4th homework Due date: 10/14

There are five problems in total. Let F be either \mathbf{Q} , \mathbf{R} , or \mathbf{C} .

Exercise 1. Let $A, B \in M_{n \times m}(F)$. Show that

$$\operatorname{rank}(A + 2B) \le \operatorname{rank}(A) + \operatorname{rank}(B).$$

Exercise 2. Let $T: F^3 \to F^3$ be the linear transformation given by the matrix

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 3 \\ 1 & -2 & 4 \end{pmatrix}.$$

Let

$$\mathcal{A} = \left\{ \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \begin{pmatrix} 1\\3\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-2 \end{pmatrix} \right\}$$

be a basis of F^3 .

- (1) Compute the matrix representation $[T]_{\mathcal{A}} \in M_3(F)$ of T with respect to \mathcal{A} ;
- (2) Find a invertible matrix $P \in M_3(F)$ such that $[T]_{\mathcal{A}} = P^{-1}AP$.

Exercise 3. Let $T: F^4 \to F^4$ be the linear transformation given by the matrix

$$A = \begin{pmatrix} 1 & -1 & 0 & 3\\ -1 & 2 & 1 & -1\\ -1 & 1 & 0 & -3\\ 1 & -2 & -1 & 1 \end{pmatrix}.$$

- (1) Find the the nullity and rank of T;
- (2) determine a basis of the kernel and the image of T.

Exercise 4. Let

$$A = \begin{pmatrix} 1 & 0 & 2\\ 1 & 4 & -1\\ 0 & 1 & -1 \end{pmatrix} \in M_3(\mathbf{R}).$$

(1) Find elementary matrices E_1, E_2, \ldots, E_n such that

$$E_n E_{n-1} \cdots E_1 A = I_3$$

(2) Use (1) to find a matrix Q such that $QA = I_3$ (so $Q = A^{-1}$).

Note that this exercise exhibits a method to find the inverse of an invertible matrix by the Gauss elimination.

Exercise 5. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbf{R})$ be a matrix such that $\operatorname{Tr}(A) := a + d = 0.$

Suppose that $A \neq 0$.

- (1) Show that there exists $v \in \mathbf{R}^2$ such that $\{v, Av\}$ is a basis of \mathbf{R}^2 .
- (2) Use (1) to show there exists an invertible $P \in M_2(\mathbf{R})$ with

$$P^{-1}AP = \begin{pmatrix} 0 & e \\ 1 & 0 \end{pmatrix}, \quad e = a^2 + bc.$$