6th homework Due date: 10/28

There are seven problems in total. Let F be either \mathbf{Q} , \mathbf{R} , or \mathbf{C} . Recall that for $A \in M_{m \times n}(F)$, we let rank A be the rank of the linear transformation

$$A: F^n \to F^m, \quad v \mapsto A \cdot v.$$

In particular, if we write $A = [v_1v_2, \ldots v_n]$ with $v_n \in F^m$, then rank $A = \dim_F \operatorname{span}_F \{v_1, v_2, \ldots, v_n\}$.

Likewise, if $T: V \to V$ is a linear transformation, fixing a basis \mathscr{A} of V, we define the characteristic polynomial of T by

$$\operatorname{ch}_T(x) := \operatorname{ch}_{[T]_{\mathscr{A}}}(x).$$

By $ch_{C^{-1}AC}(x) = ch_A(x)$, this definition of $ch_T(x)$ does not depend on the choice of basis of V.

Exercise 1. Use Cramer's rule to solve the following system of linear equations

$$2x_1 + 6x_2 + 4x_3 = 2$$

$$3x_1 + 3x_2 + x_3 = 1$$

$$5x_1 + 8x_2 + 4x_3 = 3.$$

Exercise 2. Find $a \in \mathbf{R}$ such that (3, a, a) belongs to the space spanned by (-1, -3, 6) and (6, 8, 1).

Exercise 3. Let $A \in M_{m \times n}(F)$. Show that

 $\operatorname{rank} A = \operatorname{rank} A^t$.

(Hint: use the Gauss elimination).

Exercise 4. Let $A \in M_m(F)$ be an invertible matrix and let $B \in M_{m \times n}(F)$, $C \in M_{n \times m}(F)$ and $D \in M_n(F)$. Show that if

$$\operatorname{rank} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \operatorname{rank} A,$$

then $D = CA^{-1}B$. (Use the Gauss elimination).

Exercise 5. Let V be a finite dimensional vector space of $\dim_F V = n$. Let $T: V \to V$ be a linear transformation such that

$$T^2 = 5T - 4 \cdot \mathrm{Id}_V$$

and let $ch_T(x)$ be the characteristic polynomial (recall Id_V is the identity map). Let

$$V_1 = \{ v \in V \mid T(v) = v \}, \quad V_2 = \{ v \in V \mid T(v) = 4v \}$$

be subspaces of V. Show that

- (1) $V = V_1 + V_2$ and $V_1 \cap V_2 = \{0\}$. (2) $\operatorname{ch}_T(x) = (x-1)^r (x-4)^{n-r}$. Here $r = \dim_F V_1$.

Exercise 6. Let $A \in M_n(F)$. Suppose that rank A = 1. Show that

$$\det(I_n + A) = \operatorname{Tr}(A) + 1.$$

Here Tr(A) is the trace of A.

Exercise 7. Show that

$$\det \begin{pmatrix} x_1 & a & a & \cdots & a \\ b & x_2 & a & \cdots & a \\ b & b & x_3 & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \cdots & x_n \end{pmatrix} = \frac{af(b) - bf(a)}{a - b},$$

where $f(x) = (x_1 - x)(x_2 - x) \cdots (x_n - x)$. (Hint: Use Exercise 6 or prove by induction on n).

Exercise 8. Let Let

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 3 & -4 & 1 \\ 3 & -8 & 5 \end{pmatrix}.$$

Find an invertible $P \in M_3(\mathbf{R})$ such that $P^{-1}AP$ is diagonal.