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Abstract. In this paper, we deduce the vanishing of Selmer groups for the Rankin–Selberg convo-

lution of a cusp form with a theta series of higher weight from the nonvanishing of the associated

L-value, thus establishing the rank 0 case of the Bloch–Kato conjecture in these cases. Our methods

are based on the connection between Heegner cycles and p-adic L-functions, building upon recent

work of Bertolini, Darmon and Prasanna, and on an extension of Kolyvagin’s method of Euler sys-

tems to the anticyclotomic setting. In the course of the proof, we also obtain a higher weight analogue

of Mazur’s conjecture (as proven in weight 2 by Cornut–Vatsal), and as a consequence of our results,

we deduce from Nekovář’s work a proof of the parity conjecture in this setting.
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1. Introduction

Let f ∈ Snew
2r (Γ0(N)) be a newform of weight 2r ≥ 2 and level N . Fix an odd prime p - N . Let

F/Qp be a finite extension containing the image of the Fourier coefficients of f under a fixed embedding

ıp : Q ↪→ Cp, and denote by

ρf : Gal(Q/Q) −→ AutF (Vf (r)) ' GL2(F )

the self-dual Tate twist of the p-adic Galois representation associated to f . Let K/Q be an imaginary
quadratic field of odd discriminant −DK < −3 and let χ : GK := Gal(Q/K) → F× be a locally
algebraic anticyclotomic character. The GK-representation

Vf,χ := Vf (r)⊗ χ
is then conjugate self-dual, and the associated Rankin L-series L(f, χ, s) satisfies a functional equation
relating its values at s and 2r − s. The Bloch–Kato conjectures (see [BK90], [FPR94]), which provide
a vast generalization of the Birch–Swinnerton-Dyer conjecture and Dirichlet’s class number formula,
predict in this context the equality

(BK) ords=rL(f, χ, s)
?
= dimFSel(K,Vf,χ)

between the order of vanishing at the central point of the Rankin L-series L(f, χ, s) and the size of the
Bloch–Kato Selmer group Sel(K,Vf,χ) for the representation Vf,χ.

Hypothesis (H). The following hypotheses are assumed throughout.

(a) p - 2(2r − 1)!Nϕ(N);
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(b) the conductor of χ is prime to N ;
(c) N is a product of primes split in K;
(d) p = pp is split in K, where p is induced by ıp.

Our first arithmetic application is the proof of new “rank zero” cases of conjecture (BK).

Theorem A. Assume further that the newform f is ordinary at p. If L(f, χ, r) 6= 0, then

dimF Sel(K,Vf,χ) = 0.

Remark. Let ε(Vf,χ) = ±1 be the sign of the functional equation of L(f, χ, s). The non-vanishing of
L(f, χ, r) implies ε(Vf,χ) = +1. On the other hand, under our Hypothesis (H), the global sign ε(Vf,χ)
is completely determined by the local sign at the archimedean place, which in turn depends on the
infinity type of χ. More precisely, let cOK be the conductor of χ and let (j,−j) be its infinity type, so
that for every α ∈ K× with α ≡ 1 (mod cOK) we have

χ(recp(α)) = (α/α)j ,

where recp : (K ⊗Qp)
× → GabK is the geometrically normalized local reciprocity law map at p. Then

one can show that
ε(Vf,χ) = +1 ⇐⇒ j ≥ r or j ≤ −r.

In particular, the characters χ for which Theorem A applies are all of infinite order.

Let Γ−K := Gal(K∞/K) be the Galois group of the anticyclotomic Zp-extension of K. Write c = cop
s

with p - co. Suppose that χ = ψφ0, where ψ is an anticyclotomic character of infinity type (r,−r) and
conductor coOK and φ0 is a p-adic character of Γ−K . The proof of Theorem A rests on the study of a p-

adic L-function Lp,ψ(f) ∈ ZpJΓ−KK defined by the interpolation of the central critical values L(f, ψφ, r),

as φ runs over a Zariski-dense subset of p-adic characters of Γ−K . In a slightly different form, this p-adic
L-function was introduced in the earlier work of Bertolini, Darmon and Prasanna [BDP13], where they
proved a remarkable formula relating the values of Lp,ψ(f) at unramified characters outside the range
of interpolation to the p-adic Abel–Jacobi images of generalized Heegner cycles.

Let Tf (r) be a Gal(Q/Q)-stable OF -lattice in Vf (r). As a key step toward the proof of Theorem A,
we produce Iwasawa cohomology classes

zf ∈ H1
Iw(K∞, Vf (r)) := lim←−

K⊂K′⊂K∞
H1(K ′, Tf (r))⊗OF F

interpolating generalized Heegner cycles over the anticyclotomic tower. Moreover, based on an exten-
sion of the calculations of [BDP13] we prove an “explicit reciprocity law”:〈

Lp,ψ(zf ), ωf ⊗ t1−2r
〉

= (−cr−1
o ) ·Lp,ψ(f)

(cf. Theorem 5.7) relating the p-adic L-function Lp,ψ(f) to the image of the classes zf under a variant
of Perrin-Riou’s big logarithm map Lp,ψ. The assumption that p = pp splits in K and the p-ordinarity
of f are crucially used at this point. The non-ordinary case will be treated in a forthcoming work of
S. Kobayashi.

With the result at hand, the proof of Theorem A follows easily. Indeed, by the interpolation property
of Lp,ψ(f), the nonvanishing of the L-value L(f, χ, r) in the statement implies the nonvanishing of the
value of Lp,ψ(f) at φ0 = ψ−1χ; by our explicit reciprocity law, this translates into the nonvanishing
of the natural image of zf in H1(Kp, Vf (r)⊗χ−1). Combined with a suitable extension of Kolyvagin’s
method of Euler systems with local conditions at p (see §7), we then use this to establish the vanishing
of Sel(K,Vf,χ).

Remark. Under more stringent hypotheses, a version of Theorem A was proven in [Cas14]. The strategy
followed in loc.cit. is the same as in this paper, but with our classes zf replaced by the specializations
νf (Z∞) of Howard’s system of big Heegner points [How07] attached to the Hida family passing through
f . In particular, a key ingredient in [Cas14] is the proof of a certain “two-variable” explicit reciprocity
law, which specializes to a relation between Lp,ψ(f) and the image of νf (Z∞) under Lp,ψ. Comparing
the resulting two formulas for Lp,ψ(f), the equality

νf (Z∞) = zf

follows easily, yielding an important refinement of the main result of [Cas13].
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Next we consider the case

ε(Vf,χ) = −1 ⇐⇒ −r < j < r,

so the central L-value L(f, χ, r) vanishes, and we expect the nonvanishing of Selmer groups. In §4.4, we
construct the classes zf,χ,n ∈ H1(Kn, Vf,χ) over ring class fields Kn of K. These classes are obtained
by taking the χ-component of the p-adic Abel–Jacobi image of generalized Heegner cycles, and they
enjoy the properties of an anticyclotomic Euler system. The aforementioned extension of Kolyvagin’s
methods to the anticyclotomic setting, which follows from a combination of arguments developed by
Nekovář [Nek95] and Bertolini–Darmon [BD90], also applies to Hecke characters χ with infinity types
(j,−j) with −r < j < r, and by these methods we obtain a proof of the following result without the
p-ordinary hypothesis on f . Put zf,χ := corKc/K(zf,χ,c).

Theorem B. Assume that ε(Vf,χ) = −1. If zf,χ 6= 0, then

Sel(K,Vf,χ) = F · zf,χ.

Remark. The expected extension of the Gross–Zagier formula of [Zha97] to generalized Heegner cycles,
together with the conjectural injectivity of the p-adic Abel–Jacobi map [Nek00, Conj. (2.1.2)], would
yield a proof of the implication L′(f, χ, r) 6= 0 =⇒ zf,χ 6= 0, for any χ as above with ε(Vf,χ) = −1. In
these favorable circumstances, our Theorem B would imply conjecture (BK) in the “rank one” case.

Appealing to the nonvanishing results of [Hsi14], in Theorem 3.7 we show that the p-adic L-function
Lp,ψ(f) ∈ Zp[[Γ

−
K ]] is nonzero, and hence, as χ varies, all but finitely many of the values L(f, χ, r)

appearing in Theorem A are nonzero; our result thus covers most cases of conjecture (BK) for those
χ. Moreover, combined with [Nek07, Corollary (5.3.2)], the above generic nonvanishing and our The-
orems A and B yield a proof of the “parity conjecture” for Vf,χ.

Theorem C. Suppose that f is ordinary at p. Then

ords=rL(f, χ, s) ≡ dimFSel(K,Vf,χ) (mod 2).

That is, the equality predicted by conjecture (BK) holds modulo 2.

Finally, we note that the nontriviality of Lp,ψ(f), combined with our extension of the p-adic Gross–
Zagier formula of [BDP13], immediately yields an analogue of Mazur’s nonvanishing conjecture [Maz84]
for generalized Heegner cycles and ranks of Selmer groups (see Theorem 6.3).
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author to the second-named author in Taipei during February 2014 and August 2014; it is a pleasure
to thank NCTS and the National Taiwan University for their hospitality and financial support. We
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Notation and definitions. We let p be a prime and fix embeddings ıp : Q ↪→ Cp and ı∞ : Q ↪→ C
throughout. Let A = AQ be the adele ring of Q. Let ψ =

∏
q ψq : Q\A → C× be the standard

additive character with ψ∞(x) = exp(2πix). For each finite prime q, denote by ordq : Q× → Z the
normalized valuation with ordq(q) = 1. If N is a positive integer, denote by µN the group scheme of

N -th roots of unity. We set µN = µN (Q) and ζN := exp( 2πi
N ).

If φ : Z×q → C× is a continuous character of conductor qn, define the Gauss sum

g(φ) =
∑

u∈(Z/qnZ)×

φ(u)ζupn .

By definition, g(1) = 1 for the trivial character 1. If F is a finite extension of Qq and π is an irreducible
representation of GLn(F ) (n = 1, 2), we let

ε(s, π) := ε(s, π,ψq ◦ TrF/Qq
)

be the local ε-factor attached to the additive character ψq ◦ TrF/Qq
(see [Sch02, Section 1.1] for the

definition and basic properties). If χ : Q×q → C× is a character of conductor qn, then we have

(1.1) ε(s, χ) = g(χ−1) · χ(−qn)q−ns, ε(s, χ)ε(1− s, χ−1) = χ(−1).
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If L is a number field or a local field, we denote by GL the absolute Galois group of L and by OL
the ring of integers of L.

2. Modular curves and CM points

2.1. Igusa schemes and modular curves. Let N ≥ 3 be an integer prime to p, and let Ig(N)/Z(p)

be the Igusa scheme over Z(p), which is the moduli space parameterizing elliptic curves with Γ1(Np∞)-
level structure. More precisely, for each locally noetherian scheme S over Z(p), Ig(N)(S) is the set
of isomorphism classes of pairs (A, η) consisting of an elliptic curve A over S and a Γ1(Np∞)-level
structure η = (η(p), ηp) : µN ⊕ µp∞ ↪→ A[N ] ⊕ A[p∞], an immersion as group schemes over S. For a
non-negative integer n, let Y1(Npn)/Q be the usual open modular curve of level Γ1(Npn). Put

U1(Npn) =

{
g ∈ GL2(Ẑ) | g ≡

(
1 ∗
0 ∗

)
(mod Npn)

}
,

U0(Npn) =

{
g ∈ GL2(Ẑ) | g ≡

(
∗ ∗
0 ∗

)
(mod Npn)

}
.

Letting H be the complex upper half-plane, the curve Y1(Npn) admits the complex uniformization

Y1(Npn)(C) = GL2(Q)+\H×GL2(Q̂)/U1(Npn),

where GL2(Q)+ is the subgroup of GL2(Q) with positive determinants. Since the generic fiber Ig(N)/Q
is given by

Ig(N)/Q = lim←−
n

Y1(Npn)/Q,

this yields a map

H×GL2(Q̂)→ Ig(N)(C), x = (τx, gx) 7→ [(Ax, ηx)].

We now give an explicit construction of pairs (Ax, ηx) of complex elliptic curves with Γ1(Np∞)-level
structure. Let V = Qe1 ⊕Qe2 be the two-dimensional Q-vector space equipped with the symplectic
pairing

〈ae1 + be2, ce1 + de2〉 = ad− bc,
and let GL2(Q) act on V from the right via

(xe1 + ye2) ·
(
a b
c d

)
= (xa+ cy)e1 + (xb+ yd)e2.

For τ ∈ H, define the map pτ : V → C by

pτ (ae1 + be2) = aτ + b.

Then pτ induces an isomorphism VR := R⊗Q V ' C. Let L be the standard lattice Ze1 ⊕ Ze2, and

for every g =

(
a b
c d

)
∈ GL2(Q̂) define the Z-lattice Lg ⊂ V by

Lg := (Ẑe1 ⊕ Ẑe2)g′ ∩ V,
where g′ is the main involution defined by

g′ =

(
d −b
−c a

)
= g−1 det g.

The C-pair (Ax, ηx) attached to x = (τx, gx) ∈ H×GL2(Q̂) is then given by

Ax = C/Lx, Lx := pτx(Lgx),

and the Γ1(Np∞)-level structure ηx = (η
(p)
x , ηx,p) is given by the immersions

η(p)
x : µN ↪→ N−1Z/Z⊗ Lx, ζjN 7→ pτx(j/N ⊗ e2g

′
x),

ηx,p : µp∞ ↪→ Qp/Zp ⊗ Lx, ζjpn 7→ pτx(j/pn ⊗ e2g
′
x).

Here we have used the identification Q/Z ⊗Z Lg′x = Q/Z ⊗Z Lgx . The lattice Lx ⊂ C is called
the period lattice of Ax attached to the standard differential form dw, with w the standard complex
coordinate of C.
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2.2. Modular forms. We briefly recall the definitions and standard facts about geometric and p-adic
modular forms. The basic references are [Kat73], [Kat78] and [Hid04].

Geometric modular forms.

Definition 2.1. Let k be an integer, and let B be a Z(p)-algebra. A geometric modular form f of
weight k on Ig(N) defined over B is a rule assigning to every triple (A, η, ω)/C over a B-algebra C,

consisting of a point [(A, η)] ∈ Ig(N)(C) and a basis ω of H0(A,ωA/C) over C, a value f(A, η, ω) ∈ C
such that the following conditions are satisfied:

(G1) f(A, η, ω) = f(A′, η′, ω′) ∈ C if (A, η, ω) ' (A′, η′, ω′) over C.
(G2) If ϕ : C → C ′ is any B-algebra homomorphism, then

f((A, η, ω)⊗C C ′) = ϕ(f(A, η, ω)).

(G3) f(A, η, tω) = t−kf(A, η, ω) for all t ∈ C×.
(G4) Letting (Tate(q), ηcan, ωcan) be the Tate elliptic curve Gm/q

Z with the canonical level structure
ηcan and the canonical differential ωcan over Z((q)), the value f(Tate(q), ηcan, ωcan) lies in BJqK.
We call

f(Tate(q), ηcan, ωcan) ∈ BJqK
the algebraic Fourier expansion of f .

If f is a geometric modular form of weight k defined over a subring O ⊂ C, then f gives rise to a

holomorphic function f : H×GL2(Q̂)→ C by the rule

f(x) = f(Ax, ηx, 2πidw), x ∈ H× GL2(Q̂),

where w is the standard complex coordinate of Ax = C/Lx. This function f satisfies the transformation
rule:

f(ατ, αg) = (detα)−
k
2 J(α, τ)k · f(τ, g) (α ∈ GL2(Q)+),

where J : GL2(R)+×H→ C is the automorphy factor defined by

J(g, τ) = (det g)−
1
2 · (cτ + d) (g =

(
a b
c d

)
).

Moreover, the function f(−, 1) : H → C is a classical elliptic modular form of weight k with analytic
Fourier expansion

f(τ, 1) =
∑
n≥0

an(f)e2πinτ ,

and we have the equality between algebraic and analytic Fourier expansions (cf. [Kat78, §1.7])

f(Tate(q), ηcan, ωcan) =
∑
n≥0

an(f)qn ∈ OJqK.

We say that f is of level Γ0(Npn) if f(τ, gu) = f(τ, g) for all u ∈ U0(Npn).

p-adic modular forms. Let R be a p-adic ring, and let Îg(N)/R := lim−→m
Ig(N)/R/pmR be the formal

completion of Ig(N)/R. Define the space Vp(N,R) of p-adic modular forms of level N by

Vp(N,R) := H0(Îg(N)/R,OÎg(N)/R
)

= lim←−
m

H0(Ig(N),OIg(N) ⊗R/pmR).

Thus elements in Vp(N,R) are formal functions on the Igusa tower Ig(N). We say that a p-adic modular
form f is of weight k ∈ Zp if for every u ∈ Z×p , we have

(2.1) f(A, η) = u−kf(A, η(p), ηpu), [(A, η)] = [(A, η(p), ηp)] ∈ Îg(N)/R.

If f is a geometric modular form defined over R, then we can associate to f a p-adic modular form

f̂ , called the p-adic avatar of f , as follows. Let C be a complete local R-algebra, and let (A, η) be
an elliptic curve with Γ1(Np∞)-level structure. The p∞-level structure ηp : µp∞ ↪→ A[p∞] induces an
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isomorphism η̂p : Ĝm ' Â (here Â is the formal group of A), which in turn gives rise to a differential

ω̂(ηp) ∈ Lie(A) = Lie(Â) ' Lie(Ĝm) = C. Then f̂ is the p-adic modular form defined by the rule

f̂(A, η) = f(A, η, ω̂(ηp)), [(A, η)] ∈ Îg(N)/R

(cf. [Kat78, (1.10.15)]). It follows from the definition that if f is a geometric modular form of weight

k and level Γ0(Npn), then f̂ is a p-adic modular form of weight k.

2.3. CM points (I). Let K be an imaginary quadratic field of discriminant −DK < 0, and denote by
z 7→ z the complex conjugation on C, which gives the non-trivial automorphism of K. In this section,
we assume that p > 2 is a prime split in OK and write

pOK = pp,

where p is the prime ideal above p determined by the embedding Q ↪→ Cp.
Define ϑ ∈ K by

ϑ =
D′ +

√
−DK

2
, D′ =

{
DK if 2 - DK ,

DK/2 if 2 | DK .

Then OK = Z + Zϑ and ϑϑ is a local uniformizer of Qq for q ramified in K. If M is a positive integer,
we decompose M = M+M−, with the prime factors of M+ (resp. M−) split (resp. inert or ramified)
in K. For each prime q = qq split in K, we write

Zq ⊗Z OK = Zqeq ⊕ Zqeq,

where eq and eq are the idempotents in Zq ⊗Z OK corresponding to q and q, respectively.

We assume that NOK = NN for some ideal N of OK . Let c be a positive integer, let Oc := Z+cOK
be the order of conductor c, and let Kc be the ring class field of K of conductor c. Let a be a fractional

ideal of Oc, and let a ∈ K̂× with aK̂ ∩ Oc = a. To the ideal a and the finite idele a, we associate a
C-pair (Aa, ηa) of complex CM elliptic curves with Γ1(Np∞)-level structure as follows. Define Aa to
be the complex elliptic curve C/a−1. For each prime q | pN , let q be the prime of OK above q with
q | Np, and let aq ∈ Qq be the q-component of a. We then have (Zq ⊗Z a−1) ∩Qqeq = Zqa

−1
q ceq and

the exact sequence
Aa[q∞] = µq∞ ⊗ a−1

q ceq ↪→ Aa[q∞] � Qq/Zq ⊗ a−1
q eq,

and we define ηa = (η
(p)
a , ηa,p) : µN ⊕µp∞

∼→ Aa[N]⊕Aa[p∞] ↪→ Aa[N ]⊕Aa[p∞] to be the embedding

determined by the isomorphism µqn
∼→ Aa[qn] sending

ζjqn 7→

{
j/qn ⊗ a−1

q qordq(c)eq if q | N+p,

j/qn ⊗ a−1
q if q | N−.

Denote by V the valuation ring ι−1
p (OCp) ∩Kab. It follows from the theory of complex multiplication

[Shi98, 18.6, 21.1] combined with the criterion of Serre–Tate [ST68] that (Aa, ηa) actually descends to
a discrete valuation ring V0 inside V. Thus [(Aa, ηa)] is defined over V0 and belongs to Ig(N)(V0). We
call [(Aa, ηa)] ∈ Ig(N)(V) the CM point attached to (a, a).

If a is a prime-to-Np integral ideal of Oc, we write (Aa, ηa) for the triple (Aa, ηa) with q-component
aq = 1 for every q | Np. If a = Oc, we write (Ac, ηc) for (AOc , ηOc). In this case, we see immediately
from the construction that Aa = Ac/Ac[a] and the isogeny λa : Ac → Aa induced by the quotient map
C/Oc → C/a−1 yields ηa = λa ◦ ηc.

2.4. CM points (II). We give an explicit complex uniformization of the CM points introduced above.
Consider the embedding K ↪→M2(Q) given by

aϑ+ b 7→
(
a(ϑ+ ϑ) + b −aϑϑ

a b

)
.

For each g ∈ GL2(Q̂), denote by [(ϑ, g)] the image of (ϑ, g) in lim←−n Y1(Npn)(C) = Ig(N)(C). Shimura’s

reciprocity law for CM points (cf. [Hid04, Cor. 4.20]) implies that [(ϑ, g)] ∈ Ig(N)(Kab) and

(2.2) recK(a)[(ϑ, g)] = [(ϑ, ag)] (a ∈ K̂×),

where recK : K×\K̂× → Gal(Kab/K) is the geometrically normalized reciprocity law map.
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Let co = c+o c
−
o be a positive integer prime to p and fix a decomposition c+o OK = CC. Define

ς(∞) = (ςq) ∈ GL2(Q̂) by ςq =

(
1 0
0 1

)
if q - c+o N+p, and

ςq =(ϑ− ϑ)−1

(
ϑ ϑ
1 1

)
∈ GL2(Kq) = GL2(Qq) if q = qq with q | CNp.

Let c = cop
n with n ≥ 0. We define γc =

∏
q γc,q ∈ GL2(Q̂) by γc,q = 1 if q - cNp,

γc,q =

(
qordq(c) 1

0 1

)
if q = qq with q | CNp,

γc,q =

(
1 0

0 qordq(c)−ordq(N)

)
if q | c−N−.

Let ξc := ς(∞)γc ∈ GL2(Q̂) be the product. An elementary computation shows that Oc = pϑ(Lξc) and
that for q = qq with q | CNp, we have

(2.3) ςq

(
a 0
0 b

)
= (aeq + beq)ςq (a, b ∈ Q×q ),

and

(2.4) ξ′c,q : Zqe1 ⊕ Zqe2 ' Zq ⊗Z Oc, pϑ(e2ξ
′
c,q) = qordq(c)eq,

so we have [(ϑ, ξc)] = [(Ac, ηc)]. Define

xc := [(Ac, ηc)] = [(ϑ, ξc)] ∈ Ig(N)(C).

In general, if a ∈ K̂(cpN)× and a = aÔc ∩K is a fractional ideal of Oc, we let

σa := recK(a−1)|Kc(Np∞) ∈ Gal(Kc(Np∞)/K),

where Kc(Np∞) is the compositum of Kc and the ray class field of K of conductor Np∞. Thus σa is
the image of a under the classical Artin map. We have

(2.5) xa := [(Aa, ηa)] = [(ϑ, a−1ξc)] = xσa
c ∈ Ig(N)(Kc(Np∞)).

Here the first equality can be verified by noting that the main involution induces the complex conju-
gation on A×K and using (2.3), and the second equality follows from Shimura’s reciprocity law for CM
points (2.2).

2.5. CM periods. Let Q̂ur
p be the p-adic completion of the maximal unramified extension Qur

p of Qp,

and let W be the ring of integers of Q̂ur
p . If a is a prime-to-pN fractional ideal of Oc with p - c, then

(Aa, ηa) has a model defined over Vur := W ∩Kab. In the sequel, we shall still denote this model by
(Aa, ηa) and simply write A for AOK .

Fix a Néron differential ωA of A over Vur. There exists a unique prime-to-p isogeny λa : Aa → A
inducing the identity map on both the complex Lie algebras C = LieAa(C) → C = LieA(C) via
the complex uniformizations and on the p-divisible groups µp∞ = Aa[p∞] → µp∞ = A[p∞] via the
level structures at p. Letting ωAa

:= λ∗aωA be the pull-back of ωA, we see that there exists a pair
(ΩK ,Ωp) ∈ C××W× such that

ΩK · 2πidw = Ωp · ω̂(ηa,p) = ωAa
,

where w is the standard complex coordinate of C/a−1 = Aa(C). The pair (ΩK ,Ωp) are called the
complex and p-adic periods of K. Note that the ratio ΩK/Ωp does not depend on the choice of Néron
differential ωA.

3. Anticyclotomic p-adic L-functions

In this section, we review the anticyclotomic p-adic L-functions that were originally constructed in
[Bra11], [BDP13] and [Hsi14] from various points of view. Our purpose is to extend their interpolation
formulae to include p-ramified characters and to prove the nonvanishing of these p-adic L-functions, so
we find it more convenient to adopt the approach of [Bra11], based on the use of Serre–Tate coordinates.
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3.1. t-expansion of p-adic modular forms. Let x = [(A0, η)] be a point in the Igusa tower Ig(N)(F̄p)
and let Ŝx ↪→ Ig(N)/W be the local deformation space of x over W. The p∞-level structure ηp deter-

mines a point Px ∈ Tp(At
0), where At

0 is the dual abelian variety of A0 and Tp(A
t
0) = lim←−nA

t
0[pn](F̄p)

is the p-adic Tate module of At
0. Let λcan : A0 ' At

0 be the canonical principal polarization.
For each deformation A/R over a local Artinian ring (R,mR), let qA : Tp(A0)×Tp(At

0) → 1 + mR
be the Serre–Tate bilinear form attached to A/R (see [Kat81]). The canonical Serre–Tate coordinate

t : Ŝx → Ĝm is defined by

t(A) := qA(λ−1
can(Px), Px)

and yields an identification OŜx
=WJt− 1K.

Let f ∈ Vp(N,W) be a p-adic modular form over W. The t-expansion f(t) of f around x is defined
by

f(t) = f |Ŝx
∈ WJt− 1K,

and we let df be the p-adic measure on Zp such that∫
Zp

txdf(x) = f(t).

Moreover, if φ : Zp → OCp is any continuous function, we define f ⊗ φ(t) ∈ OCpJt− 1K by

f ⊗ φ(t) =

∫
Zp

φ(x)txdf =
∑
n≥0

∫
Zp

φ(x)

(
x

n

)
df(x) · (t− 1)n.

Lemma 3.1. If φ : Zp/p
nZp → OCp , then

f ⊗ φ(t) = p−n
∑

u∈Z/pnZ

∑
ζ∈µpn

ζ−uφ(u)f(tζ).

If φ : Zp → Zp is z 7→ zk, then

f ⊗ φ(t) =

[
t
d

dt

]k
(f).

Proof. This is well-known. For example, see [Hid93, §3.5 (5)]. �

3.2. Serre–Tate coordinates of CM points. Suppose that c is a positive integer with p - c. Let a

be a prime-to-cNp integral ideal of Oc, and let a ∈ K̂(cNp)× be such that a = aÔc∩K. Define N(a) by

N(a) := degree of the Q-isogeny C/OK → C/a−1

= c−1#(Oc/a) = c−1 |a|−1
AK

.

Let xa = [(Aa, ηa)] ∈ Ig(N)(V) be the CM point attached to a and let t be the canonical Serre–Tate
coordinate of xa := xa ⊗V F̄p. We will use the following notation: for each z ∈ Qp, set

(3.1) n(z) :=

(
1 z
0 1

)
∈ GL2(Qp) ⊂ GL2(Q̂).

Put

xa ∗ n(z) := [(ϑ, a−1ξcn(z))] ∈ Ig(N)(V).

Lemma 3.2. Let u ∈ Zp. We have (xa ∗ n(up−n))⊗ F̄p = xa, and

t(xa ∗ n(up−n)) = ζ
−uN(a)−1√−DK−1

pn .

Proof. Let (A, ηA)/V0 be a model of the CM elliptic curve (Aa, ηa) over a discrete valuation ring

V0 ⊂ V. Let A = A⊗ F̄p. Recall that ep and ep are idempotents in K⊗QK ↪→ Qp⊗QK corresponding
to p and p respectively. In fact

ep =
ϑ⊗ 1− 1⊗ ϑ

ϑ− ϑ
, ep̄ =

ϑ⊗ 1− 1⊗ ϑ
ϑ− ϑ

,

so we have

(3.2) pϑ(e1ς
′
p) = ep , pϑ(e2ς

′
p) = ep.
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The complex uniformization α : (C/a−1, ηa) ' (A, ηA)/C yields the identifications

α : Zpep ⊕ Zpep = Zp ⊗Z a−1 ' Tp(A)

and

α : µp∞ ⊗ Zpep ' Â[p∞], α : Zpep ' Tp(A).

Here Â is the formal group attached to A/V0 . Let eA : Tp(A)×Tp(At)→ Zp be the Weil pairing. Let

λϑ : A → At be the prime-to-p polarization induced by the Riemann form 〈z, w〉ϑ = (Imϑ)−1 Im(zw)
on C/a−1. The complex uniformization αt = α ◦ λϑ : C → At(C) induces αt : C/N(a)a−1 ' At(C)

and αt : Zpep⊕Zpep ' Tp(At) with αt : Zpep ' Tp(A
t
). By [Mum08, Theorem 1, page 237] and (3.2),

we have

eA(aα(ep) + bα(ep), cαt(ep) + dαt(ep)) = −(ad− bc)(ϑ− ϑ)−1 = −(ad− bc)
√
−DK

−1
.

(Note the sign −1.) The canonical polarization λcan : A ' At is given by α(z) 7→ αt(N(a)z).
Let y be the complex point (ϑ, a−1ξcn(up−n)) and let (B, ηB)/V0 be a model of (Ay, ηy) over V0

(enlarging V0 if necessary), so [(B, ηB)] = [y]. The period lattice Ly of B(C) is given by

Ly = pϑ(L′), L′ = (Ẑe1 ⊕ Ẑe2)n(−up−n)ξ′ca
−1 ∩ V.

By a direct computation and (3.2), we find that

Zp ⊗Z Ly = pϑ(Zpe1 ⊕ Zpe2

(
1 −up−n
0 1

)
γ′c,pς

′
p)

= pϑ((Zp(e1 − up−ne2)⊕ Zpe2)ς ′p)

= Zp(ep̄ − up−nep)⊕ Zpep,

so the complex uniformization β : (C/Ly, ηy) ' (B, ηB)/C induces the identification

β : Zp(ep −
u

pn
ep)⊕ Zpep ' Tp(B).

With the above preparations, we see that over C there are natural isomorphisms

A/A[p] ' B/B[p] ' C/a−1p−1
c (pc = p ∩ Oc)

induced by the inclusions of Ly and a−1 in a−1p−1
c , which extend uniquely to an isomorphism A/A[p] '

B/B[p] over V0 ([FC90, Prop. 2.7]). By construction, A[p] and B[p] are connected components of A[p]
and B[p], so we get the isomorphism (A, ηA)σp ' (B, ηB)σp , where (−)σp denotes the conjugate of the

p-th power Frobenius σp, and hence (A, ηA) ' (B, ηB). This shows that [y]⊗ F̄p = xa. To compute the

value t(B), we note that Pxa
= αt(ep) and that the Weil pairing of A induces EB : B̂[p∞]×Tp(A

t
)→

Ĝm so that EB(β(p−nep), αt(ep)) = ζ
√
−DK−1

pn ([Kat81, page 150]). For a sufficiently large integer m,
we have

t(B) = qB(λ−1
can(Pxa

), Pxa
) = qB(N(a)−1α(ep), αt(ep))

= EB(“pm”α(p−mep), αt(ep))N(a)−1

,

where “pm” : A[pm](F̄p)→ Â is the Drinfeld lift map. To compute the lift, from the diagram

(3.3) 0 // µp∞ ⊗ Zpep //

o
��

Zp ⊗K/Ly //

oβ

��

Qp/Zp ⊗ Zpep

oα

��

// 0

0 // B̂[p∞] // B[p∞] // Qp/Zp ⊗ Tp(A) // 0

we can see that the pm-torsion point α(p−mep) ∈ p−mZp/Zp⊗Tp(A) = A[pm](F̄p) has a lift β(p−mep−
up−m−nep) ∈ B[p∞], so the Drinfeld lift “pm”α(p−mep) is given by β(−up−nep) ∈ B̂[p∞]. Hence, we
obtain

t(B) = EB(β(p−nep), αt(ep))−uN(a)−1

= ζ
−uN(a)−1√−DK−1

pn . �
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Proposition 3.3. Let f ∈ Vp(N,W) be a p-adic modular form with t-expansion f(t) around xa ⊗ F̄p.
Put

fa(t) := f(tN(a)−1√−DK−1

).

If n is a positive integer and φ : (Z/pnZ)× → O×Cp is a primitive Dirichlet character, then

fa ⊗ φ(xa) = p−ng(φ)
∑

u∈(Z/pnZ)×

φ−1(u) · f(xa ∗ n(up−n)).

Proof. This follows from Lemma 3.1 combined with Lemma 3.2. �

3.3. Anticyclotomic p-adic L-functions.

Hecke characters and p-adic Galois characters. A Hecke character χ : K×\A×K → C× is called a Hecke
character of infinity type (m,n) if χ∞(z) = zmzn, and is called anticyclotomic if χ is trivial on A×.

For each prime q of OK , we let χq : Kq → C× denote the q-component of χ, and if χ has conductor

c and a is any fractional ideal prime to c, we write χ(a) for χ(a), where a is an idele with aÔK ∩K = a
and aq = 1 for all q | c.

Definition 3.4. The p-adic avatar χ̂ : K×\K̂× → C×p of a Hecke character χ of infinity type (m,n)
is defined by

χ̂(z) = ip ◦ i−1
∞ (χ(z))zmp z

n
p

for z ∈ K̂×.

Via the reciprocity law map recK , each p-adic Galois character ρ : GK := Gal(Q/K)→ C×p will be

implicitly regarded as a p-adic character ρ : K×\K̂× → C×p . We say that a p-adic Galois character
ρ is locally algebraic if ρ = ρ̂A is the p-adic avatar of some Hecke character ρA. A locally algebraic
character ρ is called of infinity type (m,n) if the associated Hecke character ρA is of infinity type
(m,n), and the conductor of ρ is defined to be the conductor of ρA. Note that if ρA is unramified at p
and of infinity type (m,n), then ρ is crystalline at p as ρ|GKp

is an unramified twist of the m-th power
of the p-adic cyclotomic character.

Modular forms. In the remainder of this article, we fix f ∈ Snew
2r (Γ0(N)) to be an elliptic newform (i.e.

normalized eigenform for all Hecke operators) of weight 2r and level Nf | N . Let

f(q) =
∑
n>0

an(f)qn

be the q-expansion of f at the infinity cusp. Let F be a finite extension of Qp containing the Hecke
field of f , i.e. the field generated by {an(f)}n over Q. Let ϕf be the automorphic form attached to
f , i.e. ϕf : A×GL2(Q)\GL2(A)→ C is the function satisfying

ϕf (g∞u) = J(g∞, i)
−2rf(g∞i), for g∞ ∈ GL2(R)+, u ∈ U1(Nf ),

and let π = ⊗′πq be the irreducible cuspidal automorphic representation on GL2(A) generated by ϕf .

Note that π has trivial central character. Define the automorphic form ϕ[f by

(3.4) ϕ[f (g) = ϕf (g)− ap(f)p−rϕf (gγp) + p−1ϕf (gγ2
p),

where γp =

(
1 0
0 p

)
∈ GL2(Qp) ↪→ GL2(Q̂). Define the complex function f [ : H× GL2(Q̂)→ C by

(3.5)
f [(τ, gf ) = ϕ[f ((g∞, gf ))J(g∞, i)

2r |det gf |rAf
,

(g∞ ∈ GL2(R)+, g∞i = τ).

Then there is a unique geometric modular form f [ of weight 2r and level Γ0(Np2) defined over OF
such that:

• f [(Ax, ηx, 2πidw) = f [(x) for x ∈ H× GL2(Q̂),
• with Fourier expansion

f [(Tate(q), ηcan, ωcan) =
∑
p-n

an(f)qn.
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The p-adic avatar f̂ [ ∈ Vp(N,OF ) of f [ introduced in §2.2 is a p-adic modular form of weight 2r.

Explicit Waldspurger formula. We recall a result on the explicit calculation of toric period integrals in
[Hsi14]. Let c = cop

n with p - co and n ≥ 0. Put

PicOc := K×\K̂×/Ô×c .

If a ∈ K̂(cpN)× and a = aK̂ ∩ Oc is the corresponding fractional ideal of Oc, we shall write [a] = [a]

for its class in PicOc. Let χ : K×\A×K/Ô×c → C× be an anticyclotomic Hecke character, and set

A(χ) = {primes q | DK such that χq is unramified and q | Nf .} .
We assume the following Heegner hypothesis:

(Heeg’) N−f is a square-free product of primes ramified in K,

and that (f, χ) satisfies the condition

(ST) aq(f)χ(q) = −1 for every q ∈ A(χ) (qOK = q2).

Definition 3.5. Define the χ-toric period by

Pχ(f [) :=
∑

[a]∈PicOc

ϕ[f ((ς∞, aξc))χ(a) (ς∞ :=

(
Imϑ Reϑ

0 1

)
)

= (c Imϑ)r ·
∑

[a]∈PicOc

f [(ϑ, aξc) · χ|·|−rAK
(a) (by (3.5)).

Let πK be the automorphic representation of GL2(AK) obtained by the base change of π to K, and
let L(s, πK ⊗ χ) be the automorphic L-function on GL2(AK) attached to πK twisted by χ ◦ det 1. If
χ has infinity type (r +m,−r −m) with m ≥ 0, define the algebraic central value Lalg( 1

2 , πK ⊗ χ) by

Lalg(
1

2
, πK ⊗ χ) =

Γ(2r +m)Γ(m+ 1)

(4π)2r+2m+1(Imϑ)2r+2m
·
L( 1

2 , πK ⊗ χ)

Ω
4(r+m)
K

,

and the p-adic multiplier ep(f, χ) by

ep(f, χ) =

{
(1− ap(f)p−rχp(p) + χp(p2)p−1)2 if p - c,
ε( 1

2 , χp)−2 if p | c.

Proposition 3.6. Suppose that

(a) χ has infinity type (r,−r) and (c,N+) = 1,
(b) (Heeg’) and (ST) hold for (f, χ).
(c) The conductor of χ is cOK .

Then we have(
Pχ(f [)

Ω2r
K

)2

= Lalg(
1

2
, πK ⊗ χ) · ep(f, χ) · ε(1

2
, χp)2 · 2#A(χ)+3u2

K

√
DK · c(Imϑ)2r · χ−1(N)ε(f),

where uK := #(O×K)/2 and ε(f) :=
∏
q ε(

1
2 , πq) is the global root number of f .

Proof. We will follow the notations in [Hsi14]. Let W [
χ = W [

χ,p

∏
v 6=pWχ,v : GL2(A) → C be the

Whittaker function defined in [Hsi14, §3.6], and let ϕ[χ : GL2(Q)\GL2(A) → C be the associated
automorphic form given by

ϕχ(g) =
∑
α∈Q

W [
χ(

(
α 0
0 1

)
g).

Let ς = (ς∞, ς
(∞)) ∈ GL2(A) with ς(∞) as in §2.4, and define the toric period integral

Pχ(π(ς)ϕχ) =

∫
K×A×\A×K

ϕχ(tς)χ(t)dt,

1See [Jac72, Thm. 20.6] for the existence of the quadratic base change, and [JL70, §11] for the definition of L-functions

on GL(2).
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where dt is the Tamagawa measure on A×K/A
×. Under the assumption (b), the explicit Waldspurger

formula in [Hsi14, Theorem 3.14] implies that

(3.6) Pχ(π(ς)ϕχ)2 = |DK |−
1
2 · Γ(2r)

(4π)2r+1
· ep(f, χ) · L(

1

2
, πK ⊗ χ) · C ′π(χ)N(π, χ)2,

where N(π, χ) =
∏
q|c− L(1, τKq/Qq

) and C ′π(χ) is the constant

C ′π(χ) = 2#(A(χ))+3(c−)−1 ·
∏

q|CN, q6=p

ε(
1

2
, πq ⊗ χq)

= 2#(A(χ))+3(c−)−1 ·
∏
q|N

ε(
1

2
, πq)χ

−1
q (N)

∏
q|C,q 6=p

ε(
1

2
, χq)−2

In the last equality, we used the formulae

ε(s, πq ⊗ χq) = ε(s, πq ⊗ χ−1
q ) =

{
ε(s, πq)χ

−1
q (N) if q | N+,

ε(1− s, χq)−2 if q | c.

On the other hand, under assumption (a) one can verify that∑
[u]∈Ô×K/Ô

×
c

ϕ[f (g(ς∞, uξc))χ(u) = ϕχ(gcς) ·
∏
q|C

g(χ−1
q ) · c−

∏
q|c−

(1 + 1/q)

by comparing the Whittaker functions of the automorphic forms ϕ[f and ϕχ on both sides, where

c = (cq)q ∈ K̂× is the idele with cq = qordq(c) if q | C and cq = 1 if q - C. From this equation, we
obtain

Pχ(π(ς)ϕχ) =
2√

DKuK

∑
[a]∈PicOK

χ(a)ϕχ(aς)

=
2N(π, χ)

c−
√
DKuK

·
∏
q|C

g(χ−1
q )−1 ·

∑
[a]∈PicOK

χ(ac−1)
∑

[u]∈Ô×K/Ô
×
c

ϕ[f (ς∞, auξc)χ(u)

=
2N(π, χ)

c−
√
DKuK

·
∏
q|C

g(χ−1
q )−1χ−1

q (qordqc) ·
∑

[a]∈PicOc

ϕ[f (ς∞, auξc)χ(u).

We thus find

(3.7) Pχ(π(ς)ϕχ) =
2N(π, χ)

c
√
DKuK

·
∏
q|C

ε(1, χq)−1 · Pχ(f [).

It is clear that the theorem follows from (3.6) and (3.7). �

Analytic construction of the p-adic L-function. Let Kp∞ = ∪nKpn be the ring class field of conductor

p∞, and let Γ̃ := Gal(Kp∞/K). Then the Galois group Γ−K of the anticyclotomic Zp-extension is the

maximal free quotient of Γ̃. Denote by C(Γ̃,OCp) the space of continuous OCp -valued functions on Γ̃,

and let Xp∞ ⊂ C(Γ̃,OCp) be the set of locally algebraic p-adic characters ρ : Γ̃→ O×Cp .

Let recp : Q×p = K×p → Gal(Kab/K)→ Γ̃ be the local reciprocity law map. For ρ ∈ Xp∞ , we define

ρp : Q×p → C×p by

ρp(β) = ρ(recp(β)),

and for ρ ∈ C(Γ̃,OCp), we define ρ|[a] : Z×p → OCp by

ρ|[a](x) = ρ(recp(x)σ−1
a ) = ρ(recp(x) recK(a)).

For each a ∈ K̂(coNp)× with associated fractional ideal a ⊂ Oco , let (Aa, ηa) be the CM elliptic curve

with level structure introduced in §2.3. Let ta be the canonical Serre–Tate coordinate of f̂ [ around
xa = [(Aa, ηa)]⊗W F̄p, and set

(3.8) f̂ [a(ta) := f̂ [(t
N(a)−1√−DK−1

a ) ∈ WJt− 1K (N(a) = |a|−1
AK

c−1
o ).
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Definition 3.7 (Analytic anticyclotomic p-adic L-functions). Let ψ be an anticyclotomic Hecke char-
acter of infinity type (r,−r), and let coOK be the prime-to-p part of the conductor of ψ. Define the

p-adic measure Lp,ψ(f) on Γ̃ by

Lp,ψ(f)(ρ) =
∑

[a]∈PicOco

ψ(a)N(a)−r ·
(
f̂ [a ⊗ ψpρ|[a]

)
(Aa, ηa).

We shall also view Lp,ψ(f) as an element in the semi-local ring WJΓ̃K.

The p-adic measure Lp,ψ(f) satisfies the following interpolation formula at characters of infinity
type (m,−m) with m ≥ 0. In what follows, we assume (Heeg’), (ST) for (f, ψ) and that (co, pN

+) = 1.

Proposition 3.8. If φ̂ ∈ Xp∞ is the p-adic avatar of a Hecke character φ of infinity type (m,−m)
with m ≥ 0 and p-power conductor, then(

Lp,ψ(f)(φ̂)

Ω2r+2m
p

)2

= Lalg(
1

2
, πK ⊗ ψφ) · ep(f, ψφ) · φ(N−1) · 2#A(ψ)+3coε(f) · u2

K

√
DK .

Proof. Suppose that m = 0. Then φ̂ = φ is a finite order character, and χ := ψφ is an anticyclo-
tomic Hecke character of infinity type (r,−r). Let cOK be the conductor of χ (so c = cop

n). Suppose
that n > 0. By Definition 3.7 and Proposition 3.3, we have

(3.9)

Lp,ψ(f)(φ) = cro
∑

[a]∈PicOco

(
f̂ [a ⊗ χp

)
(xa)χ|·|rAK

(a)

= p−ng(χp)cro
∑

[a]∈PicOco

χ|·|−rAK
(a−1)

∑
u∈(Zp/pnZp)×

f̂ [(xa ∗ n(up−n))χp(u−1).

For z ∈ Q×p , we use zp (resp. zp) to denote the finite idele in K̂× with z at p (resp. p) and 1 at all the

other places. Since f [ is of weight 2r and level Γ0(Np2), a direct calculation shows that

f̂ [(xa ∗ n(up−n)) = f [(ϑ, a−1ξcon(up−n)) ·
Ω2r
p

Ω2r
K

= f [(ϑ, a−1upp
−n
p
ξcopn)) ·

Ω2r
p

Ω2r
K

(u ∈ Z×p ),

where (ΩK ,Ωp) are the periods defined in §2.5. Note that we used (2.3) in the last equation. We thus
find

Lp,ψ(f)(φ)

Ω2r
p

=
p−ng(χp)cro

Ω2r
K

·
∑

[a]∈PicOco

∑
u∈Ô×co/Ô

×
c

χ|·|−rAK
(a−1up)f [(ϑ, a−1upp

−n
p
· ξc)

=
p−ng(χp)cro

Ω2r
K

·
∑

[a]∈PicOc

χ|·|−rAK
(a)f [(ϑ, ap−n

p
· ξc)

=
ε(1, χp)χp(−1)cr

Ω2r
K

·
∑

[a]∈PicOc

χ|·|−rAK
(a)f [(ϑ, aξc) (by (1.1)).

Therefore, according to Definition 3.5 we obtain

Lp,ψ(f)(φ)

Ω2r
p

=
ε( 1

2 , χp)−1

Ω2r
K

· Pχ(f [) · p−n2 (Imϑ)−r.

The proposition for the case m = 0 and n > 0 now follows from Theorem 3.6. If n = 0, i.e. χp = 1 is
the trivial character on Z×p , then one can use (3.4) and the fact that ϕf is a Hecke eigenform to show

that f̂ [a⊗χp(xa) = f̂ [a(xa), so (3.9) is still valid2, and as above the proposition also follows in this case.
For general m ≥ 0, comparing the interpolation formulas for Lp,ψ(f) and for the p-adic L-function

Lp(π, ψ) constructed in [Hsi14, Thm. A] at p-ramified finite order characters (m = 0), we find that

2The p-adic modular form f̂[ is called the p-depletion of f̂ . The reason to take the p-depletion is to make the measure

associated to f̂[ supported on Z×p
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Lp,ψ(f) = u ·Lp(π, ψ) with u = 2#A(ψ)+3coε(f)
√
DK , and hence the general interpolation formulae

of Lp,ψ(f) can be deduced from those of Lp(π, ψ) in loc.cit.. We omit the details. �

We now prove the nonvanishing of the p-adic L-function Lp,ψ(f).

Theorem 3.9. Suppose (Nf , DK) = 1. For all but finitely many φ ∈ Xp∞ , we have Lp,ψ(f)(φ) 6= 0.

Proof. Since f has conductor prime to DK , f can not be a CM form arising from K, and hence
the `-adic representation ρf,` is irreducible when restricted to GK for every prime `. Therefore, it is
well-known that there exist infinitely many primes ` such that:

• ` is prime to pNDK

∏
q|c−(1 + q),

• the residual Galois representation ρ̄f,`|GK) is absolutely irreducible.

By [Hsi14, Theorem C], the central L-values
{
Lalg(1/2, πK ⊗ ψφ)

}
are non-zero modulo ` for all but

finitely many finite order characters φ ∈ Xp∞ . (Note that the roles of p and ` have been switched here.)
In particular, this implies that Lp,ψ(f) does not vanish identically, and hence the theorem follows from
p-adic Weierstrass preparation theorem. �

4. Generalized Heegner cycles

4.1. Definitions. We continue to let f ∈ Snew
2r (Γ0(N)) be a newform of weight 2r and level N . We

assume the (strong) Heegner condition

(Heeg) N is a product of primes split in K.

Thus (Heeg’) and (ST) will automatically hold. Let K = Q(
√
−DK) be the imaginary quadratic field

of discriminant −DK . If r > 1, we further assume that

(can) either DK > 3 is odd, or 8 | DK .

This assumption ensures the existence of canonical elliptic curves in the sense of Gross (see [Yan04,
Thm. 0.1]). We shall fix a canonical elliptic curve A with CM by OK , which is characterized by the
following properties:

• A is equipped with CM by [·] : OK ' EndA.
• There is a complex uniformization ξ : C/OK ' A(C).
• A is a Q-curve defined over H+

K , where H+
K = Q(j(OK)) is the real subfield of the Hilbert

class field HK of K.
• The conductor of A is only divisible by prime factors of DK .

For each positive integer c, let Cc := ξ(c−1Oc/OK) ⊂ A be a cyclic subgroup of order c. The elliptic
curve A/Cc is defined over the real subfield Q(j(Oc)) of the ring class field Kc of conductor c. Let
ϕc : A/Kc → Ac/Kc be the isogeny given by the natural quotient map. Then A/Cc is equipped with
the complex uniformization Ac ' C/Oc such that ϕc : C/OK → C/Oc is given by z 7→ cz. Thus we
see that the elliptic curve Ac introduced in§2.3 descends to the elliptic curve A/Cc, still denoted by
Ac in the sequel.

For any ideal a of Oc, in this section we always assume that aOK is prime to cDKpN. Let a be
an ideal of Oc and recall that σa ∈ Gal(Ka/K) is the image of a under the Artin map, where Ka is
the maximal abelian a-ramified extension of K. Then, by the main theorem of complex multiplication
(cf. [dS87, Prop. 1.5, p.42]), we have Aa = Aσa

c and the isogeny λa : Ac → Aa in §2.3 is actually defined
over Kc and characterized by the rule

(4.1) λa(x) = σa(x) for all x ∈ A[m], (m,N(a)) = 1.

Define the isogeny
ϕa := λa ◦ ϕc : A/Kc −→ Aa/Kc ,

and let Γa be the graph
Γa = {ϕa(z), z) | z ∈ A} ⊂ Aa×A.

Let K̃c be the compositum of Kc and the ray class field of conductor N. Let xa = [(Aa, ηa)] ∈
Y1(N)(K̃c) be the CM point associated to a as in the last paragraph of §2.3, and let A be the
universal elliptic curve over Y1(N). Then xa determines an embedding ixa

: Aa → A , and we define

Ya = (ixa
×id)(Γa) = {(ixa

(ϕa(z)), z) | z ∈ A} ⊂ A×A.
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Denote by W2r−2 the Kuga–Sato variety of dimension 2r−1 (cf. [BDP13, p.1056]). Following [BDP13,
p.1063], define the cycle Υa in the generalized Kuga–Sato variety X2r−2 := W2r−2 ×A2r−2 by

Υa = Y2r−2
a ⊂ (ixa

(Aa)×A)2r−2 ↪→ X2r−2.

Let εX = εW × εA, with εW ∈ Z[Aut(W2r−2)] and εA ∈ Z[Aut(A2r−2)] the idempotents defined in
[BDP13, (2.1.2), (1.4.4)]. The following definition is given in [BDP13, p.1063].

Definition 4.1. The generalized Heegner cycle ∆ϕa
associated to the isogeny ϕa is

∆ϕa
:= εX [Υa] ∈ CH2r−1(X2r−2/K̃c)0,Q.

4.2. Generalized Heegner classes (I). Let p be a prime with p - 2(2r−1)!Nϕ(N). Let F be a finite
extension of Qp containing the Hecke field of f . Let Vf be the two-dimensional p-adic representation of
GQ over F attached to the newform f by Deligne, and denote by Vf (r) the Tate twist Vf ⊗εrcyc, where
εcyc is the p-adic cyclotomic character. Following [BDP13, §3.1], we consider the p-adic Abel–Jacobi
map

Φét,f : CH2r−1(X2r−2/K̃c)0 −→ H1(K̃c, εXH
4r−3
ét (X2r−2/Q,Zp)(2r − 1))

−→ H1(K̃c, εWH
2r−1(W2r−2/Q,Zp)(r))⊗ Sym2r−2H1

ét(A/Q,Zp)(r − 1))

−→ H1(K̃c, T ⊗ Sr−1(A)),

where T is the Galois stable OF -lattice in Vf (r) in [Nek92, §3], and Sr−1(A) is the GHK -module

Sr−1(A) := Sym2r−2 Tp(A)(1− r)

with Tp(A) the p-adic Tate module of A. For every ideal a of Oc, define the generalized Heegner class
zf,a associated to a by

(4.2) zf,a := Φét,f (∆ϕa
) ∈ H1(K̃c, T ⊗ Sr1(A))Gal(K̃c/Kc) = H1(Kc, T ⊗ Sr1(A)).

In the following, we shall simply write zf,c for zf,Oc .

4.3. Norm relations.

Lemma 4.2. If D ⊂ (Aa ×A)2r−2 is a cycle of codimension r − 1 such that D is zero in the Néron–
Severi group of NS(Aa × A)2r−2, then the p-adic Abel–Jacobi image of εX(ixa

)∗(D) in H1(Kc, T ⊗
Sr−1(A)) is also trivial.

Proof. This follows from the fact that the Abel–Jacobi image of εX(ixa
)∗(D) lies in the image of

the map

H1(Kc, εXH
4r−5
ét (Aa

2r−2

/Q
×A2r−2

/Q
,Zp))

ixa−→ H1(Kc, εXH
4r−3
ét (X2r−2/Q,Zp))

and εXH
4r−5
ét (Āa

2r−2

/Q
× Ā2r−2

/Q
,Zp) = 0. �

We refer to §4.4 for the definition of the character κ̃A appearing in the next result.

Lemma 4.3. Suppose aOK is trivial in PicOK , and let α := κ̃A(a) ∈ K×. Then for every ideal b of
Oc prime to cND, we have

(id×[α])∗∆σa
ϕb

= ∆ϕab
.

Proof. Let σ = σa ∈ Gal(Kab/H+
KK). By definition, Aσ = A and Aσa = Aab. Note that for any

t ∈ A[m] with (m,N(ab)) = 1, we have σ(t) = λaO(t) = [α](t) and

ϕσc ◦ [α](t) = ϕσn(σ(t)) = σ(ϕc(t)) = λa(ϕn(t)).

This implies that ϕσc ◦ [α] = λa ◦ ϕc. Therefore,

[α] ◦ ϕσb = ϕσb ◦ [α] = λσb ◦ ϕσc ◦ [α] = λσb ◦ λa ◦ ϕc = ϕab,

and

(id×[α])∗Γσa

b = ([α]×id)∗Γ
σa

b = Γ[α]◦ϕσb = Γϕab
= Γab.

The lemma thus follows immediately from xσa

b = xab. �
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Let Gn := Gal(Kcpn/Kcpn−1), which is identified with ker
{

PicOcpn → PicOcpn−1

}
via the Artin

isomorphism. The usual Hecke correspondence Tq associated with a prime q - N on the Kuga–Sato
variety W2r−2 (see [Sch90, §4]) induces the Hecke correspondence Tq× id on the generalized Kuga–Sato
variety X2r−2 = W2r−2 × A2r−2. In what follows, we shall still write Tq for Tq × id if no confusion
arises.

Proposition 4.4. Assume that p - c. If p = pp is split in K, then for all n > 1 we have

Tpzf,cpn−1 = p2r−2 · zf,cpn−2 + corKcpn/Kcpn−1
(zf,cpn),

where uc = #(O×c ), and σp, σp ∈ Gal(Kc/K) are the Frobenius elements of p and p. Moreover, if ` - c
is inert in K, then

T`zf,c = corKc`/Kc(zf,c`).

Proof. Let L ⊂ Ocpn−1 be a sublattice of Ocpn−1 with index p, and let AL = C/L. Let ψL : AL →
Acpn−1 be the isogeny induced by L ↪→ Ocpn−1 . We have two cases:

Case(i): L is an Ocpn -ideal and the class [L] is trivial in PicOcpn−1 , so we can write L = αa−1 for
some integral Ocpn-ideal a with α = κ̃A(a). Then we have AL ' Aa and

ψL ◦ ϕa = [pα] ◦ ϕcpn−1 .

Denote by Tx the translation map by a torsion point x ∈ Aa×A. Then we have⊔
z∈kerψL

T ∗(z,0)Γa = {(x, y) | ψL(x) = ψL(ϕa(y))}

=
{

(x, y) | ψL(x) = ϕcpn−1(pαy)
}

= (id×[pα])∗ψ∗LΓOcpn−1 .

This implies that p · Γa and p · (id×[α])∗ψ∗LΓOcpn−1 are equal in the Néron–Severi group NS(Aa×A),

and hence by Lemma 4.2 we have

zf,a = (id×[α])∗ψ∗Lzf,cpn−1 .

Using Lemma 4.3 and the projection formula (id×[α])∗(id×[α])∗ = N(aOK)2r−2, we conclude that

(4.3) ψ∗Lzf,cpn−1 = zσa

f,cpn .

Case(ii): L = pOcpn−2 and p is split in K. Then AL ' Acpn−2 , and

ψL ◦ ϕcpn−2 = ϕcpn−1 .

Note that

ψ∗LΓOcpn−1 =
⊔

z∈kerψL

T ∗(z,0)(ΓOcpn−2 ),

so ψ∗LΓOcpn−1 and p ·ΓOcpn−2 are equal in the Néron–Severi group NS(Acpn−2×A). By Lemma 4.2, we

have

(4.4) ψ∗Lzf,cpn = p2r−2 · zf,cpn−2 .

Choose a set Ξ of representatives of fractional Ocpn-ideals of ker
{

PicOcpn → PicOcpn−1

}
, and let

Ξ∗ :=
{
α−1a ⊂ Ocpn | a ∈ Ξ, α = κ̃A(a)

}
.

If p is split, then {
L ⊂ Ocpn−1 | [Ocpn−1 : L] = p

}
= Ξ∗ t

{
pOcpn−2

}
,

and thus by (4.3) and (4.4) we see that

Tpzf,cpn−1 =
∑

L⊂Ocpn−1 ,

[Ocpn−1 :L]=p

ψ∗Lzf,cpn−1 = p2r−2 · zf,cpn−2 +
∑
σ∈Gn

zσf,cpn .

If ` is inert and n = 1, then

{L ⊂ Oc | [Oc : L] = `} =
{
α−1a ⊂ Oc | a ideal of Oc`, α = κ̃A(a)

}
,
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and hence

T`zf,c =
∑

σ∈Gal(Kc`/Kc)

zσf,c`.

This completes the proof. �

4.4. Generalized Heegner classes (II). Let co be a positive integer with (co, pN) = 1, and let
χ : Gal(Kcop∞/K) → O×F be a locally algebraic anticyclotomic character of infinity type (j,−j) with
−r < j < r and conductor cop

sOK . The aim of this section is to construct classes zf,χ,c ∈ H1(Kc, T⊗χ)
by taking the corestriction of zf,c for every c divisible by cop

s. However, note that the CM elliptic
curve A is only defined over the Hilbert class field HK , so the group Gal(Kc/K) does not act on zf,c
in general. In order to get a natural Galois action, we consider

B/K := ResHK/KA,

the abelian variety obtained by restriction of scalars. As is well-known, B is a CM abelian variety over
K and M := Q⊗Z EndK B is a product of CM fields over K with dimB = [M : K] = [HK : K] (see
[Rub81, Prop. (1.2)]).

Let I(DK) be the group of prime-to-DK fractional ideals of K, and let

κ̃A : I(DK) −→M×

be the CM character associated to B with the following properties (cf. [Rub81, Lemma, p.457]):

• κ̃A(αa) = ±α · κ̃A(a) for all α ∈ K× with α prime to DK and a ∈ I(DK).
• For all a ∈ I(DK) and t ∈ B[m] with (m,N(a)) = 1, we have

κ̃A(a)(t) = σa(t);

and if σa is trivial on HK (or equivalently, if a is the norm of an ideal of HK), then κ̃A(a) ∈ K×
and σa(t) = [κ̃A(a)]t for all t ∈ A[m].

Define the GK-module

Sr−1(B) := Sym2r−2 Tp(B)(1− r)⊗Zp OF ' IndGKGHK
Sr−1(A)⊗Zp OF .

Enlarge F so that M ⊂ F , and let κA : GK → O×F be the p-adic avatar of κ̃A. By the above properties
of the CM character κ̃A, we have

Tp(B)⊗Qp F =
⊕

ρ∈Hom(M,F )

ρκA,

where ρκA(σ) := ρ(κA(σ)). If follows that if κτA is the p-adic character of GK defined by κτ (σ) :=
κ(τστ−1), where τ is the complex conjugation, then (κτA/κA)j has infinity type (j,−j) and is a direct
summand of Sr−1(B) as GK-modules. Therefore, there exists a finite order anticyclotomic character
χt such that χ is realized as a direct summand of Sr−1(B)⊗ χt as GK-modules, and let

(4.5) eχ : Sr−1(B)⊗ χt −→ χ

be the corresponding GK-equivariant projection. Note that χt is unique up to multiplication by a
character of Gal(HK/K), and that it has the same conductor as χ. In view of the decomposition

Tp(B) =
⊕

ρ∈Gal(HK/K)

Tp(A
ρ) ' IndGKGHK

(Tp(A)),

we shall regard the classes zf,a of (4.2) as elements zf,a ∈ H1(Kc, T⊗Sr−1(B)) via the natural inclusion
Tp(A)→ Tp(B) for c divisible by cop

s and a an Oc-ideal.

Proposition 4.5. Let a be an Oc-ideal with (a, cNDK) = 1. Then

χt(σa) · (id⊗ eχ)zσa

f,c = χε1−r
cyc (σa) · (id⊗ eχ)zf,a.
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Proof. We write σa = recK(a−1), where a ∈ K̂(c)× is such that aÔc ∩ K = a, and let σ = σa ∈
Gal(Kc/K). One easily verifies that

(id×λaOK )∗∆ϕa
= {(λa(ϕc(z)), λaOK (z) | z ∈ A}
= {(ϕσa

c (λaOK (z)), λaOK (z) | z ∈ A}
= ∆σa

c .

We have the following fact:

κ̃A(aOK) = (λρaOK )ρ ∈
⊕

ρ∈Gal(HK/K)

Hom(Aρ, Aρσa) ⊂ End(B).

This can be checked, for instance, by comparing the action of both sides on the p-adic Tate module of
B (see Eq. (4.1)). By the above fact, we find that

zσf,c = Φét,f (∆σa
c ) = (id×λaOK )∗zf,a = [κ̃A(aOK)]∗(zf,a),

where [κ̃A(aOK)]∗ denotes the push-forward of κ̃A(aOK) acting on Sym2r−2H1
ét(B/Q,Zp). Note that

[κ̃A(aOK)]∗ induces the Galois action σa on H1
ét(B/Q,Zp)(' Tp(Pic0B/Q)) and that

eχ(σ ⊗ εr−1
cyc (σ)⊗ χt(σ)t) = χ(σ)eχt

for every t ∈ Sr1(B) ⊗ χt = Sym2r−2H1
ét(B/Q,Zp)(r − 1) ⊗ χt by the definition of eχ. We thus find

that

(id⊗ eχ)zσf,c = eχ([κ̃A(aOK)]∗zf,a)

= χ−1
t ε1−r

cyc (σa) · eχ(σa ⊗ εr−1
cyc (σa)⊗ χt(σa) · zf,a)

= χ−1
t ε1−r

cyc (σa)χ(σa) · (id⊗ eχ)zf,a,

and the proposition follows. �

For each integer c divisible by the conductor of χ, put zf,c⊗χt := zf,c ∈ H1(Kc, T ⊗Sr−1(B)⊗χt),
and let zf,χ,c be the χ-component of the class zf,c defined by

(4.6) zf,χ,c := (id⊗ eχ)(zf,c ⊗ χt) ∈ H1(Kc, T ⊗ χ).

We finish this section with the proof of two lemmas which will be used in §7. Recall that we have
fixed a decomposition NOK = NN.

Lemma 4.6. Let τ be the complex conjugation. Then

(zf,χ,c)
τ = wf · χ(σN) · (zf,χ−1,c)

σN ,

where wf ∈ {±1} is the Atkin–Lehner eigenvalue of f .

Proof. We begin by noting that complex conjugation does indeed act on zf,c, since the elliptic curve
A is defined over the real field H+

K . Let wN be the Atkin–Lehner involution, and set Nc := N ∩ Oc.
We have the relations wN (τ(xc)) = xN and w∗N [ΓN] = N · [Γc] in NS(Ac×A) (cf. [Shn16, Lemma 20]),
from which we find that

(wN×id)∗∆N = Nr−1 ·∆τ
c .

Combined with Lemma 4.5, the above equation yields the lemma. �

Lemma 4.7. Let ` - cNDK be a prime inert in K. Let λ be a prime of Q above `, and let λc` and λc
be the primes of Kc` and Kc below λ. Denote by Kλc` and Kλc be the completions of Kc` and Kc at
λc` and λc, respectively. Then

resKλc` ,Kλc (locλ(zf,χ,c)
Frob`) = locλc`(zf,χ,c`),

where Frob` ∈ Gal(Qur
` /Q`) is the Frobenius element of `.
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Proof. Since χ is anticyclotomic and ` is inert, χ is a trivial character of GKλc , and hence Frob` acts

naturally on H1(Kλc , T ⊗ χ) = H1(Kλc , T ). The natural isogeny Ac → Ac` reduces to the Frobenius
map Frob` modulo λ, so we find that

(Frob`×1)(∆̃c) = ∆̃c`,

where ∆̃? denotes the reduction of ∆? modulo λ. The lemma follows. �

4.5. The p-adic Gross–Zagier formula of Bertolini–Darmon–Prasanna. The purpose of this
section is to give a mild extension of the p-adic Gross–Zagier formula in [BDP13, Thm. 5.13], which
relates the Bloch–Kato logarithm of generalized Heegner classes to the values of the p-adic L-function
Lp,ψ(f) at characters outside the range of interpolation. We keep the notation as in §4.4.

Some notation for p-adic representations. Let L be a finite extension of Qp, and let V be a finite
dimensional F -vector space with a continuous F -linear action of GL. Recall that DdR,L(V ) denotes
the filtered (L⊗Qp F )-module (BdR⊗Qp V )GL , where BdR is Fontaine’s ring of p-adic periods. We let
t ∈ BdR be Fontaine’s p-adic analogue of 2πi associated with the compatible system {ıp(ζpn)}n=1,2,...

of p-power roots of unity. If V is a de Rham representation (i.e. dimL DdR,L(V ) = dimF V ), then
there is a canonical isomorphism DdR,E(V ) = E ⊗L DdR,L(V ) for any finite extension E/L. Denote
by 〈 , 〉 the de Rham pairing

〈 , 〉 : DdR,L(V )×DdR,L(V ∗(1)) −→ L⊗Qp
F −→ Cp,

where V ∗ = HomF (V, F ). Let Bcris ⊂ BdR be the crystalline period ring and define Dcris,L(V ) :=
(Bcris ⊗Qp

V )GL . Then Dcris,L(V ) is an (L0 ⊗Qp
F )-module equipped with the action of crystalline

Frobenius Φ, where L0 is the maximal unramified subfield of L. When L = Qp, we write DdR(V ) =
DdR,Qp

(V ) and Dcris(V ) = Dcris,Qp
(V ). If V is a crystalline representation (i.e. dimL0

Dcris,L(V ) =
dimF V ), then we have a canonical isomorphism L⊗L0

Dcris,L(V ) = DdR,L(V ).
Let H1

e (L, V ) be the image of the Bloch–Kato exponential map

expL,V :
DdR,L(V )

Fil0DdR,L(V ) + Dcris,L(V )Φ=1
↪→ H1(L, V ),

and H1
f (L, V ) ⊂ H1(L, V ) be the Bloch–Kato ‘finite’ subspace. If Dcris,L(V )Φ=1 = 0, then the natural

inclusion H1
e (L, V ) ⊂ H1

f (L, V ) is an equality (see for example [BK90, Cor. 3.8.4]), and we define the
Bloch–Kato logarithm map

log := logL,V : H1
f (L, V ) −→ DdR,L(V )

Fil0DdR,L(V )
= (Fil0DdR,L(V ∗(1)))∨

to be the inverse of the Bloch–Kato exponential. We also let exp∗ be the dual exponential map

exp∗ := exp∗L,V : H1(L, V ∗(1)) −→ Fil0 DdR,L(V ∗(1)),

obtained by dualizing expL,V with respect to the de Rham and local Tate pairings (cf. [LZ14, §2.4]).

Recall that we assumed p = pp splits in K, with p induced by the fixed embedding ıp : Q→ Cp. If
E is a finite extension of K, we denote by Ep the completion of E at the prime induced by ıp. With a
slight the abuse of notation, we call Ep the p-adic completion of E, and for any GE-module V , we let

locp : H1(E, V ) −→ H1(Ep, V )

denote the localization map.

Some de Rham cohomology classes. By the work of Scholl [Sch90], it is known that Vf can be realised

as a quotient of H2r−1
ét (W2r−2/Q,Qp)⊗Qp

F , and we get the composite quotient map

H2r−1
dR (W2r−2/F ) ∼= DdR(H2r−1

ét (W2r−2/Q,Qp)⊗Qp
F ) −→ DdR(Vf )

by applying the comparison isomorphism [Tsu99]. Let ω̃f ∈ H2r−1
dR (W2r−2/F ) be the differential form

attached to the newform f via the rule in [BDP13, Cor. 2.3], and let ωf ∈ DdR(Vf ) be the image of
ω̃f .

Let L = HK,p be the p-adic completion of HK . The OK-action on A/L gives rises to a canonical de-

composition of the de Rham cohomology group H1
dR(A/L) = H1,0

dR (A/L)⊕H0,1
dR (A/L). Recall our fixed
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choice of Néron differential ωA ∈ H1,0
dR (A/L), which determines ηA ∈ H0,1

dR (A/L) by the requirement
that 〈ωA, ηA〉 = 1 (cf. [BDP13, page 1051]). We shall view ωA, ηA as elements in DdR,L(H1

ét(A/Q,Qp))

by the comparison isomorphism, and let

ωr−1+j
A ηr−1−j

A (−r < j < r)

be the resulting basis for DdR,L(Sym2r−2H1
ét(A/Q,Qp)), where ωr−1+j

A ηr−1−j
A is as in [BDP13, (1.4.6)].

p-adic Gross–Zagier formula. Define the generalized Heegner class zf,χ attached to (f, χ) by

(4.7)

zf,χ := corKcops/K(zf,χ,cops)

=
∑

σ∈Gal(Kcops/K)

χt(σ) · (id⊗ eχ)zσf,cops

=
∑

[a]∈PicOcops

χε1−r
cyc (σa) · (id⊗ eχ)zf,a,

where cop
sOK is the conductor of χ.

Remark 4.8. By [Nek00, Thm. 3.3.1], the classes zf,χ,c from §4.4 lie in the Bloch–Kato Selmer group
Sel(Kc, T ⊗ χ) ⊂ H1(Kc, T ⊗ χ); in particular, locp(zf,a) ∈ H1

f (Kc,p, T ⊗ Sr−1(A)) and locp(zf,χ) ∈
H1
f (Kp, T ⊗ χ).

Theorem 4.9. Suppose p = pp splits in K. Let ψ be an anticyclotomic Hecke character of infinity type

(r,−r) and conductor coOK with (co, Np) = 1. If φ̂ ∈ Xp∞ is the p-adic avatar of an anticyclotomic
Hecke character of infinity type (r+ j,−j − r) with −r < j < r and conductor pnOK with n ≥ 1, then

Lp,ψ(f)(φ̂−1)

Ω−2j
p

=
g(φ−1

p )φp(pn)c1−ro ψ̂−1
p (pn)

(r − 1 + j)!
· 〈logp(zf,χ), ωf ⊗ ωr−1+j

A ηr−1−j
A t1−2r〉,

where χ := ψ̂−1φ̂ and logp := log ◦ locp.

Proof. Let ta be the Serre–Tate coordinate of xa := [(Aa, ηa)]⊗ F̄p. Since the Fourier coefficients

an(f [) of f [ vanish for n divisible by p, we have

Upf̂
[(t) :=

∑
ζp=1

f̂ [(tζ) = 0.

This implies that the associated measure df̂ [a is supported on Z×p , and hence by Lemma 3.1, that(
f̂ [a ⊗ ψpφ̂

−1|[a]
)

(ta) = φ(σa)N(a)r+j ·
(
θ−j−rf̂ [ ⊗ ψpφ

−1
p

)
(ta),

where θ is the operator acting on OŜxa
as ta

d
dta

. Put ξ := ψ−1φ. By Proposition 3.3, we thus find that

Lp,ψ(f)(φ̂−1) =
∑

[a]∈PicOco

ψ(a)N(a)−r ·
(
f̂ [a ⊗ ψpφ̂

−1|[a]
)

(xa)

=
∑

[a]∈PicOco

ξ−1(a)N(a)j ·
(
θj−rf̂ [ ⊗ ξ−1

p

)
(xa)

= p−ng(ξ−1
p ) ·

∑
[a]∈PicOco

ξ−1(a)N(a)j ·
∑

u∈(Z/pnZ)×

θ−j−rf̂ [(xa ∗ n(up−n))ξp(u).

Since θ−j−rf̂ [ is a p-adic modular form of weight −2j, we deduce from (2.1) together with (2.5) that

θ−j−rf̂ [(xa ∗ n(up−n)) = θ−j−rf̂ [(recK(a−1upp
−n
p )xcopn)u2j .

From the relations

χ(recK(a)) = ξ̂(recK(a)) = ξ(a)ajpa
−j
p
, εcyc(a) = |a|AK

, εcyc(upp
n
p ) = u,
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it follows that

(4.8)

Lp,ψ(f)(φ̂−1) = p−ng(ξ−1
p )c−jo ·

∑
[a]∈Pic(Ocopn )

χεjcyc(recK(a)) · θ−j−rf̂ [(recK(a)xcopn)χp(pn)

= g(ξ−1
p )cjop

n(j−1)χp(pn) ·
∑

σ∈Gal(Kcopn/K)

χεjcyc(σ) · θ−j−rf̂ [(xσcopn).

On the other hand, if σ = σa with a ∈ K̂(pcoN)× and a = aÔ×copn ∩K, then

θ−j−rf̂ [(xσcopn) = θ−j−rf̂ [(xa) = θ−j−rf [(xa, ω̂(ηa,p)),

where ω̂(ηa,p) is the differential form induced from the p∞-level structure ηa,p defined in §2.3. For the

isogeny ϕa : A→ Aa, one can verify that degϕa = cop
n |a|−1

AK
and

ϕ∗a(ω̂(ηa,p)) = co · ω̂(ηOK ,p) =
co
Ωp
· ωA.

Thus following the calculations in Proposition 3.24, Lemma 3.23, and Lemma 3.22 of [BDP13], we see
that

(4.9) θ−j−rf̂ [(xσcopn) =
(cop

n |a|−1
AK

)−j−r−1

(r1 + j)!
·
(
co
Ωp

)2j

· 〈logp(z[f,a)), ωf ⊗ ωr−1+j
A ηr−1−j

A t1−2r〉,

where

z[f,a := zf,a − ap(f)p2j · zf,aOcopn−1 − p2j+1 · zf,aOcopn−2 .

Substituting (4.9) into (4.8), and using that φ has the exact conductor pn (n > 1) and ψp is unramified,
we conclude that

Lp,ψ(f)(φ̂−1) · Ω2j
p

=
g(ξ−1

p )c1−ro p−nrχp(pn)

(r − 1 + j)!
·

∑
σ∈Gal(Kcopn/K)

χε1−r
cyc (σa) · 〈logp(z[f,a), ωf ⊗ ωr−1+j

A ηr−1−j
A t1−2r〉

=
g(φ−1

p )φp(pn)c1−ro ψ̂−1
p (pn)

(r − 1 + j)!

∑
[a]∈PicOc

χε1−r
cyc (σa) · 〈logp(zf,a)), ωf ⊗ ωr−1+j

A ηr−1−j
A t1−2r〉

=
g(φ−1

p )φp(pn)c1−ro ψ̂−1
p (pn)

(r − 1 + j)!
· 〈logp(zf,χ), ωf ⊗ ωr−1+j

A ηr−1−j
A t1−2r〉

as was to be shown. �

5. Explicit reciprocity law

5.1. The Perrin-Riou big logarithm. In this section we deduce from the main result of [LZ14] the
construction of a variant of the Perrin-Riou logarithm map for certain relative height one Lubin–Tate
extensions.

For any commutative compact p-adic Lie group G and any complete discretely valued extension
E of Qp, we let ΛOE (G) := lim←−nOE [G/Gp

n

], ΛE(G) := ΛOE (G) ⊗OE E, and HE(G) be the ring of

tempered p-adic distributions on G valued in E. If L is a finite extension of Qp and G is the Galois
group of a p-adic Lie extension of L∞ = ∪nLn of L with Ln/L finite and Galois, we define

Hi
Iw(L∞, V ) :=

(
lim←−
n

Hi(Ln, T )

)
⊗Zp Qp,

where T is any GL-stable lattice in V (this is independent of the choice of T ).
In the following, we let L be a finite unramified extension of Qp with ring of integers OL, and let

F̂ ur denote the composite of Q̂ur
p with a finite extension F of Qp.

Theorem 5.1. Let V be a crystalline F -representation of GL with non-negative Hodge–Tate weights,
and assume that V has no quotient isomorphic to the trivial representation. Let F be a relative height
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one Lubin–Tate formal group over OL/Zp, and let Γ := Gal(L(Fp∞)/L) ' Z×p . If V
GL(Fp∞ ) = 0, there

exists a ΛZp(Γ)-linear map

LV : H1
Iw(L(Fp∞), V ) −→ HF̂ur(Γ)⊗L Dcris,L(V )

with the following interpolation property: for any z ∈ H1
Iw(L(Fp∞), V ) and any locally algebraic char-

acter χ : Γ→ Q
×
p of Hodge–Tate weight j and conductor pn, we have

LV (z)(χ) = ε(χ−1) · ΦnP (χ−1,Φ)

P (χ, p−1Φ−1)
·

{
(−1)−j−1

(−j−1)! · logL,V (χ−1)(z
χ−1

)⊗ t−j if j < 0,

j! · exp∗L,V (χ−1)∗(1)(z
χ−1

)⊗ t−j if j ≥ 0,

where

• ε(χ−1) and P (χ±, X) are the epsilon-factor and the L-factor for Galois characters χ and χ±,
respectively (see [LZ14, §2.8] for the definitions).
• Φ is the crystalline Frobenius operator on Qp⊗L Dcris,L(V ) acting trivially on the first factor.

• zχ
−1 ∈ H1(L, V (χ−1)) is the specialisation of z at χ−1.

Proof. Let K∞ ⊂ L ·Qab
p be a p-adic Lie extension of F containing F̂ ur · L(Fp∞), and set G :=

Gal(K∞/L). By [LZ14, Thm. 4.7] there exists a ΛOL(G)-linear map

LGV : H1
Iw(K∞, V ) −→ HF̂ur(G)⊗L Dcris,L(V )

satisfying the above interpolation formula for all continuous characters χ of G (see [loc.cit., Thm. 4.15]).
Let J be the kernel of the natural projection HF̂ur(G)→ HF̂ur(Γ). The corestriction map

H1
Iw(K∞, V )/J −→ H1

Iw(L(Fp∞), V )

is injective, and its cokernel is H2
Iw(K∞, V )[J ], which vanishes if V

GL(Fp∞ ) = 0. Thus quotienting LGV
by J we obtain a map

H1
Iw(L(Fp∞), V ) ∼= H1

Iw(K∞, V )/J −→ HF̂ur(Γ)⊗L Dcris,L(V )

with the desired properties. �

5.2. Iwasawa cohomology classes. Keep the notations from §4.1, and for any positive integer c, let
Σ = Σc be a finite set of places of K containing the primes above pNc. Recall the Heegner classes
zf,a ∈ H1(Kc, T ⊗ Sr1(A)) of (4.2) attached to every integral Oc-ideal a.

In this section we further assume that p = pp splits in K and that the newform f is ordinary at p,
i.e. the p-th Fourier coefficient ap(f) ∈ O×F . The latter assumption will be crucial to construct, out of
the classes zf,cpn = zf,Ocpn for varying n, elements in the Iwasawa cohomololy groups

H1
Iw(Kcp∞ , T ) := lim←−

n

H1(Gal(KΣ/Kcpn), T ),

where KΣ is the maximal extension of K unramified outside Σ.

Definition 5.2. Let α be the p-adic unit root of X2−ap(f)X+p2r−1. The α-stabilized Heegner class
zf,a,α ∈ H1(Kc, T ⊗ Sr−1(A)) is given by

zf,a,α :=

{
zf,a − p2r−2

α · zf,aOc/p if p | c,
1
uc

(
1− pr−1

α σp

)(
1− pr−1

α σp

)
· zf,a if p - c,

where uc = #O×c and σp, σp ∈ Gal(Kc/K) are the Frobenius elements of p and p.

Lemma 5.3. For all c ≥ 1, we have

corKcp/Kc(zf,cp,α) = α · zf,c,α.

Proof. This follows from a straightforward computation using Proposition 4.4. �



HEEGNER CYCLES AND p-adic L-FUNCTIONS 23

Now let zof,a denote the image of zf,a under the natural map

id⊗ eo : H1(Kc, T ⊗ Sr−1(B)) −→ H1(Kc, T ),

where eo = e1 is the projection (4.5) attached to the trivial character (so χ = χt = 1). Similarly as
before, we shall simply write zof,c,α for zof,Oc,α. In view of Lemma 5.3, the classes α−n · zof,cpn,α are
compatible under corestricion, thus defining the Iwasawa cohomology class

(5.1) zf,c,α := lim←−
n

α−n · zof,cpn,α ∈ H1
Iw(Kcp∞ , T ).

For any character χ of Gal(Kcp∞/Kc) we may consider the twist of zf,c,α in H1(Kc, T ⊗ χ). The
next lemma compares the resulting classes, for characters χ of finite order, to the classes zf,χ,c of §4.4.

Lemma 5.4. Suppose that p - c. Let χ : Gal(Kcp∞/Kc)→ O×Cp be a nontrivial finite order character

of conductor cpn, and let zχf,c,α be the image of zf,c,α under the χ-specialization map

H1
Iw(Kcp∞ , T ) −→ H1(Kc, T ⊗ χ).

Then

zχf,c,α = α−n · zf,χ,c.

Proof. Directly from the definition of zf,c,α, by [Rub00, Lemma 2.4.3] we see that

zχf,c,α = α−n
∑

σ∈Gal(Kcpn/Kc)

χ(σ)(zof,cpn,α)σ,

and since χ is nontrivial, we may replace zof,cpn,α by zof,cpn in this equation. By Proposition 4.5 (noting

that eχ can be taken to be eo with χt = χ), the result follows from the definition (4.6) of zf,χ,c. �

5.3. Explicit reciprocity law for generalized Heegner cycles. We now specialize the local ma-
chinery of §5.1 to the global setting in §5.2. In particular, we assume that p = pp splits in K and that
the newform f ∈ Snew

2r (Γ0(N)) is ordinary at p.
Let ψ be an anticyclotomic Hecke character of infinity type (r,−r) and conductor coOK with p - co.

Recall that the p-adic avatar ψ̂ is a p-adic character of Gal(Kcop∞/K) valued in some finite extension
Qp which by the hypothesis on the conductor is crystalline at the primes above p. Let F be a finite

extension of Qp containing the Fourier coefficients of f and the values of ψ̂, and let Vf ∼= F 2 be the
Galois representation associated to f . We assume throughout that p - N , so that Vf |GQp

is crystalline.
By p-ordinarity, there is an exact sequence of GQp

-modules

0 −→ F+Vf −→ Vf −→ F−Vf −→ 0

with F±Vf ∼= F and with the GQp -action on F+Vf being unramified (see [Wil88, Thm. 2.1.4]). Let
T ⊂ Vf (r) be a GQ-stable lattice as in §4.2, and set F+T := F+Vf (r) ∩ T . Let

V := Vf (r)⊗ ψ̂−1|GKp
, ψ̂p := ψ̂|GKp

.

The dual representation V ∗ is HomF (V, F ) = Vf (r − 1)⊗ ψ̂p. Define

F±V := F±Vf (r)⊗ ψ̂−1
p , F∓V ∗ := HomF (F±V, F ).

We next introduce an element ωf,ψ ∈ Dcris,L(F−V ∗). Recall that A is the canonical CM elliptic
curve over the Hilbert class field HK fixed in §4.1. Let κA : GHK → AutTp(A) ∼= Z×p be the character

describing the Galois action on the p-adic Tate module of A. Thus H1
ét(A/Q,Qp) ∼= κ−1

A ⊕ κAε−1
cyc as

GHK -modules. Recall that t ∈ BdR denotes Fontaine’s p-adic analogue of 2πi and set

tA := Ωpt,

where Ωp is the p-adic CM period defined in §2.5. Then tA generates Dcris,F (κ−1
A ), and according to

the discussion in [dS87, §II.4.3] we have

(5.2) ωA = tA, ηA = t−1
A t.
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On the other hand, note that the character ψ̂pε
−r
cyc is trivial on the inertia group, and Dcris(ψ̂p(−r)) =

Fωψ is a one-dimensional F -vector space with generator ωψ. Define the class

ωf,ψ := ωf ⊗ t−2r ⊗ ωψ ∈ Dcris(V
∗(1)).

With a slight abuse of notation, we shall still denote by ωf,ψ its image under the natural projection
Dcris(V

∗(1)) → Dcris(F−V ∗(1)), which is nonzero by weak-admissibility ([Fon94, §3.3]). Moreover,

since the periods of unramified characters lie in F ur := Q̂ur
p F ⊂ Bcris, there exists a non-zero element

Ωψ ∈ F̂ ur such that, for all x ∈ Dcris(F+V ), we have

(5.3) 〈x, ωf,ψ〉 = 〈x, ωf ⊗ t−2r〉Ωψ,

and the action of the crystalline Frobenius Φ is given by

(5.4) 〈x,Φωf,ψ〉 = α−1ψ̂p(p) · 〈x, ωf,ψ〉.

Let L∞/L denote the p-adic completion of Kcop∞/Kco and let Γ := Gal(L∞/L). Let hp be the
order of p in Pic(Oco), and write php = (π) with π ∈ Oco . Then L is the unramified extension of
Qp of degree hp. By local class field theory, L∞ is contained in the extension L(Fp∞) obtained by
adjoining to L the torsion points of the relative height one Lubin–Tate formal group F attached to
the uniformizer π/π̄ (see [Shn16, Prop. 37] for details). Note that the element recp(π/π) fixes L(Fp∞)
and acts on F+V by a multiplication by ( π

πphp
)rαhp , which is not 1 by Ramanujan’s conjecture for f

[Del71], [Del80]. This implies that (F+V )
GL(Fp∞ ) = 0, and hence we may consider the big logarithm

map LF+V of Theorem 5.1 over the extension L∞/L.

Lemma 5.5. The composition of LF+V with the natural pairing

〈−, ωf,ψ〉 : HF̂ur(Γ)⊗Dcris(F
+V )×Dcris(F

−V ∗(1)) −→ HF̂ur(Γ)

has image contained in the Iwasawa algebra ΛF̂ur(Γ).

Proof. This follows easily from the Frobenius eigenvalue formula (5.4) and [LZ14, Prop. 4.8]. �

In what follows, we make the identification Gal(Kcop∞/Kco) ' Γ = Gal(L∞/L) via the restriction

map. Let ρ : Γ → W× be a continuous character, where W is the ring of the integers in F̂ ur. For
every z ∈ H1

Iw(Kcop∞ , T ), denote by z⊗ ρ ∈ H1
Iw(Kcop∞ , T ⊗ ρ) the ρ-twist of z. By definition, for any

χ : Γ→W×, we have

(z⊗ ρ)χ = zρχ ∈ H1(Kco , T ⊗ ρχ).

As shown in [LZ16, Prop. 2.4.2], there is an isomorphism H1
Iw(Kcop∞ , T ) ' H1(Kco , T ⊗ ΛOF (Γ)).

Thus letting Γ̃co := Gal(Kcop∞/K) we may view zf,co,α as an element in H1(Kco ,ΛOF (Γ̃co)) via

H1
Iw(Kcop∞ , T ) ' H1(Kco ,ΛOF (Γ)) −→ H1(Kco ,ΛOF (Γ̃co)),

and define

(5.5) zf := corKco/K(zf,co,α) ∈ H1(K,T ⊗ ΛOF (Γ̃co)).

Similarly as in §4.5 (see Remark 4.8), the Heegner classes zof,a lie in the Bloch–Kato Selmer group

Sel(Kc, T ) ⊂ H1(Kc, T ); in particular, locp(zof,a) ∈ H1
f (Kc,p, T ). On the other hand, by [Nek06,

Lem. 9.6.3] and [loc.cit., Prop. 12.5.9.2] the Bloch–Kato finite subspace H1
f (Kc,p, T ) is identified with

the image of the natural map H1(Kc,p,F+T )→ H1(Kc,p, T ), and hence locp(zf,co,α) naturally defines
a class in H1

Iw(L∞,F+T ).

Definition 5.6 (Algebraic anticyclotomic p-adic L-functions). Let ψ̂ : Γ̃co → O×F be as before. Set

L∗p(zf ⊗ ψ̂−1) := corKco/K(LF+V (locp(zf,co,α ⊗ ψ̂−1))

=
∑

σ∈Γ̃co/Γco

LF+V (locp(zσf,co,α ⊗ ψ̂
−1))ψ̂(σ−1) ∈ Dcris(F

+V )⊗ ΛF̂ur(Γ̃co),

and letting resKp∞ : Γ̃co → Γ̃ = Gal(Kp∞/K) be the restriction map, define

Lp,ψ(zf ) := resKp∞ (L∗p(zf ⊗ ψ̂−1)) ∈ Dcris(F
+V )⊗ ΛF̂ur(Γ̃).
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Theorem 5.7. Suppose p = pp splits in K. Let f ∈ Snew
2r (Γ0(N)) with p - N be a p-ordinary newform,

and let ψ be an anticyclotomic Hecke character of infinity type (r,−r) and conductor coOK with p - co.
Then 〈

Lp,ψ(zf ), ωf ⊗ t−2r
〉

= (−cr−1
o ) ·Lp,ψ(f) · σ−1,p ∈ ΛF̂ur(Γ̃),

where σ−1,p := recp(−1)|Kp∞ ∈ Γ̃ is an element of order two.

Proof. Let φ̂ : Γ̃ → C×p be the p-adic avatar of a Hecke character φ of infinity type (r,−r) and

conductor pn, for any n > 1, and set χ := ψ̂−1φ̂, which is a finite order character. Applying Lemma 5.4,
we find that zχf = α−n ·zf,χ, where zχf denotes the χ-specialization of zf . By Theorem 4.9 (with j = 0),
we thus obtain

(5.6)

Lp,ψ(f)(φ̂−1) =
g(φ−1

p )φp(pn)c1−ro ψ̂−1
p (pn)

(r − 1)!
· 〈logp(zf,χ), ωf ⊗ ωr−1

A ηr−1
A t1−2r〉

= αn ·
g(φ−1

p )φp(pn)c1−ro ψ̂−1
p (pn)

(r − 1)!
· 〈logp(zχf )⊗ tr, ωf ⊗ t−2r〉.

On the other hand, a straightforward calculation reveals that the ε-factor for the p-adic Galois character

φ̂p defined in [LZ14, §2.8] agrees with Tate’s ε-factor for φp, i.e. ε(φ̂p) = ε(0, φp) = g(φ−1
p )φp(−pn).

Therefore, by Theorem 5.1 combined with (5.3) and (5.4), we find that

(5.7)

〈
Lp,ψ(zf ), ωf ⊗ t−2r

〉
(φ̂−1)

= 〈Lp,ψ(zf ), ωf,ψ〉 (φ̂−1) · Ω−1
ψ

= g(φ−1
p )φp(−pn) · αnψ̂−1

p (pn) · (−1)r−1

(r − 1)!
· 〈logp(zχf )⊗ tr, ωf,ψ〉Ω−1

ψ

=− φ̂(σ−1,p)αn ·
g(φ−1

p )φp(pn)ψ̂−1
p (pn)

(r − 1)!
· 〈logp(zχf )⊗ tr, ωf ⊗ t−2r〉.

Since ψ has conductor prime to p, we have g(φ−1
p ) = g(χ−1

p ) in formula (5.7). Comparing (5.6) and

(5.7), we see that both sides of the desired equality agree when evaluated at φ̂−1. Since the set of all

such characters φ̂ (for varying n > 1) is Zariski-dense in the space of continuous p-adic characters of Γ̃,

and both sides of the desired equality are elements in the Iwasawa algebra ΛF̂ur(Γ̃), the result follows
from the p-adic Weierstrass preparation theorem. �

We are now ready to prove the “explicit reciprocity law” relating the image of generalized Heegner
classes under the dual exponential map to the central values of the Rankin L-series L(f, χ, s) associated
with f and the theta series of an anticyclotomic locally algebraic Galois character χ of conductor cOK .
Recall that L(f, χ, s) is defined by the analytic continuation of the Dirichlet series

L(f, χ, s) = ζ(2s+ 1− 2r)
∑
a

aN(a)(f)χ(σa)

N(a)s
(Re (s) > r +

1

2
),

where a runs over ideals of OK with (a, cOK) = 1. In terms of automorphic L-functions, we have

L(f, χ, s) = L(s+
1

2
− r, πK ⊗ χA),

where πK is the base change of the automorphic representation π generated by f , and χA is the Hecke
character of K× associated to χ. Also, recall from (5.2) the relation ωAηA = t.

Corollary 5.8. With notations and assumptions as in Theorem 5.7, let χ : Gal(Kcop∞/K)→ O×F be
a locally algebraic p-adic character of infinity type (j,−j) with j ≥ r and conductor cop

nOK . Then

〈exp∗(locp(zχ
−1

f )), ωf ⊗ ω−j−rA ηj−rA 〉2 = cf,K · e′p(f, χ)2 ·
(
p2r−1/α2

)n · χ−1ψ(N) · L
alg(f, χ, r)

Γ(j − r + 1)2
,
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where cf,K = 8u2
K

√
DKc

2r−1
o ε(f),

e′p(f, χ) =

{(
1− α−1χ(σp)pr−j−1

) (
1− α−1χ(σp)pr−j−1

)
if n = 0,

1 if n > 0;

Lalg(f, χ, r) =
Γ(j − r + 1)Γ(j + r)

(4π)2j+1(Imϑ)2j
· L(f, χ, r).

Proof. Choose an anticyclotomic Hecke character ψ of infinity type (r,−r) and conductor co such

that the character φ̂ = χψ̂−1 is of infinity type (j−r, r−j) and conductor pn. Assume first that n > 0.
By Theorem 5.7 and Theorem 5.1, we then see that

(5.8)

〈
Lp,ψ(zf ), ωf ⊗ t−2r

〉
(φ̂)

= g(φp)φp(−pn) · αnψ̂−1
p (pn) · (j − r)! · 〈exp∗(locp(zχ

−1

f ))⊗ tr−j , ωf ⊗ t−2r〉

= ±αn · ε(0, φ−1
p ψ−1

p )p−nr · (j − r)! · 〈exp∗(locp(zχ
−1

f )), ωf ⊗ t−r−j〉

= ±αn · ε(0, φ−1
p ψ−1

p )p−nr · Γ(j − r + 1) · 〈exp∗(locp(zχ
−1

f )), ωf ⊗ t−r ⊗ ω−jA ηjA〉Ω
2j
p .

On the other hand, by the interpolation formula in Proposition 3.8 (with m = j − r), we have

(5.9)

(
Lp,ψ(f)(φ̂)

Ω2j
p

)2

= Lalg(f, χ, r) · ε(1

2
, ψpφp)−2 · φ(N−1) · 23u2

K

√
DKcoε(f)

where

ε(
1

2
, ψpφp)−2 = ε(

1

2
, ψ−1

p φ−1
p )2 = ε(0, ψ−1

p φ−1
p )2p−n.

Combining (5.8) and (5.9) with the equality in Theorem 5.7, we find that

〈exp∗(locp(zχ
−1

f )), ωf ⊗ t−r ⊗ ω−jA ηjA〉
2 =

Lalg(f, χ, r)

Γ(j − r + 1)2
·
(
p2r−1/α2

)n · φ(N−1) · 23u2
K

√
DKc

2r−1
o ε(f).

This proves the result when n > 0; the case n = 0 is similar, and is left to the reader. �

6. The arithmetic applications

In this section, we state our main arithmetic applications in this paper, whose proof will be based on
the results of the preceding sections combined with Kolyvagin’s method of Euler systems. The details
of the Euler system argument will be given in §7.

6.1. Setup and running hypotheses. Let f ∈ Snew
2r (Γ0(N)) be a newform, and let F/Qp be a finite

extension with the ring of integers O = OF containing the Fourier coefficients of f . Let

ρf : GQ −→ GLF (Vf ) ' GL2(F )

be the p-adic Galois representation attached to f , and set ρ∗f := ρ ⊗ εrcyc and V := Vf (r). Let

χ : Gal(Kcop∞/K) → O× be a locally algebraic character of infinity type (j,−j) and conductor cOK
and set Vf,χ := V |GK ⊗ χ. Recall that the Bloch–Kato Selmer group of Vf,χ is defined by

Sel(K,Vf,χ) := ker

{
H1(K,Vf,χ) −→

∏
v

H1(Kv, Vf,χ)

H1
f (Kv, Vf,χ)

}
,

where

H1
f (Kv, Vf,χ) =

{
ker
(
H1(Kv, Vf,χ) −→ H1(Kur

v , Vf,χ)
)

if p - v,
ker
(
H1(Kv, Vf,χ) −→ H1(Kv, Vf,χ ⊗Bcris)

)
if p | v.

We summarize the running hypotheses in this section.

Hypothesis (H).

(a) p - 2(2r − 1)!Nϕ(N);
(b) (Heeg) and (can) in §4.1;
(c) (co, N) = 1;
(d) pOK = pp is split in K.
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Let ε(Vf,χ) = ±1 be the sign in the functional equation for L(f, χ, s). To calculate the sign, we
note that ε(Vf,χ) =

∏
v ε(

1
2 , πKv ⊗ χv) is a product of local root numbers over places v of Q. By the

formulae [Sch02, (9), (12)], we see that ε( 1
2 , πKv ⊗ χv) = 1 for all finite place v under the hypothesis

(Heeg). On the other hand, since π∞ is the unitary discrete series of weight 2r − 1, we have

ε(
1

2
, πK∞ ⊗ χ∞) = ε(

1

2
, µr−

1
2 +j)ε(

1

2
, µ

1
2−r+j) = (

√
−1)|2r−1+2j|+|1−2r+2j|,

where µ : C× → C× is the character z 7→ z/z ([Tat79, (3.2.5)]). Therefore, we find that

(6.1) ε(Vf,χ) = (
√
−1)|2r−1+2j|+|1−2r+2j| = −1 ⇐⇒ −r < j < r.

6.2. Nonvanishing of generalized Heegner cycles. Recall from §4.4 the construction of the gen-
eralized Heegner classes zf,χ ∈ H1(K,T ⊗ χ) in (4.7).

Theorem 6.1. Suppose that ε(Vf,χ) = −1. The following two statements hold.

(1) If zf,χ 6= 0, then Sel(K,Vf,χ) = F · zf,χ.
(2) The classes zf,χφ are nonzero in H1(K,Vf,χφ) for all but finitely many finite order characters

φ : Gal(Kp∞/K)→ µp∞ .

Proof. The first part is a restatement of Theorem 7.7. The second part follows immediately from
Theorem 4.9 and the nonvanishing of the p-adic L-function in Theorem 3.9. �

6.3. Vanishing of Selmer groups. Assume further that f is ordinary at p in this subsection.

Theorem 6.2. If L(f, χ, r) 6= 0, then Sel(K,Vf,χ) = {0}.

Proof. The nonvanishing of the central value L(f, χ, r) implies that ε(Vf,χ) = +1, and hence χ
has infinity type (j,−j) with j ≥ r or j ≤ −r by (6.1). Let χτ (g) := χ(τgτ), where τ is the
complex conjugation. Then clearly L(f, χτ , r) = L(f, χ, r) and the action of τ induces an isomorphism
Sel(K,Vf,χ) ' Sel(K,Vf,χτ ), so we may assume that j ≥ r. One then immediately checks that Vf,χ|GKp

has positive Hodge–Tate weights3, while the Hodge–Tate weights of Vf,χ|GKp
are all ≤ 0. By [BK90,

Thm. 4.1(ii)] we thus have

(6.2) H1
f (Kv, Vf,χ) =

{
H1(Kv, Vf,χ) if v = p,
{0} if v = p.

Let zχf ∈ H1(K,T ⊗χ) be the χ-specialization of the Iwasawa cohomology class zf defined in (5.5). By

Corollary 5.8, the nonvanishing of L(f, χ, r) implies that locp(zχ
−1

f ) 6= 0 (note that the factor e′p(f, χ)

never vanishes). The result thus follows from Theorem 7.9. �

Combined with the nonvanishing of the p-adic L-function in Theorem 3.9, the results of Theorem 6.1
and Theorem 6.2 allow us to immediately obtain the following analogue of the growth number conjecture
in [Maz84] on the asymptotic behavior of the ranks of Selmer groups over ring class fields.

Theorem 6.3. There exists a non-negative integer e such that the formula

dimF Sel(Kpn , Vf,χ) =
(1− ε(Vf,χ))

2
· [Kpn : K] + e

holds for all sufficiently large n.

6.4. The parity conjecture. In combination with Nekovář’s results on the parity of a p-adic family
of Galois representations [Nek07], our results imply the following parity conjecture for Vf,χ. We heartily
thank Ben Howard for drawing this application to our attention.

Theorem 6.4. Suppose that f is ordinary at p. Then we have

ords=rL(f, χ, s) ≡ dimFSel(K,Vf,χ) (mod 2).

3Here our convention is that p-adic cyclotomic character has Hodge–Tate weight +1.
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Proof. LetK−∞/K be the anticyclotomic Zp-extension and let Γ−K := Gal(K−∞/K). Let Λ := OJΓ−KK
and let X : GK → Λ× be the universal deformation of χ defined by g 7→ χ(g)g|K−∞ . Recall that

τ ∈ GQ rGK is the complex conjugation. Let IndQ
K X := Λep ⊕ Λep be the GQ-module defined by

g(aep + bep) = X (g)aep + X τ (g)bep for g ∈ GK ,
τ(aep + bep) = bep + aep.

Let T := T ⊗O IndQ
K X , which is a self-dual left Λ[GQ]-module equipped with a skew-symmetric paring

defined in [Nek07, Example (5.3.4)], and define the Λ[GQp
]-submodule T +

p ⊂ T by

T +
p :=

{
F+T ⊗ Λ if − r < j < r,

T ⊗ Λep if j ≥ r or j ≤ −r.

Then (T , T +
p ) satisfies [Nek07, (5.1.2) (1)–(4)]. Moreover, one verifies that for any finite order character

φ : Γ−K → µp∞ , the specialization Tφ = T ⊗ IndQ
K χφ together with the corresponding subspace T +

p,φ

also satisfy conditions (5)–(8) in loc.cit.4.
Let F (φ) be the field generated over F by the values of φ, let O(φ) be the ring of integers of F (φ),

and put Vφ := Tφ ⊗O(φ) F (φ). Let ε(Vφ) ∈ {±1} be the sign of the Weil–Deligne representation
attached to Vφ. Under Hypothesis (H), it is well-known that ε(Vφ) = ε(Vf,χ) is independent of φ, and
as already noted we have

ε(Vf,χ) =

{
−1 if − r < j < r,

+1 if j ≥ r or j ≤ −r.

Now choose a Hecke character ψ of infinity type (r,−r) and conductor coOK such that χψ̂−1 is of
p-power conductor. By Theorem 3.9, we can choose φ sufficiently wildly ramified such that

(6.3) Lp,ψ(f)(χψ̂−1φ) 6= 0.

Thus Proposition 3.8 and Theorem 6.2 imply that dimF (φ) Sel(K,Vf,χφ) = 0 if ε(Vf,χ) = +1, while
Theorems 5.7 and 6.1 imply that dimF (φ) Sel(K,Vf,χφ) = 1 if ε(Vf,χ) = −1. On the other hand, by
Shapiro’s lemma we can verify that

Sel(K,Vf,χφ) ' Sel(Q,Vφ).

Therefore, by [Nek07, Cor. (5.3.2)] (see also [Nek09]), we conclude that

dimF Sel(K,Vf,χ) ≡ dimF (φ) Sel(K,Vf,χφ) ≡ ε(Vf,χ) (mod 2),

and the parity conjecture for Vf,χ follows. �

7. Kolyvagin’s method for generalized Heegner cycles

We keep the setup and Hypothesis (H) introduced in §6, except that we do not assume that p is split
in K. In particular, f ∈ Snew

2r (Γ0(N)) is a newform of level N prime to p, and χ : Gal(Kcop∞/K)→ O×
is a locally algebraic anticyclotomic Galois character of infinity type (j,−j) and conductor cOK . Write
c = cop

s with (co, pN) = 1. The aim of this section it to develop a suitable extension of Kolyvagin’s
method of Euler systems for the Galois representation V ⊗ χ. We largely follow Nekovář’s approach
[Nek92].

4As explained in [Nek07, Example (5.3.4)(5)], this follows from properties [loc.cit.,(2)-(3)] for Tφ, whose verification

is immediate. Indeed, (Tφ, T +
p,φ) satisfies the Panchishkin condition of [Nek07, Def. (3.3.1)] by construction, and Tφ is

pure of weight 1 at all finite places, since Ramanujan’s conjecture holds for f ; and anticyclotomic Hecke characters are

pure of weight 0.
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7.1. Notation. For each positive integer n, let Kn be the ring class field of K of conductor n, and
let ∆n = Gal(Kn/K). If A is a GKn-module unramified outside pNco, let H1(Kn, A) denote the
cohomology group H1(Gal(KΣn/Kn), A), where KΣn is the maximal extension of K unramified outside
the prime factors of pNcon.

Recall that T is the GQ-stable O-lattice of the self-dual Galois representation V as in [Nek92, §3].
By [Nek92, Prop. 3.1(2)], there is a GQ-equivariant O-linear perfect pairing

(7.1) 〈 , 〉 : T ×T −→ O(1),

and for any local field L, let 〈 , 〉L : H1(L, T )×H1(L, T ) → O denote the local Tate pairing induced
by 〈 , 〉. Let $ be a uniformizer of O and let F = O/($) be the residue field. If M is a positive integer,
we abbreviate

OM := O/$MO, TM := T/$MO.
We let ` always denote a rational prime inert in K, and let λ be the prime of OK above `, Kλ be the
completion of K at λ, and Frob` be the Frobenius element of λ in GK . If A is a discrete O[GK ]-module,
we denote by A∨ the Pontryagin dual of A. Let H1

f (Kλ, A) and H1
s (Kλ, A) := H1(Kλ, A)/Hf (Kλ, A)

be the finite part and the singular quotient of H1(Kλ, A), respectively. Denote by loc` : H1(K,A)→
H1(Kλ, A) the localization map at ` and by

∂` : H1(K,A) −→ H1
s (Kλ, A)

the composition of loc` with the quotient map H1(Kλ, A)→ H1
s (Kλ, A).

7.2. Kolyvagin’s anticyclotomic Euler systems. Denote by K the set of square-free products of
primes ` inert in K with ` - 2pNco. Let τ denote the complex conjugation, and let wf ∈ {±1} be the
Atkin–Lehner eigenvalue of f .

Definition 7.1. An anticyclotomic Euler system attached to (T, χ) is a collection {cn}n∈K of classes

cn ∈ H1(Kcn, T ⊗ χ−1) such that for every n = m` ∈ K we have:

(E1) corKnc,Kmc(cn) = a`(f) · cm;
(E2) loc`(cn) = resKmc,λ,Knc,λ(loc`(cm)Frob`);

(E3) if χ2 = 1, then cτn = wf · χ(σN) · cσN
n .

We briefly recall the construction of derivative classes attached to an anticyclotomic Euler system
c = {cn}n∈K . First we make an auxiliary choice of a positive integer ν such that pν annihilates:

(i) the kernel and cokernel of the map resK,Kn : H1(K,TM ⊗ χ−1) → H1(Kn, TM ⊗ χ−1)∆n for
all positive integers n and M ;

(ii) the local cohomology groups H1(Kv, TM ⊗ χ−1) for all v | coN .

The existence of such ν follows from [Nek92, Prop. 6.3, Cor. 6.4, Lem. 10.1]. Define the constant

(7.2) B1 = min
{

ord$(x− 1) | x · I2 ∈ ρ∗f ⊗ χ−1(GK), x ∈ Z×p
}
.

A rational prime ` is called an M -admissible Kolyvagin prime if

• ` - 2cNp is inert in K;
• a`(f) ≡ `+ 1 ≡ 0 (mod $M );
• $M+B1+1 - `+ 1± a`(f)`1−r.

Let KM be the set of square-free products of M -admissible primes, and for each n ∈ KM let Gn denote
the Galois group Gal(Knc/Kc) ⊂ ∆cn. For each ` | n, the group G` is cyclic of order `+1, and we have
a canonical decomposition Gn =

∏
`|nG`. Fixing a generator σ` for each G`, Kolyvagin’s derivative

operators are defined by

D` =
∑̀
i=1

iσi` ∈ Z[G`]

and
Dn :=

∏
`|n

D` ∈ Z[Gn] ⊂ O[∆nc].

Then for each n ∈ KM there is a unique DM (n) ∈ H1(Kc, TM ⊗ χ−1) such that

resKc,Knc(DM (n)) = p3νDncn,
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and the derivative class κχ−1(n) is defined by

κχ−1(n) := corKc/K(DM (n)) ∈ H1(K,TM ⊗ χ−1).

We next introduce Euler systems with local conditions at p. Let F ⊂ H1(K ⊗ Qp, V ⊗ χ−1) be
an F -vector subspace and let F∗ ⊂ H1(K ⊗ Qp, V ⊗ χ) be the orthogonal complement of F under
the local Tate pairing. We assume that F∗ = F if χ2 = 1. Let FT ⊂ H1(K ⊗Qp, T ⊗ χ−1) be the
inverse image of F under the natural map H1(K ⊗ Qp, T ⊗ χ−1) → H1(K ⊗ Qp, V ⊗ χ−1) and let
FM ⊂ H1(K ⊗Qp, TM ⊗ χ−1) be the image of FT under the reduction map H1(K ⊗Qp, T ⊗ χ−1)→
H1(K ⊗ Qp, TM ⊗ χ−1). For each positive integer n, let Sel

(n)
F (K,TM ⊗ χ−1) be the n-imprimitive

Selmer group defined by

Sel
(n)
F (K,TM ⊗ χ−1) :=

{
s ∈ H1(K,TM ⊗ χ−1) | locv(s) ∈ H1

f (Kv, TM ⊗ χ−1) for v - pn,
locp(s) ∈ FM if p - n

}
.

Note that if p | n, then Sel
(n)
F (K,TM ⊗χ−1) does not depend on the choice of F . When n = 1 we shall

simply write SelF (K,TM ⊗ χ−1) for Sel
(n)
F (K,TM ⊗ χ−1). We let

SelF (K,V/T ⊗ χ−1) := lim−→
M

SelF (K,TM ⊗ χ−1)

and define SelF∗(K,TM ⊗ χ) in a similar way.
Let

cK := corKc/K(c1) ∈ H1(K,T ⊗ χ−1).

By [Nek92, Prop. 10.2 (2)(3)], the derivative classes κχ−1(n) satisfy

(K1) κχ−1(n) ∈ Sel
(np)
F (K,TM ⊗ χ−1),

and by definition we see that
κχ−1(1) = p3νcK (mod $M ).

If ` is an M -admissible prime, then GKλ acts trivially on TM ⊗ χ−1, and there are isomorphisms

α` : H1
f (Kλ, TM ⊗ χ−1) = H1(Kur

λ /Kλ, TM )
∼−→ TM ,

β` : H1
s (Kλ, TM ⊗ χ−1) = H1(Kur

λ , TM )
∼−→ TM ,

given by evaluation of cocycles at Frob` and γ`, respectively, where γ` is a generator of the pro-p part
of the tame inertia group of Kλ. Define the finite-to-singular map

ϕ` := β−1
` ◦ α` : H1

f (Kλ, TM ⊗ χ−1)
∼−→ H1

s (Kλ, TM ⊗ χ−1).

Then it is proved in [Nek92, Prop. 10.2] that for every M -admissible prime ` | n, we have the relations

(K2)

(
(−1)r−1εna`(f)`1−r

$M
− `+ 1

$M

)
ϕ`(loc`(κχ−1(n/`))) =

(
`+ 1

$M
εn −

a`(f)`1−r

$M

)
∂`(κχ−1(n));

(K3) κχ−1(n)τ = εn · κχ−1(n) if χ2 = 1,

where εn = χ(σN) · wf · (−1)ω(n) ∈ {±1} with ω(n) the number of prime divisors of n.

Definition 7.2. Let ES(T, χ,F) be the space of anticyclotomic Euler systems with local condition F ,
consisting of anticyclotomic Euler systems c = {cn}n∈K satisfying, in addition to (E1–3) in Defini-
tion 7.1, the conditions:

(E4) cK ∈ SelF (K,T ⊗ χ−1) and cτK ∈ SelF∗(K,T ⊗ χ) (⇔ locp(cK) ∈ FT and locp(c
τ
K) ∈ F∗T );

(E5) for every M and n ∈ KM , we have κχ−1(n) ∈ Sel
(n)
F (K,TM ⊗ χ−1) (⇔ locp(κχ−1(n)) ∈ FM ).

The following is one of the key technical results in this paper.

Theorem 7.3. If c ∈ ES(T, χ,F) is an Euler system with local condition F with

cK 6= 0 in H1(K,V ⊗ χ−1),

then SelF∗(K,V ⊗ χ) = F · cτK .

In the next two sections we shall give the applications of this result to the Euler system constructed
in this paper, postponing the proof of Theorem 7.3 to §7.5.
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7.3. Euler system for generalized Heegner cycles (I). Suppose p = pp splits in K, and for this
section assume that χ has infinity type (j,−j) with

−r < j < r.

We consider the χ−1-component zf,χ−1,n of the generalized Heegner classes zf,n, as defined in (4.6).

Proposition 7.4. If n = m` with ` inert in K and c | m, then:

(1) corKn,Km(zf,χ−1,n) = a`(f) · zf,χ−1,m.

(2) loc`(zf,χ−1,n) = resKm,λ,Kn,λ(loc`((zf,χ−1,m)Frob`).
(3) (zf,χ−1,n)τ = wf · χ(σN)(zf,χ,n)σN .

Proof. These properties follow from Proposition 4.4, Lemma 4.6, and Lemma 4.7, respectively. �

Lemma 7.5. Suppose p > 2r − 1 and p - c. Let w be a place of Kc above p, and let Kc,w be the
completion of Kc at w. If L′/L/Kc,w are finite unramified extensions, then the corestriction map

corL′/L : H1
f (L′, TM ⊗ χ) −→ H1

f (L, TM ⊗ χ)

is surjective, and the restriction map

resL,L′ : H1(L, TM ⊗ χ−1)/H1
f (L, TM ⊗ χ−1) −→ H1(L′, TM ⊗ χ−1)/H1

f (L′, TM ⊗ χ−1)

is injective.

Proof. By local Tate duality, it suffices to establish the first claim. Since p > 2r−1, the Bloch–Kato
group H1

f (L, T ⊗χ) for the crystalline representation T ⊗χ admits a description in terms of Fontaine–

Laffaille modules (see [BK90, Lem. 4.5(c)]). Thus let D be the Fontaine–Laffaille OL-module attached
to T ⊗ χ as a GL-module. Then D ⊗OL OL′ is the Fontaine–Laffaille module of T ⊗ χ regarded as a
GL′ -module, and by loc.cit. we have the commutative diagram

D0 ⊗OL OL′

1⊗TrL′/L

��

f0−1 // D0 ⊗OL OL′ //

1⊗TrL′/L

��

H1
f (L, T ⊗ χ)

corL′/L

��

// 0

D0 f0−1 // D0 // H1
f (L, T ⊗ χ) // 0,

where f0 is the usual Frobenius map. The surjectivity of corL′/L thus follows from the surjectivity of
the trace map TrL′/L : OL′ → OL. �

For each n ∈ K define

cheeg
n := zf,χ−1,nc.

Set cheeg :=
{
cheeg
n

}
n∈K

and let FBK := H1
f (K ⊗ Qp, V ⊗ χ−1) be given by the usual Bloch–Kato

finite subspaces.

Proposition 7.6. We have cheeg
K = zf,χ−1 , and cheeg ∈ ES(T, χ−1,FBK) is an Euler system with local

condition FBK.

Proof. The first claim is clear. On the other hand, it follows from Proposition 7.4 that cheeg

satisfies conditions (E1–3) in Definition 7.1. To see that cheeg also satisfies conditions (E4) and (E5) in
Definition 7.2, we note that locp(zf,χ−1,nc) ∈ H1

f (Knc, T ⊗χ−1) by [Niz97]. Since the action of complex

conjugation induces an isomorphism H1
f (K ⊗Qq, T ⊗ χ−1) ' H1

f (K ⊗Qq, T ⊗ χ) for every prime q,

we see that (cheeg)τ satisfies (E4). Therefore, we have cheeg
K = zf,χ−1 ∈ SelFBK

(K,T ⊗ χ−1) and

locw(resKc,Kcn(DM (n)) = locw(p3νDnzf,cn,χ−1) ∈ H1
f (Kcn,w, TM ⊗ χ−1)

for each place w | p. By Lemma 7.5, this implies that locw(DM (n)) ∈ H1
f (Kc,w, TM ⊗χ−1), and hence

locp(κχ−1(n)) ∈ FM , as was to be shown. �

Theorem 7.7. If zf,χ 6= 0 ∈ H1(K,V ⊗ χ), then

Sel(K,V ⊗ χ) = SelFBK(K,V ⊗ χ) = F · zf,χ.
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Proof. Note that by Proposition 7.4(3) we have the equivalence

zf,χ = 0 ⇐⇒ zf,χ−1 = 0.

Thus Proposition 7.6 combined with Theorem 7.3 yields the result. �

7.4. Euler system for generalized Heegner cycles (II). As in the preceding section, we assume
that p = pp splits in K, but suppose now that χ has infinity type (j,−j) with

j ≥ r.

In addition, in this section we assume that f is ordinary at p.
Let zχf be the χ-specialization of the Iwasawa cohomology class zf defined in (5.5). For every place

v of K above p, let Lv ⊂ H1(Kv, V ⊗ χ) be the subspace spanned by locv(z
χ
f ). Then

LT,v := Lv ∩H1(Kv, T ⊗ χ) = O$−av locv(z
χ
f ) +H1(Kv, T )tor

for some av ∈ Z≥0, where H1(−)tor denotes the torsion subgroup of H1(−). Let L∗v ⊂ H1(Kv, V ⊗χ−1)
be the orthogonal complement of Lv, and set L∗ := L∗p⊕L∗p. We will choose the integer ν in §7.2 large

enough so that pνH1(Kv, T )tor = {0} for each v | p.
Consider the Iwasawa cohomology classes zf,n := zf,n,α from (5.1), and for each n ∈ K define

cheeg,†
n := zχ

−1

f,cn ∈ H
1(Kcn, T ⊗ χ−1)

to be the specialization of zf,cn at χ−1. Set cheeg,† :=
{
cheeg,†
n

}
n∈K

.

Proposition 7.8. The collection cheeg,† ∈ ES(T, χ,L∗) is an Euler system for the local condition L∗

with cheeg,†
K = zχ

−1

f .

Proof. We begin by noting that for inert primes ` with n = m` ∈ K , we have

(1) corKnc,Kmc(zf,n) = a`(f) · zf,m;
(2) loc`(zf,n) = resKmc,λ,Knc,λ(loc`(zf,m)Frob`);

(3) zτf,n = wf · σN · z
σN

f,n,

since by Lemma 5.4 and Proposition 7.4 these relations hold after specialization at every finite order
ramified character. Specializing the same relations to χ−1, we thus find that conditions (E1–3) are
satisfied by cheeg,†. The validity of (E4) for cheeg,† and its image under τ follows from the fact that if v

and v̄ are the two places of K above p, then locv(c
heeg,†
K ) = locv(z

χ−1

f ) belongs to H1(Kv,F+T ⊗χ−1)

and the action of complex conjugation sends H1(Kv,F+T ⊗ χ−1) to H1(Kv̄,F+T ⊗ χ). We now
proceed to verify condition (E5) for cheeg,†. For any finite extension L/Kv, let

〈 , 〉L : H1(L, TM ⊗ χ−1)×H1(L, TM ⊗ χ) −→ O/$MO

be the canonical pairing. By [Rub00, Prop. 1.4.3], it suffices to show that 〈locv(κχ−1(n)),LT,v〉Kv = 0,
i.e.

(7.3) 〈locv(κχ−1(n)), $−av locv(z
χ
f ) + x〉Kv ≡ 0 (mod $M ), for all x ∈ H1(Kv, T )tor.

Let v be a place of K above p and let w/w0 be places of Knc/Kc above v. Let K and N be the
completion of Kc and Knc at w0 and w, respectively, and note that N/K is an unramified extension.
Set

K∞ := K∞K, N∞ := K∞N .
Let Ψv be a set of representatives of ∆c/∆c,w0

, where ∆c,w0
:= Gal(K/Kv) is the decomposition group

of v, and let ∆c = Gal(Kc/K) as always. By Lemma 7.5, there exists yN ,σ ∈ H1
Iw(N∞, TM ) 5 such

that

corN/K(yN ,σ) ≡ locw0
(resKco ,Kc($

−avσzf,co)) (mod $M ).

5The argument for the existence of yN ,σ given here is false since Lemma 7.5 only applies to absolute unramified

extensions. One may use instead Perrin-Riou’s theory to show Proposition 7.8. See [KO18, Lemma 5.7] for the correct

statement and a proof. We are very grateful to Kobayashi for pointing out this important error.
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It is easy to see that κχ−1(n) is divisible by pν , and so 〈κχ−1(n), H1(Kv, T )tor〉 = 0. On the other
hand, we compute

〈κχ−1(n), locv($
−avzχf )〉Kv =

∑
σ∈∆co , ρ∈Ψv

〈locw0(ρDM (n)), locw0(resKco ,Kc($
−avσzχf,co))〉K

=
∑

σ∈∆co , ρ∈Ψv

〈locw0(ρDM (n)), corN/K(yχN ,σ)〉K

=
∑

σ∈∆co , ρ∈Ψv

p3ν〈locw(ρDnzχ
−1

f,cn),yχN ,σ〉N .

Thus to verify (7.3) it remains to show that 〈locw(ρDnzχ
−1

f,cn),yχN ,σ〉N ≡ 0 (mod $M ). Consider Perrin-

Riou’s Λ-adic local pairing ([PR94, 3.6.1]):

〈 , 〉N∞ : H1
Iw(N∞, TM )×H1

Iw(N∞, TM ) −→ ΛO(Γ)⊗O/$M .

Recall that for every x = lim←−m xm and y = lim←−m ym in H1
Iw(N∞, TM ), the pairing is defined by

〈x, y〉N∞ = lim←−
m

∑
σ∈Gal(Nm/N )

〈xm, σym〉Nmσ,

and it enjoys the interpolation property: if χ : Γ→ O× is any p-adic character, then

〈x, y〉N∞(χ) = 〈xχ, yχ
−1

〉N .

Since for any finite order character φ of Γ and any ρ ∈ ∆co , the classes yφN ,σ and locw(ρzφf,co) belong

to H1
f (N , T ⊗ φ), we see that 〈locw(ρDnzf,cn),yN ,σ〉N = 0, and hence

〈locw(ρDnzχ
−1

f,cn),yχN ,σ〉N = 〈locw(ρDnzf,cn)χ
−1

,yχN ,σ〉N
= 〈locw(ρDnzf,cn),yN ,σ〉N (χ) ≡ 0 (mod $M ).

This completes the proof. �

Theorem 7.9. If locp(zχ
−1

f ) 6= 0, then Sel(K,V ⊗ χ) = {0}.

Proof. To every choice of subspaces Fv ⊂ H1(Kv, V ⊗ χ) for every prime v | p, we associate the
generalized Selmer group

H1
Fp,Fp

(K,V ⊗ χ) :=

{
s ∈ H1(K,V ⊗ χ) | locq(s) ∈ H1

f (Kq, V ⊗ χ−1) for q - p
locv(s) ∈ Fv for v | p

}
.

The nonvanishing hypothesis implies that locp(zχf ) 6= 0, and hence by Proposition 7.8 and Theorem 7.3,
we have

(7.4) H1
Lp,Lp

(K,V ⊗ χ) = F · (zχ
−1

f )τ = F · zχf .

Note that locp(zχf )τ = locp(zχ
−1

f ). The nonvanishing of locp(zχ
−1

f ) thus implies that locp(zχf ) 6= 0, and

combined with (7.4) this shows that H1
Lp,0

(K,V ⊗χ) = {0}. Finally, in light of the Poitou–Tate exact
sequence

0 −→ H1
0,∅(K,V ⊗ χ

−1) −→H1
L∗p,∅(K,V ⊗ χ

−1)
locp−→ L∗p

−→ H1
∅,0(K,V ⊗ χ)∨ −→ H1

Lp,0(K,V ⊗ χ)∨ −→ 0,

we find that H1
∅,0(K,V ⊗ χ) = Sel(K,V ⊗ χ) = {0}. �

7.5. Kolyvagin’s descent: Proof of Theorem 7.3. Let c ∈ ES(T, χ,F) be an Euler system with
cK 6= 0 ∈ H1(K,V ⊗ χ−1), or equivalently, with cK 6∈ H1(K,T ⊗ χ−1)tor.
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Preliminaries. Let Rρ = O[ρ∗f (GQ)] ⊂M2(O) and define

B2 := inf {n ∈ Z≥0 | $nM2(O) ⊂ Rρ} .
Since ρ∗f is absolutely irreducible, we have Rρ ⊗ F = M2(F ), and hence B2 <∞.

Lemma 7.10. Let E ⊂ Kcop∞ be a p-ramified abelian extension of Q. Then either E = Q or Q(
√
p∗),

where p∗ = (−1)
p−1
2 p.

Proof. Since p - DK , the fields E and K are linearly disjoint. It follows that EK is abelian and
dihedral over Q. Hence by class field theory we conclude that either E = Q or Q(

√
p∗). �

Let M be a positive integer. Then χ−1 (mod $M ) factors through the Galois group Gal(H/K) for
some ring class field Kcop∞/H/Kco . Let H[ be the maximal pro-p extension of Kco inside H. Then

Gal(H/H[) is a cyclic group of order dividing p±1. Since (coDK , pN) = 1, the intersection Q
ker ρ∗f ∩H[

is a p-ramified solvable extension over Q, and hence Q
ker ρ∗f ∩ H[ = Q by Lemma 7.10. We conclude

that ρ∗f (GQ) = ρ∗f (GH[) and

Rρ = O[ρ∗f (GH[)].

Lemma 7.11. Let ξ : GH[ → O× be a character.

(1) If T ′ ⊂ TM ⊗ ξ is an Rρ-submodule with T ′ 6⊂ $TM , then $B2TM ⊂ T ′.
(2) $B2 HomRρ(TM ⊗ ξ, TM ⊗ ξ) = $B2O · I2, where I2 is the identity map.

Proof. This is essentially [Nek92, Lemma 12.3]. �

Lemma 7.12 ([Nek92], proof of Prop. 12.2(b)). Let ξ1, . . . , ξs : GH[ → O× be characters, and set

S =

s⊕
i=1

OM/($ni), V =

s⊕
i=1

$M−niTM ⊗ ξi.

Let W ⊂ V be an Rρ-submodule. If the map j : S → Hom(W, TM ) given by

a = (a1, . . . , as) −→ j(a) : (w1, . . . , ws) 7−→ a1w1 + · · · asws
is injective, then $(2s+1−2)B2V ⊂ W.

Proof. We proceed by induction on s. For s = 1, the result follows from Lemma 7.11(1). Suppose
s > 1, and let π : V → V ′ := ⊕si=2$

M−niTM ⊗ ξi be the map projecting onto the last s − 1 factors.
Let

S′ =
s⊕
i=2

OM/($ni), W ′ = π(W) ⊂ V ′.

It is easy to see that S′ → Hom(W ′, TM ) is also injective given the injectivity of j, and hence by
induction hypothesis we have $γV ′ ⊂ W ′ with γ = (2s − 2)B2. Let

V1 = $M−n1TM ⊗ ξ1 ↪→ V, W1 =W ∩ V1 = kerπ,

and let W ′ → V1/W1 be the Rρ-module map w′ 7→ pr1(w), where w is a lifting of w′ in W ⊂ V, and
pr1 : V → V1 is the first projection. By Lemma 7.11(1), there exists m ≤ n1 such that

$m+B2V1 ⊂ W1 ⊂ $mV1.

Let j′ : V ′ → V1/$
mV1 be the composition of Rρ-module maps

j′ : V ′ ·$
γ

−→W ′ −→ V1/W1 −→ V1/$
mV1 = OM/($m)

By Lemma 7.11(2), there exists (a2, . . . , as) ∈ Os−1 such that

$B2j′(v2, . . . vs) = a2v2 + · · ·+ asvs.

In particular, for every (w1, . . . , ws) ∈ W, we have

−$γ+B2w1 +$γa2w2 + · · ·+$γasws ∈ $mOM .
This shows that (−$n1−m+γ+B2 , $n1−m+γa2, . . . , $

n1−m+γas) ∈ S annihilates W. By the injectivity
of j : S ↪→ Hom(W, TM ), the equality $n1−m+γ+B2 = 0 ∈ O/($n1) implies that m ≤ γ + B2. Thus
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we have proved the inclusions $γ+2B2V1 ⊂ W1 and $γV ′ ⊂ W ′, and it follows that $2γ+2B2V ⊂ W,
concluding the proof of the lemma. �

Put ρM := ρ∗f ⊗OM : GQ → AutO(TM ), let Q(TM ) := Q
kerρM

be the splitting field of TM , and set

L = H(TM ) := H ·Q(TM ).

Consider the Gal(L/Q)-module H1(L, TM ) = Hom(Gal(Q/L), TM ), where σ ∈ Gal(L/Q) acts via

(σ · f)(s) = σf(σ−1s).

If S ⊂ H1(L, TM )Gal(L/H) is a O[Gal(H/Q)]-submodule, we let LS := ∩s∈SQ
ker s

be the splitting of S
over L, and put GS := Gal(LS/L). We then have an inclusion

S ↪→ H1(GS , TM )Gal(L/H)

and a Gal(L/Q)-equivariant map

GS ↪→ VS := HomO(S, TM ).

Lemma 7.13. Let s = dimF S ⊗ F. Then $(2s+1−2)B2VS ⊂ O[GS ].

Proof. Since Gal(H/H[) has order dividing p ± 1, the Gal(H/H[)-module S can be decomposed
into a direct sum of cyclic O-modules:

S =

s⊕
i=1

O/($ni)⊗ ξ−1
i

for some ξi : Gal(H/H[)→ O×, and so VS = ⊕si=1$
M−niTM⊗ξi as Rρ-modules. Applying Lemma 7.12

with W := O[GS ], the result follows. �

Let G+
S = Gτ=1

S = (1 + τ)GS , where τ is the complex conjugation.

Proposition 7.14.

(1) $B1H1(Gal(L/K), TM ⊗ χ−1) = {0}.
(2) LS ∩H(T2M ) ⊂ H(TM+B1

).
(3) For each g ∈ G+

S , there exist infinitely many primes ` inert in K such that:
• Frob`(LS/K)(:= Frob`|LS ) = g,
• $M | `+ 1± a`(f)
• $M+B1+1 - `+ 1± a`(f).

Proof. This can be proved by the same argument as in [Nek92, Prop. 12.2]. �

The descent argument. Define the constants B3, B4 by

B3 := max
{
n ∈ Z≥0 | cK ∈ $nH1(K,T ⊗ χ−1)

}
= max

{
n ∈ Z≥0 | cτK ∈ $nH1(K,T ⊗ χ)

}
;

B4 :=

{
0 if χ2 = 1,
minσ∈Gal(Kcop∞/K) ord$(χ2(σ)− 1) if χ2 6= 1.

Put C1 := 6B2 +B1 +B3 +B4, and choose a positive integer M with

M > 2C1 + 2B1.

Let κχ(1) = cτK (mod $M ), and for each x ∈ TM put

ord$(x) := max {n ∈ Z≥0 | x ∈ $nTM} .

Lemma 7.15. There is an M -admissible prime `1 such that

ord$(α`1(κχ−1(1))) = ord$(α`1(κχ(1))) ≤ C1.
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Proof. Let resK,L : H1(K,TM ⊗ χ−1) → H1(L, TM ⊗ χ−1) = H1(L, TM ) be the restriction map.
Let s1 = resK,L(κχ−1(1)) ∈ H1(L, TM ), and consider the O-submodule

S := Os1 +Osτ1 ⊂ H1(L, TM )Gal(L/H).

Take an element t ∈ $B1+B3+B4TM with ord$(t) = B1 + B3 + B4, and define f ∈ VS by f(s1) = t
and f(sτ1) = 0 if χ 6= χ−1. Using Proposition 7.14(1), it is easy to see that f is well-defined. Applying
Lemma 7.13, we find that

$6B2(1 + τ)f =
∑
g∈G+

S

ag · g, (ag ∈ O)

and evaluating at s1 we obtain

$6B2t =
∑
g∈G+

S

ag · κχ−1(1)(g).

This shows that there is an element g ∈ G+
S with ord$(κχ−1(1)(g)) ≤ C1, and the existence of a prime

`1 as in the statement follows from Proposition 7.14. �

Fix an M -admissible prime `1 as in Lemma 7.15, and let S ⊂ H1(L, TM ) be the image of the sum of

Sel
(`1)
F (K,TM ⊗χ−1) and its complex conjugate. Then S ⊂ Hom(GS , TM )Gal(L/H) is an O[Gal(H/Q)]-

submodule. We will apply the discussion in the preceding paragraphs to this S.
Setting

d0 := dimF(V/T ⊗ χ−1)GK [$] + dimF SelF (K,V/T ⊗ χ−1)[$],

we have
dimF S ⊗ F ≤ 2 dimF Sel

(`1)
F (K,TM ⊗ χ−1)[$] ≤ 2d0 + 4.

Let B = 2C1 + 2B1 + 2B4, define

C2 := B + (22d0+5 − 2)B2,

and let Y ⊂ V +
S be the subset consisting of maps f such that p2C2TM is contained in the O-submodule

generated by f(s1) and f(s2), where

s1 := resK,L(κχ−1(1)), s2 := resH,L(κχ−1(`1)).

Lemma 7.16. The set G+
S ∩ Y is non-empty.

Proof. First suppose χ2 6= 1. Define the O-module map

ξ : V +
S −→ TM ⊕ TM , f 7−→ ξ(f) := (f(s1), f(s2)) = (f(κχ−1(1)), f(κχ−1(`1))).

Let V+ := ξ(V +
S ) ⊂ TM ⊕ TM . We claim that

$B(TM ⊕ TM ) ⊂ V+.

Indeed, let S1 ⊂ S be the O-submodule generated by {s1, s
τ
1 , s2, s

τ
2} where sτi := τ · si. For (t1, t2) ∈

$BTM ⊕$BTM , we define g : S1 → TM by

g(xs1 + ys2 + zsτ1 + wsτ2) = xt1 + yt2.

Note that if xs1 + ys2 + zsτ1 + wsτ2 = 0, then $B4(xs1 + ys2) = $B4(zsτ1 + wsτ2) = 0, and hence

$B1+B4y∂`1(κχ−1(`1)) = $B1+B4z∂`1(τ · κχ−1(`1))) = 0

=⇒ $2B1+B4yα`1(κχ−1(1)) = $2B1+B4zα`1(κχ(1)) = 0

=⇒ ord$(y), ord$(z) ≥M − C1 − 2B1 −B4 ≥M −B,
and similarly:

$C1+B4+2B1xκχ−1(1) +$C1+B4+2B1zκχ(1) = 0

=⇒ $C1+2B4+2B1xκχ−1(1) = $C1+2B4+2B1zκχ(1) = 0

=⇒ ord$(x), ord$(z) ≥M − (2C1 + 2B4 + 2B1) = M −B.
We thus find that xt1 = yt2 = 0, and so g is well-defined. Extending g to a map g̃ : S → TM , we put
f := g̃ + g̃τ ∈ V +

S . Since we have

f(s1) = g(s1) + τg(sτ1) = t1, f(s2) = g(s2)− τg(sτ2) = t2,
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this verifies the claim.
Now let q : TM ⊕ TM → OM be the quadratic form defined by q(v) = v1 ∧ v2 for all v = (v1, v2),

and let I ⊂ OM be the ideal generated by {q(v)}v∈V+ . Note that I ⊃ $2BOM . By Lemma 7.13,

$C2−BV+ is contained in the O-module generated by ξ(G+
S ). This implies that $2C2OM ⊂ $2C2−2BI

is contained in the ideal generated by {q(v)}v∈ξ(G+
S ). We thus conclude that there exists g ∈ G+

S such

that ξ(g) = (v1, v2) with v1 ∧ v2 ∈ $rO×M and r ≤ 2C2. This shows that

Ov1 +Ov2 ⊃ $rTM ⊃ $2C2TM ,

and hence g ∈ Y .
Next we assume that χ2 = 1. Then we have

sτ1 = εs1, sτ2 = (−ε)s2

for some ε ∈ {±1}. Define the O-module map

ξ : V +
S −→ T εM ⊕ T−εM = TM , f 7−→ ξ(f) = f(s1) + f(s2) = f(κχ−1(1)) + f(κχ−1(`1)),

and let V+ := ξ(V +
S ) ⊂ TM . We now claim that $BTM ⊂ V+. Let S1 ⊂ H1(L, TM ) be the submodule

generated by {s1, s2}. For each (t1, t2) ∈ $BT εM ⊕$BT−εM = $BTM , define g : S1 → TM by

g(xs1 + ys2) = xt1 + yt2 (x, y ∈ O).

One can verify that g is well-defined as before, and extending g to a map g̃ : S → TM , we set f := g̃+g̃τ .
Then f(s1) = 2t1 and f(s2) = 2t2, proving the claim. By Lemma 7.13, $C2TM ⊂ $C2−BV+ is
contained in the O-module generated by ξ(G+

S ), and we find that

ξ(G+
S ) 6⊂

(
$C2T+

M ⊕$
C2+1T−M

)
∪
(
$C2+1T+

M ⊕$
C2T−M

)
,

which implies that G+
S ∩ Y is non-empty. �

By Proposition 7.14 and Lemma 7.16, there is a finite set ΣY of M -admissible primes such that

{Frob`(LS/K)}`∈ΣY
= G+

S ∩ Y.
Define the ΣY -restricted Selmer group SelΣY by

SelΣY = {s ∈ SelF (K,TM ⊗ χ) | s(Frob`) = 0 for all ` ∈ ΣY } .
Then we have the exact sequence:

(7.5)
⊕
`∈ΣY

H1
s (Kλ, TM ⊗ χ−1) −→ SelF (K,TM ⊗ χ)∨ −→ Sel∨ΣY −→ 0

Lemma 7.17. pB1+2C2+1 SelΣY = {0}.

Proof. By definition, if s ∈ SelΣY then s(G+
S ∩ Y ) = 0. Noting that GS ∩ Y + p2C2+1G+

S ⊂ G
+
S ∩ Y ,

we thus find that

s(G+
S ∩ Y ) = 0 =⇒ s(p2C2+1G+

S ) = 0

=⇒ p2C2+1 resK,L(s) = 0 ∈ H1(L, TM ).

By Proposition 7.14(1), it follows that pB1+2C2+1s = 0. �

Lemma 7.18. For each ` ∈ ΣY , we have

p2B+B1H1
s (Kλ, TM ⊗ χ−1) ⊂ O∂`κχ−1(`) +O∂`κχ−1(``1).

Proof. By the choice of ` ∈ ΣY , we have

$2BTM ⊂ O(α`(κχ−1(1)) +O(α`(κχ−1(`1))).

This is equivalent to $2BH1
f (Kλ, TM ⊗ χ−1) ⊂ Oloc`(κχ−1(1)) + Oloc`(κχ−1(`1)). The lemma thus

follows from property (K2). �

Now Theorem 7.3 is a consequence of the following result.

Theorem 7.19. There exists a positive integer C such that

pC · (SelF∗(K,V/T ⊗ χ)/(F/O · cτK)) = {0}.
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Proof. We denote by

〈 , 〉λ : H1
f (Kλ, TM ⊗ χ)×H1

s (Kλ, TM ⊗ χ−1) −→ Z/MZ

the Tate local pairing. By the exact sequence (7.5) combined with Lemma 7.17 and Lemma 7.18, for
every f ∈ SelF (K,TM ⊗ χ)∨ we can write

pC3 · f =
∑
λ∈ΣY

a`∂`κχ−1(`) + b`∂`κχ−1(``1), C3 := 2C2 + 2B + 2B1 + 1.

Thus for every s ∈ SelF (K,TM ⊗ χ) we have

(pC3 · f)(s) = f(pC3 · s)

=
∑
`∈ΣY

〈locλ(s), bλ∂`κχ−1(``1)〉λ

= 〈locλ1(s), tλ1〉λ1 (tλ1 :=
∑
`∈ΣY

−bλ∂`1κχ−1(``1)).

This implies that pC3 annihilates the kernel of the localization map

locλ1
: SelF (K,TM ⊗ χ) −→ H ′`1 :=

{
s ∈ H1

f (Kλ1
, TM ⊗ χ) | 〈s,O∂`1(κχ−1(`1))〉λ1

= 0
}
.

On the other hand, setting

a1 := ord$(α`1(κχ(1))), a2 := ord$β`(∂`1κχ−1(`1)),

by Lemma 7.15 and (K2) we have a1 ≤ C1 and a2 ≤ C1 +B1. If M > a1 +a2, an elementary argument
shows that

$2C1+B1H ′`1 ⊂ $
a1+a2H ′`1 ⊂ $

a2Oα`1(κχ(1)).

Combining these together, we deduce that

p2C1+B1+C3 SelF (K,TM ⊗ χ) ⊂ Oκχ(1) = OMcτK

for every M > 2C1 + 2B1, and the theorem follows. �
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