6th homework
 Due date: 10/28

There are seven problems in total. Let F be either \mathbf{Q}, \mathbf{R}, or \mathbf{C}. Recall that for $A \in M_{m \times n}(F)$, we let $\operatorname{rank} A$ be the rank of the linear transformation

$$
A: F^{n} \rightarrow F^{m}, \quad v \mapsto A \cdot v .
$$

In particular, if we write $A=\left[v_{1} v_{2}, \ldots v_{n}\right]$ with $v_{n} \in F^{m}$, then $\operatorname{rank} A=$ $\operatorname{dim}_{F} \operatorname{span}_{F}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Likewise, if $T: V \rightarrow V$ is a linear transformation, fixing a basis \mathscr{A} of V, we define the characteristic polynomial of T by

$$
\operatorname{ch}_{T}(x):=\operatorname{ch}_{[T]_{\mathscr{A}}}(x)
$$

By $\operatorname{ch}_{C^{-1} A C}(x)=\operatorname{ch}_{A}(x)$, this definition of $\operatorname{ch}_{T}(x)$ does not depend on the choice of basis of V.

Exercise 1. Use Cramer's rule to solve the following system of linear equations

$$
\begin{aligned}
2 x_{1}+6 x_{2}+4 x_{3} & =2 \\
3 x_{1}+3 x_{2}+x_{3} & =1 \\
5 x_{1}+8 x_{2}+4 x_{3} & =3 .
\end{aligned}
$$

Exercise 2. Find $a \in \mathbf{R}$ such that ($3, a, a$) belongs to the space spanned by $(-1,-3,6)$ and $(6,8,1)$.
Exercise 3. Let $A \in M_{m \times n}(F)$. Show that

$$
\operatorname{rank} A=\operatorname{rank} A^{t}
$$

(Hint: use the Gauss elimination).
Exercise 4. Let $A \in M_{m}(F)$ be an invertible matrix and let $B \in$ $M_{m \times n}(F), C \in M_{n \times m}(F)$ and $D \in M_{n}(F)$. Show that if

$$
\operatorname{rank}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\operatorname{rank} A
$$

then $D=C A^{-1} B$. (Use the Gauss elimination).

Exercise 5. Let V be a finite dimensional vector space of $\operatorname{dim}_{F} V=n$.
Let $T: V \rightarrow V$ be a linear transformation such that

$$
T^{2}=5 T-4 \cdot \operatorname{Id}_{V}
$$

and let $\operatorname{ch}_{T}(x)$ be the characteristic polynomial (recall Id_{V} is the identity map). Let

$$
V_{1}=\{v \in V \mid T(v)=v\}, \quad V_{2}=\{v \in V \mid T(v)=4 v\}
$$

be subspaces of V. Show that
(1) $V=V_{1}+V_{2}$ and $V_{1} \cap V_{2}=\{0\}$.
(2) $\operatorname{ch}_{T}(x)=(x-1)^{r}(x-4)^{n-r}$. Here $r=\operatorname{dim}_{F} V_{1}$.

Exercise 6. Let $A \in M_{n}(F)$. Suppose that rank $A=1$. Show that

$$
\operatorname{det}\left(I_{n}+A\right)=\operatorname{Tr}(A)+1
$$

Here $\operatorname{Tr}(A)$ is the trace of A.
Exercise 7. Show that

$$
\operatorname{det}\left(\begin{array}{ccccc}
x_{1} & a & a & \cdots & a \\
b & x_{2} & a & \cdots & a \\
b & b & x_{3} & \cdots & a \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b & b & b & \cdots & x_{n}
\end{array}\right)=\frac{a f(b)-b f(a)}{a-b}
$$

where $f(x)=\left(x_{1}-x\right)\left(x_{2}-x\right) \cdots\left(x_{n}-x\right)$.
(Hint: Use Exercise 6 or prove by induction on n).
Exercise 8. Let Let

$$
A=\left(\begin{array}{ccc}
0 & 1 & -1 \\
3 & -4 & 1 \\
3 & -8 & 5
\end{array}\right)
$$

Find an invertible $P \in M_{3}(\mathbf{R})$ such that $P^{-1} A P$ is diagonal.

