7th homework Due date: 11/11

Let F be either \mathbf{Q} , \mathbf{R} , or \mathbf{C} .

Exercise 1. Let
$$\lambda_1, \ldots, \lambda_n \in \mathbb{C}$$
. Put

(0.1) $f(x) := (1 - \lambda_1 x)(1 - \lambda_2 x) \dots (1 - \lambda_n x) = 1 + c_1 x + \dots + c_n x^n$. For $k = 1, 2, \dots$, define

$$p_k := \lambda_1^k + \lambda_2^k + \dots + \lambda_n^k.$$

Prove Newton's identity: for every $1 \le j \le n$

$$-jc_j = c_{j-1}p_1 + c_{j-2}p_2 + \cdots + c_1p_{j-1} + p_j \quad (c_0 := 1).$$

(Hint: Take the derivative of f(x) on both sides of (0.1). Show the left-hand side becomes

$$f(x)\sum_{j=0}^{n} \frac{-\lambda_i}{1-\lambda_i x} = \sum_{j=1}^{n} jc_j x^{j-1}.$$

Then use the identity $\frac{1}{1-t} = \sum_{k=0}^{\infty} t^k$ and compare the x^{j-1} -coefficients of both sides.)

Exercise 2. Let $A \in M_n(F)$. Use Exercise 1 to show that if

$$\operatorname{Tr}(A) = \operatorname{Tr}(A^2) = \dots = \operatorname{Tr}(A^n) = 0,$$

then $A^n = 0$.

Exercise 3. Let $A \in M_n(F)$ such that $A^n = 0$ but $A^{n-1} \neq 0$.

- (1) Show that there exists $v \in F^n$ such that $\{v, Av, A^2v, \ldots, A^{n-1}v\}$ is a basis of F^n .
- (2) If $B \in M_n(F)$ such that AB = BA, prove that

$$B = a_0 I_n + a_1 A + a_2 A^2 + \dots + a_{n-1} A^{n-1}$$

for some $a_0, \ldots, a_{n-1} \in F$.

Exercise 4. Let $A, B \in M_n(F)$. Suppose that $ch_A(x)$ has n distinct roots in F and AB = BA. Show that B is a polynomial in A. Namely, show that there exists $a_1, a_2, \ldots, a_n \in F$ such that

$$B = a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_{n-1} A + a_n I_n$$

Exercise 5. Let W be a finite dimensional vector space over F. If W_1 is a subspace of W, show that there is a subspace W_2 such that $W = W_1 \oplus W_2$ is a direct sum. (Hint: use the *extension lemma* in 2nd homework).