3rd homework Due date: 10/07

As usual, F denotes either \mathbf{Q}, \mathbf{R}, or \mathbf{C}, and V denotes a finite dimensional vector space over F.

Exercise 1.

(1) Let $T: F^{2} \rightarrow F^{3}$ be a linear transformation such that

$$
T(1,2)=(1,1,1) ; T(2,1)=(1,-1,3) .
$$

Find $T(5,2)$
(2) Show that there does NOT exist a linear transformation T : $F^{3} \rightarrow F^{2}$ such that

$$
T(1,0,3)=(2,1), T(1,-1,-5)=(1,4) ; T(2,-1,-2)=(3,9) .
$$

Exercise 2. Let W be the vector space over F defined by
$W=\left\{(x, y, z, w) \in F^{4} \mid 2 x+3 y+z+w=0,-2 x-3 y+3 z-w=0\right\}$.
Find the dimension and a basis of W.
In the following two exercises, you may need to use the definitions or results in Exercise 5 in the 2nd homework.

Exercise 3. Let $T: V \rightarrow V$ be a linear transformation. Show that $V=\operatorname{Ker} T+\operatorname{Im} T$ if and only if $\operatorname{Ker} T \cap \operatorname{Im} T=\{0\}$.

Exercise 4. Let $T: V \rightarrow V$ be a linear transformation such that $T^{2}=T$. Let

$$
U=\{v \in V \mid T(v)=v\}, \quad W=\{v \in V \mid T(v)=0\} .
$$

Show that
(1) U and W are subspaces of V,
(2) $U \cap W=\{0\}$,
(3) $V=U+W$.

Exercise 5. Let $P_{3}(F)$ be the space of polynomials with coefficients in F of degree ≤ 3. Let $T: P_{3}(F) \rightarrow P_{3}(F)$ be the linear transformation defined by

$$
T(f(x)):=f(2 x+3) .
$$

Let $\mathcal{A}=\left\{1,1+x, 1+x^{2}, 2 x+x^{3}\right\}$ be a basis of $P_{3}(F)$. Write down the matrix of T with respect to the basis \mathcal{A}.

Exercise 6. Let $T: V \rightarrow V$ be a linear transformation. Assume that $\operatorname{rank} T=\operatorname{rank} T^{2}$.
Show that $\operatorname{Ker} T \cap \operatorname{Im} T=\{0\}$.
Exercise 7. Let $T: V \rightarrow V$ be a linear transformation. Suppose that $T^{m}=0$ for some positive integer m. Show that $T^{n}=0$, where $n=\operatorname{dim}_{F} V$.

