10th homework
 Due date: $5 / 26$

Exercise 1. Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \mathbf{C}$ be $2 n$ complex numbers. Let

$$
f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right), \quad g(x)=\prod_{j=1}^{n}\left(x-\beta_{j}\right)
$$

be two polynomials of degree n. Let $R_{f, g}$ be the resultant of f and g. Show that

$$
\operatorname{det} R_{f, g}= \pm \prod_{i=1}^{n} \prod_{j=1}^{n}\left(\alpha_{i}-\beta_{j}\right)
$$

Exercise 2. Let $f(X)$ and $g(X)$ be polynomials in $\mathbf{C}[x]$ with $n=$ $\operatorname{deg} f=\operatorname{deg} g$. Let $r(x)$ be the remainder of the division of $f(x)$ by $g(x)$. Prove that

$$
\operatorname{det} R_{f, g}=(-1)^{n} \operatorname{det} R_{g, r} .
$$

Here $R_{f, g}, R_{g, r} \in \mathrm{M}_{2 n}(\mathbf{C})$.
Exercise 3. Let $A \in \mathrm{M}_{n}(\mathbf{C})$ and $B \in \mathrm{M}_{n}(\mathbf{C})$. Let $f(x)=\operatorname{ch}_{A}(x)$ and $g(x)=\operatorname{ch}_{B}(x)$ be the characteristic polynomials of A and B respectively. Consider the linear transformation $T: \mathrm{M}_{n \times n}(\mathbf{C}) \rightarrow \mathrm{M}_{n \times n}(\mathbf{C})$ defined by $T(X):=A X-X B$. Show that

$$
\operatorname{det} R_{f, g}= \pm \operatorname{det} T
$$

The following exercises are the applications of Jacobi-Darboux Theorem discussed in the classroom:

Exercise 4. Let $f(x)=x^{3}+b x+c \in \mathbf{C}[x]$. Show that $f(x)$ has no multiple roots if and only if $4 b^{3}+27 c^{2} \neq 0$.

Exercise 5. Find the number of $(x, y) \in \mathbf{C}^{2}$ such that

$$
x y^{2}-y+x^{2}+1=0, \quad x^{2} y^{2}+y-1=0 .
$$

