3rd homework Due date: 10/07

As usual, F denotes either \mathbf{Q} , \mathbf{R} , or \mathbf{C} , and V denotes a finite dimensional vector space over F.

Exercise 1.

(1) Let $T: F^2 \to F^3$ be a linear transformation such that

T(1,2) = (1,1,1); T(2,1) = (1,-1,3).

Find T(5,2).

(2) Show that there does NOT exist a linear transformation $T: F^3 \to F^2$ such that

$$T(1,0,3) = (2,1), T(1,-1,-5) = (1,4); T(2,-1,-2) = (3,9).$$

Exercise 2. Let W be the vector space over F defined by

$$W = \left\{ (x, y, z, w) \in F^4 \mid 2x + 3y + z + w = 0, \ -2x - 3y + 3z - w = 0 \right\}.$$

Find the dimension and a basis of W.

In the following two exercises, you may need to use the definitions or results in Exercise 5 in the 2nd homework.

Exercise 3. Let $T : V \to V$ be a linear transformation. Show that V = Ker T + Im T if and only if $\text{Ker } T \cap \text{Im } T = \{0\}$.

Exercise 4. Let $T: V \to V$ be a linear transformation such that $T^2 = T$. Let

$$U = \{ v \in V \mid T(v) = v \}, \quad W = \{ v \in V \mid T(v) = 0 \}.$$

Show that

- (1) U and W are subspaces of V,
- (2) $U \cap W = \{0\},\$
- (3) V = U + W.

Exercise 5. Let $P_3(F)$ be the space of polynomials with coefficients in F of degree ≤ 3 . Let $T: P_3(F) \to P_3(F)$ be the linear transformation defined by

$$T(f(x)) := f(2x+3).$$

Let $\mathcal{A} = \{1, 1 + x, 1 + x^2, 2x + x^3\}$ be a basis of $P_3(F)$. Write down the matrix of T with respect to the basis \mathcal{A} .

Exercise 6. Let $T: V \to V$ be a linear transformation. Assume that $\operatorname{rank} T = \operatorname{rank} T^2$.

Show that $\operatorname{Ker} T \cap \operatorname{Im} T = \{0\}.$

Exercise 7. Let $T: V \to V$ be a linear transformation. Suppose that $T^m = 0$ for some positive integer m. Show that $T^n = 0$, where $n = \dim_F V$.