10th homework Due date: 5/26

Exercise 1. Let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbf{C}$ be 2n complex numbers. Let

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i), \quad g(x) = \prod_{j=1}^{n} (x - \beta_j)$$

be two polynomials of degree n. Let $R_{f,g}$ be the resultant of f and g. Show that

$$\det R_{f,g} = \pm \prod_{i=1}^{n} \prod_{j=1}^{n} (\alpha_i - \beta_j).$$

Exercise 2. Let f(X) and g(X) be polynomials in $\mathbb{C}[x]$ with $n = \deg f = \deg g$. Let r(x) be the remainder of the division of f(x) by g(x). Prove that

$$\det R_{f,g} = (-1)^n \det R_{g,r}.$$

Here $R_{f,g}, R_{g,r} \in \mathcal{M}_{2n}(\mathbf{C})$.

Exercise 3. Let $A \in M_n(\mathbb{C})$ and $B \in M_n(\mathbb{C})$. Let $f(x) = ch_A(x)$ and $g(x) = ch_B(x)$ be the characteristic polynomials of A and B respectively. Consider the linear transformation $T : M_{n \times n}(\mathbb{C}) \to M_{n \times n}(\mathbb{C})$ defined by T(X) := AX - XB. Show that

$$\det R_{f,q} = \pm \det T.$$

The following exercises are the applications of Jacobi-Darboux Theorem discussed in the classroom:

Exercise 4. Let $f(x) = x^3 + bx + c \in \mathbb{C}[x]$. Show that f(x) has no multiple roots if and only if $4b^3 + 27c^2 \neq 0$.

Exercise 5. Find the number of $(x, y) \in \mathbb{C}^2$ such that

$$xy^{2} - y + x^{2} + 1 = 0, \quad x^{2}y^{2} + y - 1 = 0.$$