7th homework
 Due date: 11/11

Let F be either \mathbf{Q}, \mathbf{R}, or \mathbf{C}.
Exercise 1. Let $\lambda_{1}, \ldots \lambda_{n} \in \mathbf{C}$. Put
(0.1) $f(x):=\left(1-\lambda_{1} x\right)\left(1-\lambda_{2} x\right) \ldots\left(1-\lambda_{n} x\right)=1+c_{1} x+\cdots+c_{n} x^{n}$.

For $k=1,2, \ldots$, define

$$
p_{k}:=\lambda_{1}^{k}+\lambda_{2}^{k}+\cdots+\lambda_{n}^{k} .
$$

Prove Newton's identity: for every $1 \leq j \leq n$

$$
-j c_{j}=c_{j-1} p_{1}+c_{j-2} p_{2}+\cdots c_{1} p_{j-1}+p_{j} \quad\left(c_{0}:=1\right)
$$

(Hint: Take the derivative of $f(x)$ on both sides of (0.1). Show the left-hand side becomes

$$
f(x) \sum_{j=0}^{n} \frac{-\lambda_{i}}{1-\lambda_{i} x}=\sum_{j=1}^{n} j c_{j} x^{j-1} .
$$

Then use the identity $\frac{1}{1-t}=\sum_{k=0}^{\infty} t^{k}$ and compare the x^{j-1}-coefficients of both sides.)
Exercise 2. Let $A \in M_{n}(F)$. Use Exercise 1 to show that if

$$
\operatorname{Tr}(A)=\operatorname{Tr}\left(A^{2}\right)=\cdots=\operatorname{Tr}\left(A^{n}\right)=0
$$

then $A^{n}=0$.
Exercise 3. Let $A \in M_{n}(F)$ such that $A^{n}=0$ but $A^{n-1} \neq 0$.
(1) Show that there exists $v \in F^{n}$ such that $\left\{v, A v, A^{2} v, \ldots, A^{n-1} v\right\}$ is a basis of F^{n}.
(2) If $B \in M_{n}(F)$ such that $A B=B A$, prove that

$$
B=a_{0} I_{n}+a_{1} A+a_{2} A^{2}+\cdots a_{n-1} A^{n-1}
$$

for some $a_{0}, \ldots, a_{n-1} \in F$.
Exercise 4. Let $A, B \in M_{n}(F)$. Suppose that $\mathrm{ch}_{A}(x)$ has n distinct roots in F and $A B=B A$. Show that B is a polynomial in A. Namely, show that there exists $a_{1}, a_{2}, \ldots, a_{n} \in F$ such that

$$
B=a_{1} A^{n-1}+a_{2} A^{n-2}+\cdots+a_{n-1} A+a_{n} I_{n} .
$$

Exercise 5. Let W be a finite dimensional vector space over F. If W_{1} is a subspace of W, show that there is a subspace W_{2} such that $W=W_{1} \oplus W_{2}$ is a direct sum. (Hint: use the extension lemma in 2nd homework).

