## 9th homework <br> Due date: 11/25

There are five problems in total. Let $F$ be either $\mathbf{Q}, \mathbf{R}$, or $\mathbf{C}$.
Exercise 1. Recall that the $m \times m$ Jordan block $J$ corresponding to $\lambda$ is defined by

$$
J=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
0 & 0 & \lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right) \in M_{m}(\mathbf{R})
$$

Show that $\left(J-\lambda I_{m}\right)^{m}=0$ and that if $r \geq m$, then

$$
J^{r}=\left(\begin{array}{ccccc}
\lambda^{r} & r \lambda^{r-1} & \frac{r(r-1)}{2!} \lambda^{r-2} & \ldots & \frac{r(r-1) \cdots(r-m+2)}{(m-1)!} \lambda^{r-m+1} \\
0 & \lambda^{r} & r \lambda^{r-1} & \ldots & \frac{r(r-1)(\cdots-m+3)}{(m-2)!} \lambda^{r-m+2} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots & \lambda^{r}
\end{array}\right) .
$$

If $|\lambda|<1$, find the limit $\lim _{r \rightarrow \infty} J^{r}$.
Exercise 2. Let

$$
A=\left(\begin{array}{cccc}
3 & 4 & 6 & -2 \\
-1 & -2 & -5 & 2 \\
-1 & -1 & 0 & 0 \\
-1 & -1 & -1 & 1
\end{array}\right)
$$

Find the Jordan form $J$ of $A$ and an invertible $P \in M_{4}(\mathbf{Q})$ such that $P^{-1} A P=J$.

Exercise 3. Let $A \in M_{n}(\mathbf{C})$. Suppose that $\operatorname{ch}_{A}(x)=x^{5}(x-2)$ and that $\operatorname{rank} A^{2}=\operatorname{rank} A^{3}$. Determine all possible Jordan forms of $A$.
Exercise 4. Let $A, B \in M_{6}(\mathbf{R})$ such that $A^{6}=B^{6}=0$. Suppose that $A$ and $B$ have the same degree of the minimal polynomials and the same nullity $\left(\operatorname{deg} \mathrm{m}_{A}(x)=\operatorname{deg} \mathrm{m}_{B}(x)\right.$ and $\left.\operatorname{dim} \operatorname{Ker} A=\operatorname{dim} \operatorname{Ker} B\right)$. Show that $A$ and $B$ are similar.

Exercise 5. Let $V$ be a finite dimensional vector space over $F$. Let $T, S: V \rightarrow V$ be two linear transforms. Assume that $T$ and $S$ are both diagonalizable and that $S T=T S$. Prove that $T$ and $S$ are simultaneously diagonalizable. In other words, prove that there exist a basis $\mathscr{A}$ of $V$ such that $[T]_{\mathscr{A}}$ and $[S]_{\mathscr{A}}$ are diagonal matrices. (Hint: First decompose $V$ into a direct sum of eigenspaces of $T$ and show that each $T$-eigenspace is $S$-invariant. Then use the fact that if $S$ is diagonalizable, the restriction of $\left.S\right|_{W}$ to any $S$-invariant subspace $W$ is also diagonalizable.)

