5th homework
 Due date: 10/21

Let I_{n} be the $n \times n$ identity matrix and 0_{n} be the $\mathrm{n} \times n$ zero matrix. There are seven problems.

Exercise 1. Evaluate the following determinants
(1) $\operatorname{det}\left(\begin{array}{cccc}1 & -2 & 3 & -12 \\ -5 & 12 & -14 & 19 \\ -9 & 22 & -20 & 31 \\ -4 & 9 & -14 & 15\end{array}\right) ; \quad(2) \operatorname{det}\left(\begin{array}{cccc}1 & 1 & -1 & -1 \\ i & -i & i & -i \\ 1 & 1 & -1 & -1 \\ i & -i & i & -i\end{array}\right) \quad i=\sqrt{-1}$.

Exercise 2. Let

$$
A=\left(\begin{array}{lll}
2 & 6 & 4 \\
3 & 3 & 1 \\
5 & 8 & 4
\end{array}\right)
$$

Find the adjoint matrix $\operatorname{adj}(A)$ and the inverse A^{-1}.
Exercise 3. Let x_{1}, x_{2}, x_{3} be three real numbers such that

$$
x_{1}+x_{2}+x_{3} \neq 0 \text { and } x_{i} \neq x_{j} \text { for } i \neq j .
$$

Show that the set $\left\{\left(x_{1}, x_{2}, x_{3}\right),\left(x_{3}, x_{1}, x_{2}\right),\left(x_{2}, x_{3}, x_{1}\right)\right\}$ is a basis of \mathbf{R}^{3}.
Exercise 4. Find $a \in \mathbf{R}$ such that vectors

$$
(1,3,1),(a, 4,3),(0,1,1) \in \mathbf{R}^{3}
$$

are linearly dependent.
Exercise 5. Let $A, B \in M_{n}(F)$. Show that

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=\operatorname{det}(A+B) \cdot \operatorname{det}(A-B)
$$

(You may use the formula $\operatorname{det}\left(\begin{array}{cc}A & 0_{n} \\ C & D\end{array}\right)=\operatorname{det} A \cdot \operatorname{det} D$).
Exercise 6. Prove that
$\operatorname{det}\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 1 & 0 & z^{2} & y^{2} \\ 1 & z^{2} & 0 & x^{2} \\ 1 & y^{2} & x^{2} & 0\end{array}\right)=(x+y+z)(x+y-z)(x-y+z)(x-y-z)$.

Exercise 7. If A, B and C are three interior angles of a triangle
$\triangle A B C$, prove that

$$
\operatorname{det}\left(\begin{array}{lll}
\cos 2 A & \frac{\cos A}{\sin A} & 1 \\
\cos 2 B & \frac{\cos B}{\sin B} & 1 \\
\cos 2 C & \frac{\cos C}{\sin C} & 1
\end{array}\right)=0
$$

