## 9th homework Due date: 5/19

Exercise 1. Let

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & -2 & 1 \\
1 & 3 & -2
\end{array}\right) \in \mathrm{M}_{3}(\mathbf{R})
$$

Let $b=(3,-2,1)^{\mathrm{t}} \in \mathbf{R}^{3}$. Find the minimum

$$
\min _{x \in \mathbf{R}^{3}}\|A x-b\| .
$$

For any matrix $A \in \mathrm{M}_{n}(\mathbf{R})$, denote by $\rho_{A}$ the spectral radius of $A$.
Exercise 2. Let $A \in \mathrm{M}_{n}(\mathbf{R})$ be an irreducible matrix. Suppose that $u \in\left(\mathbf{R}_{\geq 0}\right)^{n}$ with

$$
A u-\rho_{A} u \in\left(\mathbf{R}_{\geq 0}\right)^{n}
$$

Prove that $A u=\rho_{A} u$.
(Hint: consider $w=\left(A+I_{n}\right)^{n-1} u$ and show that $A w-\rho_{A} w \in\left(\mathbf{R}_{>0}\right)^{n}$.
Exercise 3. Let $A \in \mathrm{M}_{n}(\mathbf{R})$ be an irreducible matrix. Show that if $u \in\left(\mathbf{R}_{\geq 0}\right)^{n}$ is an eigenvector of $A$, then $u \in\left(\mathbf{R}_{>0}\right)^{n}$.
Exercise 4. Let $A=\left(a_{i j}\right) \in \mathrm{M}_{n}(\mathbf{R})$ be an irreducible matrix such that $a_{11}>0$. Show that $A$ is regular.
Exercise 5. Consider the following miniature web:

(1) Take the damping factor $\alpha=0.9$. Find the Google matrix

$$
G=\alpha P+\frac{1-\alpha}{5} \cdot E \in \mathrm{M}_{5}(\mathbf{R})
$$

associated with the above web, where $P$ is the transition matrix of the web and $E=e^{t} e$ with $e=(1,1,1,1,1)$.
(2) Compute the Perron vector of $G$. You may need to use matrix calculator for this problem.

