## 4th homework <br> Due date: 10/14

There are five problems in total. Let $F$ be either $\mathbf{Q}, \mathbf{R}$, or $\mathbf{C}$.
Exercise 1. Let $A, B \in M_{n \times m}(F)$. Show that

$$
\operatorname{rank}(A+2 B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)
$$

Exercise 2. Let $T: F^{3} \rightarrow F^{3}$ be the linear transformation given by the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 3 \\
1 & -2 & 4
\end{array}\right)
$$

Let

$$
\mathcal{A}=\left\{\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right)\right\}
$$

be a basis of $F^{3}$.
(1) Compute the matrix representation $[T]_{\mathcal{A}} \in M_{3}(F)$ of $T$ with respect to $\mathcal{A}$;
(2) Find a invertible matrix $P \in M_{3}(F)$ such that $[T]_{\mathcal{A}}=P^{-1} A P$.

Exercise 3. Let $T: F^{4} \rightarrow F^{4}$ be the linear transformation given by the matrix

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 3 \\
-1 & 2 & 1 & -1 \\
-1 & 1 & 0 & -3 \\
1 & -2 & -1 & 1
\end{array}\right)
$$

(1) Find the the nullity and rank of $T$;
(2) determine a basis of the kernel and the image of $T$.

Exercise 4. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
1 & 4 & -1 \\
0 & 1 & -1
\end{array}\right) \in M_{3}(\mathbf{R})
$$

(1) Find elementary matrices $E_{1}, E_{2}, \ldots, E_{n}$ such that

$$
E_{n} E_{n-1} \cdots E_{1} A=I_{3} .
$$

(2) Use (1) to find a matrix $Q$ such that $Q A=I_{3}$ (so $Q=A^{-1}$ ).

Note that this exercise exhibits a method to find the inverse of an invertible matrix by the Gauss elimination.

Exercise 5. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbf{R})$ be a matrix such that

$$
\operatorname{Tr}(A):=a+d=0 .
$$

Suppose that $A \neq 0$.
(1) Show that there exists $v \in \mathbf{R}^{2}$ such that $\{v, A v\}$ is a basis of $\mathrm{R}^{2}$.
(2) Use (1) to show there exists an invertible $P \in M_{2}(\mathbf{R})$ with

$$
P^{-1} A P=\left(\begin{array}{ll}
0 & e \\
1 & 0
\end{array}\right), \quad e=a^{2}+b c .
$$

