8th homework Due date: $11 / 18$

There are six problems in total. Let F be either \mathbf{Q}, \mathbf{R}, or \mathbf{C} and let n be a positive integer.

Exercise 1. Let $T: V \rightarrow V$ be a diagonalizable linear transformation and let

$$
V=E_{\lambda_{1}} \oplus E_{\lambda_{2}} \oplus \cdots \oplus E_{\lambda_{r}}
$$

be the decomposition of V as a driect sum of eigenspaces $E_{\lambda_{i}}$ with distinct eigenvalues $\lambda_{i}(i=1,2, \ldots, r)$. Let $v_{1}, v_{2}, \ldots, v_{r}$ be eigenvectors of T with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ respectively $\left(\Longleftrightarrow v_{i} \in E_{\lambda_{i}}\right.$ for $i=1,2, \ldots r$). Let W be a T-invariant subspace of V.
(1) Prove that if $v_{1}+v_{2}+\cdots+v_{r} \in W$, then $v_{i} \in W$ for every $i=1,2, \ldots, r$.
(2) Prove that $W=W_{1} \oplus \cdots \oplus W_{r}$ with $W_{i}=W \cap E_{\lambda_{i}}$. This shows that $\left.T\right|_{W}$ is also diagonalizable

Exercise 2. Let $V=M_{2}(F)$ be a four dimensional vector space. Let $A=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$ and define a linear transformation $T: V \rightarrow V$ by

$$
T(B)=A B-B A .
$$

Compute the characteristic polynomial $\operatorname{ch}_{T}(x)$ and show that T is diagonalizable.

Exercise 3. Let V be a vector space with $\operatorname{dim}_{F} V=n$. Let $T: V \rightarrow V$ be a linear transformation.
(1) Let $f \in F[x]$. If λ is an eigenvalue of T, show that $f(\lambda)$ is an eigenvalue of $f(T)$.
(2) If $\operatorname{rank} T=1$, prove that either T is diagonalizable or $T^{n}=0$.

Exercise 4. Let $a, b \in \mathbf{R}$. Prove that the matrix

$$
\left(\begin{array}{cc}
1+a & b \\
1 & 1-a
\end{array}\right)
$$

is diagonalizable in $M_{2}(\mathbf{R})$ if and only if $a^{2}+b>0$.

Exercise 5. Let $A \in M_{3}(\mathbf{R})$. Suppose that $\operatorname{ch}_{A}(x)$ has exactly one root in \mathbf{R} and has no multiple roots. Show that there exists an invertible $P \in M_{3}(\mathbf{R})$ such that

$$
P^{-1} A P=\left(\begin{array}{lll}
a & d & e \\
0 & 0 & b \\
0 & 1 & c
\end{array}\right)
$$

with $c^{2}+4 b<0$.
Exercise 6. Let

$$
A=\left(\begin{array}{cccc}
3 & 1 & 0 & -1 \\
-1 & 2 & 1 & 1 \\
0 & -1 & 1 & 0 \\
0 & 1 & 1 & 2
\end{array}\right)
$$

(1) Find the minimal polynomial $\mathrm{m}_{A}(x)$ of A.
(2) Show that there exists an invertible $P \in M_{4}(\mathbf{R})$ such that

$$
P^{-1} A P=\left(\begin{array}{llll}
2 & 0 & * & * \\
0 & 2 & * & * \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right) .
$$

