this sort for the first derivative of
a p-adic L-function is due to Rubin [Rub94]. An abstract generalization of Rubin’s formula for
derived p-adic heights was given by Howard [How04] in terms of a cohomologically defined “p-
adic L-function”. Howard’s foundational results on derived p-adic heights will be our starting
point in §4, which, as far as we know, contains the first explicit computation of a generalized
Rubin formula for genuinely derived p-adic heights.

2. TRIPLE PRODUCTS AND THETA ELEMENTS

In this section we describe the triple product p-adic L-function for Hida families [Hsi21], and
recall its relation with the square-root anticyclotomic p-adic L-functions of Bertolini-Darmon
[BDI6].

2.1. Ordinary A-adic forms. Fix a prime p > 2. Let I be a normal domain finite flat over
A = O[1 + pZ,], where O is the ring of integers of a finite extension L/Q,. We say that a
point x € Spec H(Qp) is locally algebraic if its restriction to 1+ pZ, is given by z(7) = v e, (7)
for some integer k,, called the weight of x, and some finite order character €, : 14+pZ, — fipoo;
we say that x is arithmetic if it has weight k; > 2. Let Z{Er be the set of arithmetic points.

Fix a positive integer N prime to p, and let x : (Z/NpZ)* — O* be a Dirichlet character
modulo Np. Let S°(N, x,I) be the space of ordinary I-adic cusp forms of tame level N and
branch character x, consisting of formal power series

£(@) = an(f)q" €Tq]
n=1

such that for every x € %f the specialization f,(q) is the g-expansion of a p-ordinary cusp
form f, € Sg, (Np=T! xw? Fz¢,). Here r, > 0 is such that e,(1+ p) has exact order p"=, and
w: (Z/pZ)* — pp—1 is the Teichmiiller character.

We say that f € S°(N, x, 1) is a primitive Hida family if for every x € f{f’ we have that f,
is an ordinary p-stabilized newform (in the sense of [Hsi21, Def. 2.4]) of tame level N. Given
a primitive Hida family f € S°(N, x,I), and writing x = x'x, with X’ (resp. x;) a Dirichlet
modulo N (resp. p), there is a primitive f* € S°(N, x, X', I) with Fourier coefficients

aé(fb) _ Yl(g)aﬂ(f) iff)[N,
ag(£) " xpw? (O (O™ i C| N,

having the property that for every x € %f the specialization f?, is the p-stabilized newform
attached to the character twist f, ® X'. Let T°(N, x,I) be the I-algebra generated by Hecke
operators acting on S°(N, x,I) and let A : T°(N, x,I) — I be the I-algebra homomoprhism
induced by f. Let C'(A\f) be the congruence module associated with A\¢ ([Hid8S8, (5.1)]) and
let g := Anng(C(Ag)) be the congruence ideal of f.

By [Hid86] (¢f. [Wil88 Thm. 2.2.1]), attached to every primitive Hida family f € S°(N, x,I)
there is a continuous I-adic representation p¢ : Gq — GLa(Frac I) which is unramified outside
Np and such that for every prime ¢ { Np,

tr pg(Froby) = as(f), det py(Froby) = xw?(£) ()10,
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where (£); € I* is the image of (¢) := fw™1(¢) € 1 + pZ, under the natural map 1 + pZ, —
O[1 +pZ,]* = A* — I*. In particular, letting (ecyc)r : G — I* be defined by (ecyc)1(0) =
(€cye(0))1, it follows that py has determinant x; lsgylc, where x1 : Gq — I* is given by
X1 := 0y (Eeye) " 2(Eeye)1, With oy, the Galois character sending Frob, + x(¢)~!. Moreover, by
[Wil88, Thm. 2.2.2] the restriction of py to Gq, is given by

vf * )
~ -1 2.1
pf‘GQp < 0 1/1f1X]1 18cylc ( )
where ¢ : Gq, — I* is the unramified character with 1z (Frob,) = a,(f).

2.2. Triple product p-adic L-function. Let

(f797 )GSO(Nf Xfa]If)XS( gan7 )XS(Nquha]Ih)
be a triple of primitive Hida families. Set

R = 1;®0lg®olh,

which is a finite extension of the three-variable Iwasawa algebra Rg := A®oA®oA, and define
the weight space %'f for the triple (f, g, h) in the f-dominated unbalanced range by

xf = {(x,y, 2) € X X X X XSE ¢ kg > ky + ke and kg = ky + k. (mod 2)} . (2.2)

where %HC;S D %E; (and similarly f{]‘f}f) is the set of locally algebraic points in Spec I, (Qp) for
which g, (g) is the ¢g-expansion of a classical modular form.

For ¢ € {f,g,h} and a positive integer N prime to p and divisible by Ng, define the space
of A-adic test vectors S°(N,x¢,ls)[@] of level N to be the Iy-submodule of S°(N, x4, 1e)
generated by {¢(¢?)}, as d ranges over the positive divisors of N /Ng.

For the next result, set N :=lcm(Ng, Ng, Np), and consider the following hypothesis:

for some (z,y,2) € %72, we have e4(f3, gy, h;) = +1 for all ¢ [ N. (X~ =0)
Here e4(f3, gy, h?) denotes the local root number of the Kummer self-dual twist of the Galois

representations attached to the newforms f7, g, and h? corresponding to f,, gy, and h.

Theorem 2.1. In addition to the condition (X~ = (), assume that the triple (f, g, h) satisfies
(ev) XfXgXn = w® for some a € Z,
(sq) ged(Ng, Ng, Np) is squarefree.

Then there exist A-adic test vectors (i

P
such that H - gf(f g, h) € R for any H € ng and that for all (z,y,z) € x5 of weight
(k,0,m):
r v I I‘(kﬁm) (.fvg7 f®g®ho)
gf h 2 _ [ g) . ) Iy Y
P (i‘)g?—)(x7y7z) 2a(k,€,m) g()(f gl f$ ch k- 2) ”f H2 Y
where:
o c— (k+€—|—m—2)/2,
. ( m)=(c=D!-(c=m)l-(c= Ol (c+1-L—m),
o afk, 6 m) € R is a linear form in the variables k, ¢, m,
¢ E(frrgy he) = (1 ety Oralagtney(y  Oratauey(y  Oraafs)
B B
b go(f:v):( fz) 51(fx)_( Lo )7

pag,
and || fo|* is the Petersson norm of f5 on I'o(Ny).
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Proof. This is [Hsi21, Theorem A]. The construction of gpf (i, g, h) under hypotheses (CR),

(ev), and (sq) is given in [Hsi21l §3.6] (where it is denoted flf ), and the proof of its interpo-
lation property assuming (X~ = (}) is contained in [Hsi21, §7]. O

Remark 2.2. The definition of fpf (}', g, E) makes sense for any choice of test vectors }', g, ﬁ),
and even though in our applications we shall use the choice provided by Theorem in the
following we shall also consider other choices (see esp. Theorem [3.6]).

2.3. Triple tensor product of big Galois representations. Let (f, g, h) be a triple of
primitive Hida families with x fxgxn = w?® for some a € Z. For ¢ € {f, g, h}, let Vj be the
natural lattice in (Frac H¢)2 realizing the Galois representation pg in the étale cohomology of
modular curves (see [Oht00]), and set

Vign = Vf®ng®th.

This has rank 8 over R, and by hypothesis its determinant can be written as det Vygp = X Zecyc
for a p-ramified Galois character X taking the value (—1)* at complex conjugation. Similarly
as in [How07, Def. 2.1.3], we define the critical twist

T -1
Vfgh =Vegn @ X

More generally, for any multiple NV of Ng one can define Galois modules V() by working in
tame level N; these split non-canonically into a finite direct sum of the I4-adic representations
Ve (see [DR1T, §1.5.3]), and they define V}gh(N) for any N divisible by lem(Ny¢, Ng, Np).

If f is a classical specialization of f with associated p-adic Galois representation V¢, we let
V. gn be the quotient of Vggp given by

Vf’gh = Vf Ko V9®HVh.
Denote by V} gn the corresponding quotient of VTf gh» and by V}, gh(N ) its level N counterpart.

2.4. Theta elements and factorization. We recall the factorization proven in [Hsi21l §8].
Let f € Sa(pNy) be a p-stabilized newform of tame level Ny defined over O, let f° € Sa(Ny)
be the associated newform, and let a;, = a,(f) € O* be the U,-eigenvalue of f. Let K be an
imaginary quadratic field of discriminant Dy prime to Ny. Write

Ny=NTN-
with N (resp. N™) divisible only by primes which are split (resp. inert) in K, and choose
an ideal Mt C Ok with O /NT ~ Z/N*Z.
Assume that (p) = pp splits in K, with our fixed embedding ¢, : Q < C,, inducing the prime
p. Let I's be the Galois group of the anticyclotomic Z,-extension K /K, fix a topological
generator v € I's, and identity O[] with the power series ring O[T] via v — 1+ T. For

any prime-to-p ideal a of K, let o, be the image of a in the Galois group of the ray class field
K(p>®)/K of conductor p* under the geometrically normalized reciprocity law map.

Theorem 2.3. Let x be a ring class character of K of conductor cOg with values in O, and
assume that:
(i) (pNy,cDg) =1,

(ii) N~ is the squarefree product of an odd number of primes,

(iii) if ¢|N~ is a prime with ¢ =1 (mod p), then ps is ramified at q.
There exists a unique element O (T) € O[T] ®o Frac O such that for every p-power root
of unity C:

n , LUP/K @ yee, 1

p ) 2
O /k, (¢ = 1) = - E(f,x:0) ~u3e/Drxec(om+) - ep,
f/Kx agn P (27)2 - 4||f0”12“0(Nfo) K ¢\Oo+ P
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where:

e n > 0 is such that ( has exact order p",
o e : I'oc = ppeo be the character defined by ec(vy) =,

(1= 'x(0)(1 = apx(p)) if n=0,
5 ? Y = P
* &lf:x:¢) {1 ifn >0,
e oyt € I is the image of T under the geometrically normalized Artin’s reciprocity

map,
o ug = |0x|/2, and e, € {£1} is the local root number of f° at p.

Proof. See [BD96] for the first construction, and [CH18, Thm. A] for the stated interpolation
property. O

When y is the trivial character, we write © ¢/, (T') simply as O,k (T). Suppose now that
the newform f as in Theorem is the specialization of a primitive Hida family f € S°(Ny, 1)
with branch character xy = 1 at an arithmetic point z;, € %{ of weight 2. Let £{pNy be a
prime split in K, and let x be a ring class character of K of conductor £ Oy for some m > 0.
Suppose that xy = ¢'~7 with 1 a ray class character modulo /™ O. Set C' = Dg/?>™ and let

g =0y(52) € O[S:]lql, g" =6,-1(53) € O[S5][d]

be the primitive CM Hida families of level C' constructed in [Hsi21l §8.3]. The p-adic triple
product L-function of Theorem [2.1| attached to the triple (f,g,g*) (taking a = —1 in (ev)) is
an element in R = ISy, S3]; in the following we let

2] (f.99") € O[5]
denote the restriction to the “line” S = .Sy = S5 of its image under the specialization map at
I1.
Let K be the Zf,—extension of K, and let Ky denote the p-ramified Z,-extension in K,

with Galois group I'yee = Gal(Kp~/K). Let 4, € 'y be a topological generator, and for the
formal variable T let ¥r : Gal(Koo/K) — O[T]* be the universal character defined by

Ur(o) = (1+ 1)@, where o]k, = 1" - (2.3)

Denoting by the superscript 7 the action of the non-trivial automorphism of K/Q, the char-
acter W1, factors through T's, and yields an identification O[['s] =~ O[T corresponding to
the topological generator ’y;*T € I'ss. Let p® be the order of the p-part of the class number
of K. Hereafter, we shall fix v € 2; such that vP’ = Ecyc(’yf;b) €1+ pZ,. Let K(x,ap)/K
(resp. K(x)/K) be the finite extension obtained by adjoining to K the values of x and a,
(resp. the values of x).

Proposition 2.4. Set T = v~ 1(1+S) — 1. Then

ZI(F,987) = V5 owe) - Ok (T) - Cpy LA/ @ x, 1),

where C¢ € K(x,ap)* and

_ Lf/Kox,1)

LY(f/K @y, 1) = I o

5 € K(x).
HFO(NfO)

Proof. This is the factorization formula of [Hsi21l Prop. 8.1] specialized to S = Sy = S5, using
the interpolation property of Ok \(T) at ¢ = 1. g

Remark 2.5. The factorization of Proposition [2.4] reflects the decomposition of Galois repre-
sentations

Vh g = (Vi(1) @ nd20577) & (Vi (1) @ IndZx). (2.4)
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Note that the first summand is the anticyclotomic deformation of V¢(1), while the second is
a fixed character twist of V(1).

3. COLEMAN MAP FOR RELATIVE LUBIN-TATE GROUPS

In this section we review some elements of Perrin-Riou’s theory [PR94| of big exponential
maps, as extended by Kobayashi [Kobl8] to Z,-extensions arising from relative Lubin-Tate
groups of height one. Applied to local extensions arising from the anticyclotomic Z,-extension
of an imaginary quadratic field K in which p splits, we deduce, by the results of §2|and [DR17],
a Coleman power series construction of the p-adic L-function O, of Theorem @ that will
play an important role later.

3.1. Preliminaries. Fix a complete algebraic closure C, of Q,. Let Q) C C, be the
maximal unramified extension of Qp, and let Fr € Gal(Q,"/Qy) be the absolute Frobenius.
Let F' C Q" be a finite unramified extension of Q, with valuation ring & and set

R = O0[X].

Let F = Spf R be a relative Lubin—Tate formal group of height one defined over &', and for
each n € Z set
F .= F Xgpec o Fr— Opec 0.

The Frobenius morphism ¢ € Hom(F, F (_1)) induces a homomorphism ¢ r: R — R defined
by
wr(f) = f"oor,
where f is the conjugate of f by Fr. Let ¢7 be the left inverse of ¢ satisfying
provr(f)=p" Y f(Xa@raz). (3.1)
zE€F[p]

Let Fi /F' be the Lubin-Tate Z, -extension of F associated with F, i.e., Foo = U,2; F(F[p"]),
and for every n > —1 let F,, be the subfield of F, with Gal(F,/F) ~ (Z/p"*t'Z)*. (Hence,
F_1 = F.) Letting G = Gal(F/F), there is a canonical decomposition

Goo >~ A x T,

with A the torsion subgroup of Gy, and I'Z, ~ Z, the maximal torsion-free quotient of G'.
For every a € Z, there is a unique formal power series [a] € R such that

[a)" o pr = prola] and [a](X)=aX (mod X?).
Letting e7: Goo — Z; be the Lubin-Tate character, we let o € G act on f € R by
0 f(X) = F(ex(0) (X)),
thus making R into an O[Gs]-module.
Lemma 3.1. R¥Y7=0 is free of rank one over O[G].
Proof. This is a standard fact, see e.g. [Kobl8, Prop. 5.4]. O

Let V' be a crystalline Gq,-representation defined over a finite extension L of Q) with ring
of integers Op. Let D(V') = Dyis,q, (V') be the filtered ¢-module associated with V' and set

D5o(V) :=D(V) @z, R¥*=°.
Fix an invariant differential wr € Qp, and let logr € R@Qp be the logarithm map satisfying
logr(0) =0 and dlogr = wr,

where d : R — Qg be the standard derivation.
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Let € = (ep) € TpF = @f(”) [p"] be a basis of the Tate module of F, where the limit is
with respect to the transition maps

S0Fr‘(n+1) . J—_-(n—i-l) [pn+l] N f-(n) [pn]
One can associate to € and wr a p-adic period t. € Bctis such that
Deis,r(er) = Ft;l and ot. = wt,, (3.2)
where @ is the uniformizer in F such that ¢%(w5) = @ - wr (see [KobI8, §9.2]). For j € Z,
the Lubin-Tate twist V(j) := V ®r, £’ then satisfies
Dcris,F(V<j>) = D(V) ®Qp Fte_j'
There is a derivation d. : Zoo(V (j)) = Deris p(V (§)) ®o RY7=0 — Do (V (j — 1)) given by
de: f=n®g—nte® dyg,
where 0: R — R is defined by df = df - wr. These give rise to the map
x. Dcris,F(V<_j>)
A: Doo(V) — @ e (3.3)
JEZ
sending f — (87 f(0)t (mod 1 — ©));j-
3.2. Perrin-Riou’s big exponential map. For a finite extension K over Q,, let
expgy: D(V) ®q, K — H'(K,V)
be Bloch—Kato’s exponential map [BK90, §3]. In this subsection, we recall the main properties
of Perrin-Riou’s map {2y, interpolating exp K,v(j) Over non-negative j € Z.
Let V* := Homp(V, L(1)) be the Kummer dual of V' and denote by
- -y :DVH®KxD(V)®K - L® K
the K-linear extension of the de Rham pairing
(,)ar: D(V*) x D(V) — L.
Let expj( : HY(K,V) — D(V) ® K be the Bloch-Kato dual exponential map, which is
characterized uniquely by
Tr)q, [z, expk,v (¥)]v) = (expg v+(2), Y)ar,
for all z € D(V*) ® K and y € HY(K, V).
Choose a O -lattice T C V stable under the Galois action, and set H (Fio, T) = Jim HY(F,,T)
and
HY(Fo,V) = H' (Fs, T) ®2z, Qp,
which does not depend on the choice of T'. Denote by
Tw/ : HY(Fao, V) ~ HY(Foo, V(5))

the twisting map by Ejf. For a non-negative real number r, put

26k (X) = Z cnr -7 X" € K[A][X] | sup |epr|,n™" < oo forall T €A,
n>0,7€A n
where ||, is the normalized valuation of K with | p= p~ L. Let 7 be a topological generator of

I'Z, and denote by 7%, k(Go) the ring of elements {f(y—1): f € 5. x(X)}, so in particular
H,k(Goo) = Ok [Goo] ®0, K. Put

Hoo ik (Goo) = | ] #0.1(Goo).

r=0
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Define the map
Env: D(V) RQ, o 7 (X) = D(V) ®Q, In
by
_ ( ) B p_(n—,_l)@_(n—i_l) (GFr*(nle)(En)) lf n 2 O7 (3 4)
" (1—p L )(G(0) ifn =1, |
and let A = Z,[G].

Theorem 3.2. Let € = (e,) be a basis of T,F, let h > 0 be such that D(V) = Fil""D(V),
and assume that H*(F, V) = 0. There exists A-linear “big exponential map”

St Doo(V)A0 = HY (Fao, T) @5 S 1 (Goo)
such that for every g € .@oo(V)AZO and j = 1 — h satisfies the interpolation property
pry, (Tw 0 Q4(9)) = (=171 A+ j = D! expp, vy Envi (d7G)) € H (Fa, V()
where G € D(V) ®q, #4,7(X) is a solution of the equation
(1-¢p®pr)G=yg.
Moreover, these maps satisfy
Tw’ o Qypo d/ = Q§/<j>,h+j’
and if j < —h then
1

expr, vy (Prp, (Tw; 0 2y 5,(9))) = hon Envi)(d?G)) € D(V())) ®q, Fui
and if D) C D(V') is a p-invariant subspace in which all p-eigenvalues have p-adic valuation
at most s, then Q%/,h maps (Diy @z, wa:o)AZO into IfII(FOO,T) Q5 Hirh,F(Goo)-

Proof. For F = (A}m, the construction of Q; 5, and its interpolation property for j > 1 — h is
due to Perrin-Riou [PR94]; the interpolation formula for j < —h is due to Colmez [Col98§].
The extension of these results to Z,-extensions arising from relative Lubin-Tate formal groups
of height one is given in [Kobl8, Appendix]. O

3.3. The Coleman map. From now on, we assume that
Too( V)30 = 2 (V), (3.5)

ie., A=0 (note that by 1’ this is a condition on the ¢-eigenvalues on Dgis 7 (V')), and for
simplicity for any field extension M/Q, we write ¢ for 7 pr(Go). Let

[—, —]V : D(V*) ®Qp T X D(V) ®Qp Hr — L ®Qp W 4
be the pairing defined by

M1 ® A1,m2 @ Xaly, = (N1, Mm2)dR @ A1 )5

for all A1, Ao € F%.

Recall that Fy, = J,, Fyy, and let (—, —) g, be the local Tate pairing H(F,,, T*)xHY(F,,, T) —
Op. Letting x = (x,), and y = (yn)n be sequences in H!(F, T*) and H(F, T), these ex-
tend to a Op[Go]-linear pairing

<*7 7>Foo : ﬁl(FOO’T*) X ﬁl(FOOaT) — OL[[Goo]]

1

by defining (z, y) p, to be the limit of the compatible elements 3 e p, /m) (@ Yn)F,[0] €
Or[Gal(F,/F)]. After inverting p, this extends to a pairing

(= =)o B (Foo, V) x HY(Foo, V) = L ®q, #4,. (3.6)
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Definition 3.3. Let e € RY7=0 be a 0[G]-module generator, and let € a generator of T,F.
The Coleman map

Cols: H(Fuo, V*) = D(V*) ®q,
is the L ®q,, F-linear map uniquely characterized by

Trpyq,([Cole(z),nly) = (2, (0 @ €)) r. (3.7)
for all n € D(V).

Let Q be the completion of Q)" in Cp, with ring of integers W, and set F})* = F, Q" for
—1<n<oo (so FY = F"). Let 09 € Gal(F5/Qp) be such that og|qy = Fr is the absolute
Frobenius.

Fix an isomorphism

p:Gp~F (3.8)
defined over W and let p: W[T] ~ R ®4 W be the map defined by p(f) = fop~ !, so
prop=pTopg .
Fix also a O[Gs]-generator e € R¥7=0 and let he € W[Goo] be such that p(1+ X) = he - e.

Note that e(0) € 0*. Fix a sequence ((p») of primitive p™-th root of unity giving a generator
of T,G,, and let € = (ey,) be the generator of T),F given by

r—(n+1) n n
en=p" (Grer — 1) € FOFU[pH1],

Let t € Bctis be the p-adic period as in 5 associated to the generator ((ynt1 — 1) € Tpém
and the invariant differential wg, = ﬁ—XX.

From now on, we suppose that Fil"1 D(V) = D(V) and H°(F.,,V) = 0, so the big expo-
nential map €, of Theorem|3.2|is defined. Let n € D(V') be such that ¢n = an, and suppose

that 7 has slope s (i.e. |a|, = p~*). For every z € H!(Fs, V*), we define

p
[F:Qp] 7]_ ) _
Col’(z) == Y [colg(z% )11| - he - 0b € Hon1o(Goo), (3.9)
j=1
where G = Gal(Fso/Qp), and [—,—] : D(V*) ® #p x D(V) ® Ao — H1,0 is the image of

[—, =]y under the natural map L ®q, #o — H#1.o0. We put
7 jn =Py, (Tw ™ (2)) € HI(F,, V(=j)),

and say that a finite order character x of éoo has conductor p"*! if n is the smallest integer
such that x factors through Gal(F,/Q)).

Theorem 3.4. Let z € H! (Foo, V*) and let ¢ be a p-adic character of Goo such that i = Xé‘?;
with x a finite order character of conductor p"*t1. If j < 0, then

=y
(—j = 1)!
[IOgF,V*Ej)(Z*j,n) @t (1-p e (1 - p‘jsO)‘ln] ifn=-1,

Col'(z)(¢) =

prUIT() S () [logg, ve g (2D5,) @ 0T | ifn >0,
T€Gal(Fn/Qp)
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If 1 >0, then
Col(z)(¢) = j!(—1)
XDl yre( gy (B—jn) @7, (L= p/ o) (1 —pp) I ifn=—1,

T€Gal(Fn/Qp)

Here T(1) is the Gauss sum defined by

n+1
W)= Y vegh(rog™CT
TeGal(Fyr /Fur)
Proof. This follows from Theorem [3.2] by a direct computation (see [Kobl8, Thm. 5.10], and
[LZ14, Thm. 4.15] for a related computation). O

3.4. Diagonal cycles and theta elements. We now apply the local results of the preceding
section to the global setting of Assume that f, g = 6,(5) and g* = 6,,-1(5) are as in
Keeping the notations from by [DRI1T7, §1] there exists a class

w(f,99%) € BH(Q. V. (V) (3.10)

constructed from twisted diagonal cycles on the triple product of modular curves of tame level
N. (See also [DR21] and [BSV21].)

Every triple of test vectors F' = ( f. g, g") defines a Gq-equivariant projection Vf 99" L(N)—

4

— and we put

w(f,557) = e (1.097) HY(Q. V), ), (3.11)
where pry : Hl(Q, t.99" (N)) — Hl(Q, F.99" .) is the induced map on cohomology.

Since \I'%F " gives the universal character of Gal(K+ /K), by the Gq-isomorphism 1) and
Shapiro’s lemma we have the identifications

HY(Q,Vh ) ~ H(Q,V;(1) @ IndR W) & HY(Q, Vi(1) ® Ind§} )
~ H' (Ku, Vi (1)) @ HY(K, Vi (1) ® ).

In the following, we write

(3.12)

w(f,99%) = (roo(f, 89%), h0( [ 99%)) (3.13)
according to this decomposition.
Let g and g* be the weight 1 eigenform 6, and 6,,-1, respectively, so that the specialization
of (g,g*) at T'=0 (or equivalently, S = v — 1) is a p-stabilization of the pair (g, g*).

Lemma 3.5. Assume that L(f ®ga g*,1) =0 and that L(f/K ® x,1) # 0. Then for every
choice of test vectors F = (f,g g*) we have Iig(f,gg ) =0.

Proof. Let k = s(f,3g*) and for every ? € {f,g,g*}, let .Z Vs be the rank one subspace of
Vs fixed by the inertia group at p. By (3.12)), in order to prove (1) it suffices to show that
some specialization of « has trivial image in H'(K, V¢(1) ® x). Let

= Kls=v—1 € HI(Q, Vygg+) = H'(K, V3(1)) @ H' (K, Vi (1) @ x),

where Vigg« := Vi(1) ® Vy ® V. By considering Hodge-Tate weights, it is easily seen that
the Bloch-Kato Selmer group Sel(Q, Vigq+) C HY(Q, Vigg+) is given by

Kzoo
f.99*

dpolocp

Sel(Q, Vgr) = ker (H%Q, Vi) P57 H(Qp F Vi) @V, @ vm),



ON THE NON-VANISHING OF GENERALIZED KATO CLASSES 15

where 8, is the natural map induced by the projection Vy — F~Vy := V;/F TV} (see e.g.
[DR17, p. 634]). Thus it follows that

Sel(Q, Vygge) = Sel(K, V(1)) & Sel(K, V(1) @ x).

The implications L(f ® g ® ¢*,1) = 0 = Kf g € Sel(Q, Vigg+) and L(f/K ® x,1) # 0 =
Sel(K, V(1) ® x) = 0, which follow from [DRI17, Thm. C] and [CHI5, Thm. 1], respectively,
therefore yield the result. O

Suppose from now on that f° € Sa(Ny) is the newform associated to an elliptic curve E/Q
with good ordinary reduction at p. Thus V(1) ~ V,E and from (3.13)) we obtain an Iwasawa
cohomology class

koo ([, 33") € H (Koo, V, E).
Set V' = V,,E for the ease of notation. Note that Fil"! D(V) = D(V) and, by the Weil pairing,
V* >~ V. Let B be the prime of Q above p induced by our fixed embedding ¢, (inducing p on
K), and for any subfield H C Q denote by H= Hsy the completion of H with respect to .
Then Gal(K+/Q,) is identified with the decomposition group of P in Foo = Gal(K»/K)
Let H. be the ring class field of K of conductor ¢, and put F = H, for a fixed ¢ prime to p.

Let w € K be a generator of plf* Q] and let F.,/F be the Lubin-Tate Z,-extension associated
with the uniformizer w /@ € OF (see [Kobl8| §3.1]). As is well-known, we have

> A
FOO == U Hcp”
n=0

(see e.g. [Shnl6, Prop. 8.3]). In particular, Fs, contains K,
Let wg be the Néron differential of E, regarded as an element in D(Hét(E/Q, Qp)) @ D(V*).

Let o, € Z,; be the p-adic unit eigenvalue of the Frobenius map ¢ acting on D(V), and let
neDV) ~ D(Hét(E/Q, Q,)) @ D(Q,(1)) be a p-eigenvector of slope —1 such that

on = p_lap -n and (n,wg® t_1>dR =1. (3.14)

Finally, note that hypothesis holds since D(V)‘P[FZQP I=(®@/®) = ( for any j € Z, given
that the p-eigenvalues of D(V') are p-Weil numbers while @ /7 is a 1-Weil number.

The second part of the next result recasts the “explicit reciprocity law” of [DR17, Thm. 5.3]
(see also [DR21, Thm. 5.1] and [BSV2I, Thm. A]) in terms of the Coleman map of

Theorem 3.6. Assume that L(f ® g® g*,1) =0 and that L(f/K ® x,1) # 0. Then, for any
test vectors (f,g,g"), we have

Locg(koo(f,94")) =
and

Col(Locy (koo (f,897))) = £ (£,857) - 205, (1 — ' x(P))
Proof. Let Z++V!__ be the rank four Gq,-stable submodule of V}__. defined by
(VR F V@ Vp + FTVRV,@ F Ve + Ve I 0 7 ] 0 X1,

The class £(f,33%) = (koo ([ 977, k0(f,3G%)) € Hl(Q, tag* .) is known to land in the kernel
of the composite map

(see e.g. [DR21, Prop. 5.8]). Using (2.4), we immediately find that

FHVL L =VRUTT+ Ve (x +x7Y),

Locp
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and therefore, identifying Gq, with Gk, via our fixed embedding Q— Qp, we obtain

(Qp7 5‘++VT

boge) = H (K, VU ) @ HY(Ky, FTV @ x) @ H (Kp, 1TV @ X).

This shows the vanishing of Locg (koo £,33%)), and the second equality in the theorem follows
from Lemma [3.5 and [DRI7, Thm 5.3]. O

Corollary 3.7. Assume that L(f ® g ® ¢*,1) = 0 and that L(f/K,x,1) # 0. Let (f,g,g*)
be the triple of test vectors from Theorem|2.1. Then

Locg(koo(f,99%)) = 0,

and

Col"(Locy (koo (f, 85°))) = 205 ome) - O sc(T) - \/LAS(f /K @ x,1) - O

QCfX
ap(l — oy 'x(®)

where Cy, € K(x,ap)* is the non-zero algebraic number.

Proof. This is the combination of Theorem [3.6] and the factorization in Proposition O

4. ANTICYCLOTOMIC DERIVED p-ADIC HEIGHTS

The goal of this section is Theorem giving a formula for the anticyclotomic derived p-
adic heights in terms of the Coleman map introduced before. This formula is a generalization
of Rubin’s height formula [Rub94] in arbitrary rank.

4.1. The general theory. Initiated in [BD95] and further developed in [How04], the theory
of derived p-adic heights relates the degeneracies of the p-adic height to the failure of the p>°-
Selmer group of elliptic curves over a Zj-extension to be semi-simple as an Iwasawa module.
Derived p-adic heights seem to have been rarely used for arithmetic applications in the previous
literatur(ﬂ but they will play a key role in the proof of our results.

In this section we briefly recall the results from [How04] (with a slight generalization) that
we will need.

Let E be an elliptic curve over Q of conductor N with good ordinary reduction at p > 2.
For any number field F, let Sel,»(E/F) C HY(F, E[p"]) be the p"-Selmer group of E over F,
and put

Sel(F, T, E) LSel (E/F)

and Sel(F, V,E) = Sel(F, T,F) ®z, Qp. Let K be an imaginary quadratic field of discriminant
prime to Np, and let K /K be the anticyclotomic Z,-extension of K. Denote by K, the
subsection of K, with [K,: K] = p", and put

Selyoe (E/Koo) = lim Sely (E/Ky,).

Finally, let A = Z,[Gal(K/K)] be the anticyclotomic Iwasawa algebra, and denote by J C A
the augmentation ideal.

Theorem 4.1. Let N~ be the largest factor of N divisible only by primes that are inert in
K, and suppose that

o N7 is squarefree,
e El[p] is ramified at every prime q|N~.

1Perhabps by influence of cyclotomic Iwasawa theory, a context in which the p-adic height is conjectured to
be non-degenerate, see [Sch85].



ON THE NON-VANISHING OF GENERALIZED KATO CLASSES 17

Then there is a filtration
Sel(K,V,E) = SSV(E/K) > -+ > S(E/K) > SST(E/K) > -+ 5 SN (E/K)
and a sequence of height pairings
W SIE/K) x SSE/K) — (J'/JH) @z, Q,
with the following properties:

(a) SZ()iJrl)(E/K) is the null-space of h](f).
(b) SI(,OO) (E/K) is the subspace of Sel(K, V,E) consisting of universal norms for Ko /K :

SCNE/K) = () corg, /x (Sel(Kn, V, E)).

n=1

(c) hl(,i) is symmetric (resp. alternating) for i odd (resp. i even).
(d) hl(,l)(mT, y") = (—l)ihz(f) (x,y), where T € Gal(K/Q) is complex conjugation.
(e) Let

[ dim, (8,7 (B/K) 5B/ K))ifi < oo,
" |dimg, S&(E/K) if i = 0o
Then there is a A-module pseudo-isomorphism
Sely (B/Ko)¥ ~ ((A))% @+~ @ (AT @) A% & M’
with M’ a torsion A-module with characteristic ideal prime to J.

Proof. This follows from Theorem 4.2 and Corollary 4.3 of [How04] when N~ = 1. We explain
how to extend the result to squarefree N~ under the above hypothesis on Elp].

Following the discussion in [op.cit., §3] and adopting the notations there, we see that it
suffices to show the vanishing of

H (K, S[p*)) == ker (H' (K., Sp¥]) — HY (K", S[p"])). (4.1)

for every prime v { p inert in K, where S[p*] = lim Indg, xE [p¥]. Since such primes v split
completely in K, /K, by Shapiro’s lemma and inflation-restriction we find

Hy, (Ko, S[p"]) = ker(H' (K, E[p]) @ A — H' (K", E[p*]) @ AY)
~ HY(F,, E[p*)"") ® AV (4.2)
= (EP"" /(Fr, = DEPF) @ A,
where F, is the residue field of K,, Fr, is a Frobenius element at v, and AY = Homgz_ (A, Q,/Z)).

Since N~ is squarefree, any prime v as above is a prime of multiplicative reduction for F,
so by Tate’s uniformization we have
Ep™] < 01 )

as Gi,-modules, where ¢ is the p-adic cyclotomic character. Since pg, is ramified at v, the
image of ‘+” in the above matrix generates Q,/Z,. Thus we see that

E[p=]" /(Fr, - ) E[p>]" =0,
which by (4.2)) implies the vanishing of H! (K, S[p"]). O
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We conclude this section by recalling Howard’s abstract generalization of Rubin’s height
formula for derived p-adic heights. For every prime v of K above p, let .Z, T, E be the kernel
of the reduction map T, E/ — TPE , where FE is the reduction of E modulo v. Letting V =V, F,
this induces the filtration %7V C V. For every prime v|p of K write

ﬁ%in(Koom? V)= @ﬁl([(oo,wij)’

wlv
where w runs over the places of K, above v. The local pairings in (3.6)) induce a semi-local
pairing

<_7 _>Koo,v : Hl(Koov'l}’ V) X H%H(KOO7'U7 V) — A ®zp Qp
which induces a perfect duality between the ﬁl(KOO,U, V)/ﬁ%in(Koqv, V) and ﬁén(Koow, V).
Every class z € H' (K, V) defines a linear map
Lpz= Z<L0Cv(z)a ) Keow ﬁflin(Koo,m V)= @ﬁflin(Koo,va V) = A®z, Qp,
vlp vlp

Let ord(L, ;) be the largest integer  such that the image of £, , is contained in J".

Theorem 4.2. Suppose 0 < r < ord(L,,). Then z = pry(z) belongs to S}(,T)(E/K) and for
any w € S/;,T)(E/K), we have

W) (z,w) = —Lpa(wp)  (mod J"H)

where Wy, = (Wy)y|p € ﬁflin(Koo,p, V) is any semi-local class with pry (w,) = Loc,(w), v|p.

Proof. This is a reformulation of part (c) of Theorem 2.5 in [How04]. Note that the existence of

w,, follows from the definition of Sz(,r)(E /K) in op.cit., and the fact that the image £, ,(w,) €
J"/J 1 is independent of the choice of W), is shown in the proof. O

4.2. Derived p-adic heights and the Coleman map. Now we compute the local expres-
sion in Theorem [4.2)for the derived p-adic height pairing in terms of the Coleman map from
yielding our higher rank generalization of Rubin’s formula (Theorem , which in addition
to playing a key role in the proof of our results, may be of independent interest.

We use the setting and notations introduced after Lemma In particular, (p) = pp splits
in K, with p the prime of K above p induced by our fixed embedding Q — Qp. Let Ko be

the closure of the image of K, in Qp under this embedding, and put
Ty = Gal(Koo/K), To = Gal(Ka/Qp),

so naturally ['s is a subgroup of I's. Also, we put F' = H, for some fixed ¢ prime to p, and
F = H_p, which is a finite extension of K.
Let e € RY7=0 be a generator over &[Gy ] such that e(0) = 1. Define
w =0 (n@e) € H (Fy, V), (4.3)

where f,, in is the big exponential map in Theorem
As in we let oo € Gal(Fg/Qp) be such that og|qur = Fr is the absolute Frobenius.

Proposition 4.3. Let Q' be the cyclotomic Z, -extension of Q. Let ocye € Gal(FY/Qp)
be the Frobenius such that JCyC\Q;yc =1 and aCyC]Q;r = Fr. For each z € ﬁl(Km, V), we have

(F:Qp]
(z, Corp i (W’i)>f(oo = prkm(Colﬂ(i)) Z

=1

Ué'yclf( A
—=—— c W[l'x] ® Q.
[FOO : KOO] . hgr II OO]] P
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Proof. We first recall that for every e € (R ®s W)¥7=0, the big exponential map Q(n®e)
in Theorem [3.2]is given by
vin®e) = (expp, v(Env(Ge)))n=012,.., (4.4)

where G, € D(V) ® J4 o(X) is a solution of (1 — ¢ ® pr)G. =n®e and =, v is as in (3.4).
Taking

o0
= ng@(p}- m®e)= Z(p T]®6Frm,

m=0
we obtain i)
= —(n —(n r—(nt+
Enyv(Ge) =p (@ " @ HGET (6n)

[oe)
_ m—(n+1)
= () "M@ e™ (€nm)-

m=0
Put z, = pry (2) and G = Gal(K,,/Q,). From the definition of the Coleman map Col, and

using in (4.4) and , we thus find that
[prchlz(z)),n]V ~

(4.5)

© —1 _n+l—-m _ m—(n+1) n+1l—m
Do D ey e ) Y ) e @ e (€n-m)™ Tl |
m=0 [~eG, r€Gn v
(4.6)
where exp v is the Bloch—Kato dual exponential map.
On the other hand, it is immediately seen that
1 [7:Qp) _; ]
pri, (& corp i (Wh)g )= ———=— > prp (&7, w)r)oplz,
n e} e} oS} [FOO . K . n n

and from (4.6) we find that
o oIyt =
pry (270, whp )= Y (27 L expg, v(Env(Ge))r 7z,
e
—Ja—1
= Tan/Qp Z eXp}mV(ZfLO ’ )’Y’f(ooa En,V(Ge)
'YEGn \a

—1 _it—j+n+l—m

=2 2 | 2 el 7 11 S (o) @ e

m=0 =1 |yeG, r€Gn

(€n—m)

Taking the limit over n, we thus arrive at
[F:Qp] [F:Qp]

A 1 € O' (o j
<z,coer/Kw(w77)>Koo [ Z Z [er (Colg (2% ) o) ]06
==l (4.7)

1 [F:Qp] _ 1
= — © C 177 Z 06 . =,
[Foo : Koo ; Pric, (oM@ hgo

—(n+1 i+n+l—-m
( ) TOq

Tf(n
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using (3.9) for the second equality. Finally, writing g, = ¢(1 + X)) for the isomorphism ¢ in

1) one has gga (€i-1) = (i € Q¢ which immediately implies the relation

pri_(Col"(2)) - ol = pri_(Col(2)7).
Together with (4.7]), this concludes the proof. O
We shall also need the following result.

Lemma 4.4. The projection of w" to H'(F,V) is given by
rp(wh) =e Lope
=ex —_— .
pPrp Pryv 1— o Ui
Proof. Let g =n® e and let G(X) € D(V) ® JA o(X) such that (1 — ¢ ® pr)G = g. Then
Gleo) =n®e(eo) —n+ (1 —p) "',
and by definition,
prp(w") = corg, p(S0,v (G)), (4.8)
where = v (G) is as in (3.4). Equation (3.1) and the fact that ¢ re(X) = 0 imply that
Z eFr_l(X DF C) =0,
ceFT [p]
from where we obtain
rfl _
Tepr( @ ) = S n@el) —n+(1— )y =
T€Gal(Fy/F)
Together with (4.8)), we thus see that

1 -1 1 _
prp(w") = exppy Trp,/p (p (e (60))) =exppy (1—p ' (1 —9) 'n),
concluding the proof. O
Recall the identification K, = Q,, and let H. (Q,,V) C H!(Q,, V) be the subspace given
by HY(Q,, f;V). As is well-known, H. (Q,, V) agrees with the Bloch-Kato finite subspace.

Let logq v : Hi, (Qp, V) — D(V) be the Bloch-Kato logarithm map, and denote by log,,, ,
the composition

lo —w —1
log,,., : H(Q,, V) —2¥, p(y) B8 Jar, ¢ (4.9)
For a global class z € ﬁl(Km, V), put
Col"(Locy(z)) := Z Col”(Locm(z‘fl))a € W[l'x], (4.10)
UGFoo/f‘oo

where Locy : HY(K.,V) — HY(K4, V) is the restriction map, and let J be the augmentation
ideal of W[I's].

Theorem 4.5. Let z € PAII(KOO, V), and denote by ¢ be the largest integer r such that
Col"(Locy(z)) € J* and Col"(Locy(z)) € J",
where z = 7" for the complex conjugation 7 € Gal(K/Q). Then for every 0 < r < t, the class
z = pry(z) belongs to S]()r)(E/K) and for every x € SI(,T) (E/K), we have
1

T 1-— p o« — _ r
hi(z,2) = —1_70[;11) - (Col"(Locy(z)) - log,, ,(x) + Col”(Loc,(2)) - log,, ,(Z)) (mod J™1),

where T = x7.
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Proof. The inclusion z € Sz(f) (E/K) follows immediately from Theoremm Let x € SIST)(E /K),
and put
Wy 1= corFoo/koo(w”) c 0L (Ks, V).
Then, since dimq, Hflin(Qp, V) =1, we can write
Locy(z) = ¢ prg, (wy)
for some ¢ € Q. Since prq, (Wy) = corp/q, (w"), from Lemma and (3.14)) we see that

1—at
(logq, v (prq, (W), we @ ™ ar = [F: Q- 7—H—.
from where we deduce that
1-— p_loz _
=t QT gy (o)

Together with the formula in Theorem this gives the equality

T 1 _p_lap -1
W) (z,2) = BT [F Q)

o1 - _ o1
X D log,, (@) (Loep(z” ), W)y o +log,, ,(T) - (Locg(z” ), wy)g 0

O'GFoo/f‘oo
in J”/J "+, Since he = 1 (mod J), as is immediate from the defining relation p(1+X) = he-e
and the fact that e(0) = 1, the result now follows from Proposition g

5. PROOF OF THEOREM A

We begin by recalling the setting before concluding the proof. Let E/Q be an elliptic curve
of conductor N with good ordinary reduction at p > 3, and assume that F has root number
+1 and L(E,1) = 0 (so, of course, ords—1 L(E, s) > 2). Let K be an imaginary quadratic field
of discriminant prime to N in which (p) = pp splits, with p the prime of K above p induced
by our fixed embedding Q — Qp. Let 1 be a ray class character of K of conductor prime to
Np, and as in Conjecture [1.2| assume that

(b) x(p) # 1,
where x = ¢/¢". In addition, we assume that

(c) Elp] is irreducible as a Gg-module,
(d) N~ is square-free,
(e) El[p] is ramified at every prime q|N~,

where N~ is the maximal factor of N divisible only by primes inert in K. Let (f,g,g") be
the triple consisting of the newform f € S3(I'o(IV)) associated to E and the weight one theta
series associated to 1 and 1 ~!, respectively. Finally, put a = 1 (p) and 8 = 9 (p).

5.1. Generalized Kato classes. By construction, the Hida families
9=9,=0y(5), 9" =g, =0,-1(5) € O[5][d]
considered in specialize at S = v —1 to g, and g’ _,, the p-stabilizations of g and g* with

Up-eigenvalue a and a1, respectively. Thus for every choice of test vectors ( f G0, 95-1) the
O[S]-adic class k(f,g,G5-1) in 1) specializes to the generalized Kato class

Faat (9,97 = 6(f,Gadl1)|5=v—1 € HY(Q, Vigg+),
where Vg :=V; @ Vg @ V).



22 F. CASTELLA AND M.-L. HSIEH

Varying over the possible combinations of roots of the Hecke polynomial at p for g and g*,
we thus obtain the four generalized Kato classes

Ra,a—1 (f: g, g*)a Ra,p-1 (f: g, g*)a KB a—1 (f7 g, g*)7 Kkp,p—1 (f: g, g*) € Hl(Qa Vfgg*)- (51)
Note the Gg-module decomposition ([1.7) yields

HY(Q, V) ~ HY(Q,V,E) @ H(Q, V,E ® ad"Vj(g))
~ HY(Q,V,E) @ H(Q,V,EX) & HY(K,V,E ® x),

where EX is the twist of E by the quadratic character corresponding to K.
Lemma 5.1. The projections to H(Q, V, E) of each of the classes in (5.1)) lands in Sel(Q, V, E).

Proof. Since we are assuming L(E, 1) = 0 and (a) above, the result follows from the vanishing
of Sel(Q, V,EX) and Sel(K, V,E ® x) by the same argument as in Lemma O

5.2. Vanishing of x, g-1(f,9,9") and k3 ,-1(f, g,g"). This part follows easily from the work
of Darmon-Rotger [DR21] and Bertolini-Seveso—Venerucci [BSV21].

Proposition 5.2. k, 3-1(f,9,9") = kga-1(f,9,9%) = 0.
Proof. Let
9o = 0ya(S2) € O[S]ld],  g5-1 = 0y-15-1(S3) € O[S3][d]

be CM Hida families as in but passing through the specialization (g, gg-1) rather than
(gors Go—1)- Let

K(f,9a95-1)(52,93) € Hl(Q,V}gagzil) (5.2)

be the two-variable restriction of the three-variable cohomology class constructed in [DR21]
and [BSV21] (after a choice of level-N test vectors g, gj-1 that we omit from the notation),
and consider the further restriction

k= k(f, .95 )L+ T) = 1Lv(1+T)"" —1) € Hl(Q’V}ga(g;_l)")’

where V}g @) (V,E® Ind%x) & (VE® Ind%\lf%ﬁ*T). Thus k' is the restriction of 1)
«@ ,3—1

to the line of weights (¢,2 — ¢) (¢f. x(f,3g*) in (3.11)), where the line (£, ) is considered).
By definition, we have the equality

Ka,p-1 (f7gag*) = K’L(v - 1>V - 1)

As in Theorem by [DR21], Prop. 5.8] the restriction Loc, (k") belongs to the natural image

1 g+ ; 1 T
of HQp, 7 Vi (g, ) M HHQp Vig (g ), Where

+ . -1 1— 1—
fjHVfga(g;,l)L =VEQX '+ FTVEQ (Uy ™+ WpT).

Thus the projection k4, of k* to H(Q, %E@Ind%\IIIT_T) ~ ﬁl(Koo, VpE) is crystalline at p,
and therefore defines a Selmer class for V, E over the K, /K. Since under our hypotheses the
space of such anticyclotomic universal norms is trivial by Cornut—Vatsal [CV05], we conclude
that k., = 0. As in the proof of Theorem it follows that r, g-1(f,9,9%) = 0. The
vanishing of xg ,-1(f,g,9") is shown in the same manner. O
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5.3. The leading term formula. Let J C A be the augmentation ideal, and let
t=ord; (O k) :=sup{s > 0[Oy € J°}.
Since O/ is nonzero by [Vat03], v is a well-defined non-negative integer, and since L(E/K, 1) =
0 under our hypotheses, p > 0 by the interpolation property. Let
Sel(K,V,E) = S 5 8 5. 580 5 80 5. 5 §() =0 (5.3)

be the filtration in Theorem where we have put Szgi) = S]()i) (E/K) for the ease of notation,
and let ' ' 4 o
W) 2 S0 x S — (T @z, Qp

be the associated derived p-adic height pairings. Note that the vanishing of SI(,OO) follows from
[CV05]. From Corollary and Theorem we obtain the following key result.

Theorem 5.3. Let v = ord (O k). Then
Kaa-1(f,9,97) € S, (5.4)
and that for every for every x € Sl(f) we have

. 1-—pla
h;ff)(’ﬁa,a*l(fag,g ),x) = 1_7071}) Oy - log,, ,(z)-C  (mod Jo), (5.5)
D
where oy, is the p-adic unit root of X2 ap(E)X +p =0 and C is a non-zero algebraic number
with C* € K(x, ap)*.
5.4. Non-vanishing of x, ,-1(f,g,9"). Here we prove the implication ([1.10)) in Theorem A.
Thus suppose that dimq,Sel(Q,V,E) = 2. Since L(EX 1) # 0, we have Sel(Q, VpEK) =0
by [Kol8§| (or, alternatively, [Kat04]), and therefore
Sel(K, V,E) = Sel(Q, V,E), (r7,r7) = (2,0), (5.6)

where r* denotes the dimension of the F-eigenspace of Sel(IK, VpE) under the action of com-
plex conjugation 7. Since 7 acts as —1 on .J/J?, part (4) of Theorem gives
h](gi)(wT,yT) = (—1)Th§f)(x,y), (5.7)

and hence from 1) we see that for ¢ odd, the null-space of hg) (i.e., Sy(,iﬂ)) is either zero or
two-dimensional, with the latter case occurring as long as Sl(f) # 0. Since on the other hand

i+1)

hz(,i) is a non-degenerate alternating pairing on Sg) / S](g for even values of ¢, unless Sﬁ) =0,

it follows that (5.3]) reduces to
1 2 r r+1 00
Sel(Q,V}DE):SZ()):SZ()):...: 5)95;57“:“‘:5;5 ) —0 (5.8)
for some even r > 2. By Theorem[4.1] we deduce that there is a A-module pseudo-isomorphism
Selyos (E/Koo)V ~ (A)J)P2 @ M,

where M is a torsion A-module with characteristic ideal prime to J. Therefore letting £, € A
be any generator of the characteristic ideal of Sely(E/Ko)Y, we have

ord(L,) = 2r.
Finally, the divisibility (@? / ) D (Lp) arising from [SUI4, §3.6.3] implies that r > v, and

hence Sz(f) = Sel(Q, V,E) by |D Since by our hypothesis that Sel(Q, V,E) # ker(Loc,)
we can find = € Sel(Q,V,E) with log,,_,(x) # 0, the non-vanishing of x, o-1(f,9,9") now
follows from the leading term formula ([5.5)).

Remark 5.4. The same argument as above with 3 in place of « establishes the non-vanishing
of kg g-1(f,g,9*) under the given hypotheses.
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5.5. Analogue of Kolyvagin’s theorem for £, ,-1(f,g,g"). Here we prove the implication
(1.9) in Theorem A. As in §5.4] we see that Sel(K,V,E) = Sel(Q, V,E) and the non-trivial
jumps in (5.3)) can only occur at even values of i. Thus ([5.3) reduces to

Sel(Q,%E) = 51(71) — . — 51(727“1) D Sz()2r1+1) — .= S]()2rt) 9 S}(,Qrt"_l) L SZ()OO) :(0 )
5.9
for some 1 < 7 < -+ < ¢, and by Theorem [I.]] we have
Selpoo(E/Koo)v ~ (A/sz)dl @ P (A/JQTt)EBdt ® M

where d; = dime(SI(,Qri) / SZ(P”H)) > 2and M'is as in Letting £, € A be a generator of
the characteristic ideal of Sel,=(F/K)Y, we therefore have

ordj(Ly) = 2(r1dy + - -+ +1dy), dimqg,Sel(Q,VpE) = dy + --- + d. (5.10)

Suppose now that x, ,-1(f,9,9") # 0. By || it follows that S]gt) # 0 and therefore
v < 2. (5.11)

On the other hand, the divisibility (£,) D (@? /i) established in [BDO5] (as refined in [PWT1])
implies that r1d; + - - - 4+ r¢dy < t; together with (5.11f) this yields

2ry > rydy - rgdy > 2(r1 - 1y),
from which we conclude that ¢t =1, d; = 2, and dimq,Sel(Q, V,E) = 2.

5.6. Application to the strong elliptic Stark conjecture. We keep the setting from the
beginning of this section, but assume in addition that #I(E/Q)[p™] < oco.

As explained in [DR16) §4.5.3], the p-adic regulators appearing in the elliptic Start conjec-
tures of [DLR15] all vanish in the setting we have placed ourselves in. As a remedy, in [DR16]
they formulated a strengthening of those conjectures in terms of certain enhanced regulators;
in our setting they are given (modulo Q*) by

Log,(P A Q) = P ®log,(Q) — Q ® log,(P)

where (P, Q) is any basis of F(Q)®zQ. The strong elliptic Stark conjecture then predicts that
the generalized Kato classes x, o-1(f,9,9") and kg g-1(f, g,g") both agree with Log, (P A Q)
up to a nonzero algebraic constant.

In the direction of this conjecture, our methods show that i, o1 (f, 9, 9*) and kg g-1(f, 9,9%)
span the same p-adic line as Log,(P A @) inside the 2-dimensional Sel(Q, V,,£).

To state the application, we identify J*/J*! with Z, in the usual manner by choosing a
topological generator of ', and let @gf/)K € Z, ~ {0} denote the image of O, (mod JEH
under this identification.

Theorem 5.5. Let the setting be as in the beginning of Section@ and let v = ord; (O /k).
Then, as elements of Sel(Q, V,E) ~ E(Q) ®z Q,, we have
(¥)

N 1-plta OF K
Ha,crl(fv.gag ) =C- P _1p ) I/ : Lng(P A Q)>
1- Qp hp (P7 Q)

where C is nonzero and such that C? € K(x,ap)*. The same result holds of kgp-1(f,9,9%)-

Proof. Immediate from the leading term formula of applied to z = P and Q. O

Remark 5.6. The term hg)(P, Q) recovers the derived regulator Ry, introduced in [BD95].
Thus Theorem links the conjectural algebraicity of the ratio between s, ,-1(f,g,9") and
Log,(PAQ), as predicted in [DR16, §4.5.3], to a refinement of the p-adic Birch and Swinnerton-
Dyer conjecture in [BD96, Conjecture 4.3] formulated in terms of Rg;.



ON THE NON-VANISHING OF GENERALIZED KATO CLASSES 25

APPENDIX. NON-VANISHING OF £, o-1(f,g,9"): NUMERICAL EXAMPLES

In this appendix, we applied Theorem A (particularly, the leading term formula in §5.3)) to
exhibit the first examples of non-vanishing generalized Kato classes for rational elliptic curves
of rank 2.

Setting. In the examples tabulated below, we take elliptic curves E/Q with
ords—1 L(E, s) = 2 = rankz F(Q)

of conductor N € {q,2q}, with ¢ an odd prime, and pairs (p, —d) consisting of a prime p > 3
and a squarefree integer —d < 0 such that:

e K = Q(v/—d) has class number one, ¢ is inert in K, and L(EX,1) # 0,
e p splits in K and E[p] is irreducible as a Gg-module.

Note that such pairs (p, —d) can be easily produced. Indeed, [Rib90, Thm. 1.1} implies that
E[p] must ramify at N~ = ¢, and the irreducibility of E[p| can be verified either by [Maz78|
when p > 11 or by checking (from e.g. Cremona’s tables) that £ does not admit any rational
m-isogenies for m > 3.

For every such triple (E, p, —d), there is a ring class character x of K of ¢-power conductor
for some prime ¢ 1 Np such that L(E/K, x,1) # 0. (In fact, there are infinitely many such y,
as follows from [Vat03, Thm. 1.3] and its extension in [CHIS, Thm. D].) Writing x = ¢/¢"
and letting g = 0y and g* = 6,1 we then have the class

Ra,a—1 (fv g, g*) € SGI(Q, V})E)
as in (see Lemma [5.1]).

Viewing O/ as an element in the power series ring Z, [T] as usual, in each of the examples
below we checked that

OI‘dT(@Jc/K) = 2. (5.12)

By [BDO05) Cor. 3] (using the extension of the main result of [BD05] contained in [PWT1]), it

follows that dimq,Sel(Q, V,£) = 2. Since the condition Sel(Q, V,E) # ker(Loc,) is automatic

as long as #FE(Q) = oo, the non-vanishing of k, ,-1(f,g,9*) in these cases follows directly
from the leading term formula of

Verifying order of vanishing 2. Let us add some comments on the verification of (5.12)) in the
examples below. Let B be the definite quaternion algebra over Q of discriminant ¢, let R C B
be an Eichler order of level N/q, and let CI(R) be the class group of R. Let

¢p: CI(R) — Z

be the Hecke eigenfunction associated to f by Jacquet-Langlands, normalized so that ¢ # 0
(mod p). Fix an isomorphism i, : R ® Z, ~ M3(Z,) and an optimal embedding O — R
such that K is sent to a subspace consisting of diagonal matrices, and for a € Z; and n > 0
put
—1,(1 ap™ =
Tn(a’):zpl(<0 1 >)€BX7

where B = B Ry, 7 is the adelic completion of B.

Consider the sequence {P¢},,>0 of right R-ideals given by P := (rp(a)R) N B, and define
the n-th theta element Ok ,, € Z,[T] by

1 — u’ au? i
Opiin == D 2. (on dr(BE™) = 5(P)) (14T,
p i=0

a€pp—1

where a, is the p-adic unit root of 2% — a,(E)r +p and u =1+ p.
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By the definition of ©,x (see e.g. [BDI6, §2.7]), we have

Since (p", (14+T)?" —1) C (p", T?), in the examples listed in the following tables we could verify
(5.12) by computing O/, mod (p",TP) for n = 2 and 3, respectively. The computations
were done using the Brandt module package in SAGE.

E p | —d | Ok mod (p%,TP)

389al | 11| —2 | 1072+ 6973 +T* +1037T° + 1067 + 6677 4+ 1178 + 5577 + 110710
433al | 11| —7 | 8872 + 2273 + 86T* + 7T° + 1076 4+ 1277 + 2978 + 887" + 48710
446¢1 | 7 | =3 | 2272 + 2773 + 37* + 161° + 1176

563al | 5 | —1 | 18724973 4+ 57

643al | 5 | —1 |T?+421T*

709al | 11| —2 | 2772 4 11473 + 3T* + 1475 + 36T° + 1577 + 42T + 44T° + 91710
718b1 | 5 | =19 | 372 42073 + 127*

794al | T | —3 | 47T? 4 2373 + 8T* + 24T + 7T

997bl | 11 | —2 | 7172+ 4173 48374 + 197 + 11476 + 11177 + 10178 4 4677 + 102710
997cl | 11 | —2 | 5472 4 3873 + 36T* + 81T° + 827 + 18T7 4 7278 + 9577 + 4110
1034al | 5 | —19 | 2272 4+ 473 4+ 6T*

1171al | 5 | —1 | 6T?+ 673+ 207"

1483al | 13 | —1 | 12872 4 14873 + 127T* + 162T° + 3075 + 14977 + 14178 4+ 9777 +
49710 4 1371 4 29712

1531al | 5 | —1 | 1672+ 773 + 217

1613al | 17 | —2 | 12872 4 16573 + 224T* + 2877 + 1407T° + 21177 + 14778 + 160T° +
59710 + 12271 4+ 195712 4 43713 + 207714 + 214715 + 285716

1627al | 13 | —1 | 10172 4+ 15173 + 587* + 1047 + 375 + 16577 + 12878 + 637 +
17719 + 5571 + 166712

1907al | 13 | —1 | 7272 + 13173 + 327* + 1427 + 8476 + 10477 + 907® + 10577 +
38710 4 92711 4 116712

1913al | 7 | —3 | 4172 + 1673 + 287* + 237" + 1476

2027al | 13 | —1 | 5472 + 12873 + 65T* + 9375 + 8376 + 16177 + 11378 + 1337° +
49710 4+ 1517 + 13712

E p | —d | Ok mod (p3,TP)

571b1 | 5 | —1 | 10072 + 10073 + 15T*
1621al | 11| —2 | 108972 +807T* + 986T° + 586T¢ 4+ 109877 + 7727 + 22877 + 1296710
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