8th homework
 Due date: 5/12

Exercise 1. If A and B are stochastic matrices, then show that $A B$ is also a stochastic matrix.

Exercise 2. Let

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & 1 / 2 & 0
\end{array}\right) \in \mathrm{M}_{4}(\mathbf{R}) .
$$

Show that A is a regular matrix. Find an eigenvector $u \in \mathbf{R}_{>0}^{4}$ of A with eigenvalue $\rho(A)$.

Exercise 3. Let A be an irreducible matrix in $\mathrm{M}_{n}(\mathbf{R})$ (so A is nonnegative by definition). Let $B \neq A$ be a matrix in $\mathrm{M}_{n}(\mathbf{R})$ such that $B-A$ is non-negative. Show that $\rho(B)>\rho(A)$.

Recall that a matrix $A \in \mathrm{M}_{n}(\mathbf{R})$ is irreducible if A is non-negative and for any $1 \leq i, j \leq k$ there exists k such that the (i, j)-entry of A^{k} is positive.

Exercise 4. Let $A \in \mathrm{M}_{n}(\mathbf{R})$ be an irreducible matrix. Show that $\left(A+\epsilon I_{n}\right)^{n-1}$ is positive for any $\epsilon>0$.
Exercise 5. Let A be an irreducible matrix in $\mathrm{M}_{n}(\mathbf{R})$. If $\lambda \in \mathbf{C}$ is an eigenvalue of A with $|\lambda|=\rho(A)$, show that

$$
\lambda^{N}=\rho(A)^{N}
$$

for some positive integer N (Hint: You may use Exercise 6).
Exercise 6. Let $A=\left(a_{i j}\right) \in \mathrm{M}_{n}(\mathbf{R})$ be an irreducible matrix and let $B=\left(b_{i j}\right) \in \mathrm{M}_{n}(\mathbf{R})$ be a matrix such that $\left|b_{i j}\right| \leq a_{i j}$ for all $1 \leq i, j \leq n$. Let λ be an eigenvalue of B such that $\lambda=e^{i \theta} \rho(A)$. Show that $\left|b_{i j}\right|=a_{i j}$ and $B=e^{i \theta} \cdot D A D^{-1}$, where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and $\left|d_{i}\right|=1$.

