2nd homework
 Due date: $9 / 30$

Let F be either \mathbf{Q}, \mathbf{R}, or \mathbf{C}.
Exercise 1. Show that $(1,1,0,1),(1,0,1,1),(0,0,1,1)$ and $(0,1,0,2)$ form a basis of F^{4}.

Exercise 2. Let $S=\left\{u_{1}, u_{2}, u_{3}\right\} \subset F^{4}$ be a subset of vectors in F^{4} given by

$$
u_{1}=(1,10,-6,-2), \quad u_{2}=(-2,0,6,1), \quad u_{3}=(3,-1,2,4) .
$$

Let $W:=\operatorname{span}_{F} S$. Find $\operatorname{dim}_{F} W$.
Exercise 3. Let V be a vector space over F and let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis of V. Show that

$$
\left\{v_{1}+v_{2}+v_{3}, v_{1}+2 v_{2}+4 v_{3}, v_{1}+3 v_{2}+9 v_{3}\right\}
$$

is also a basis of V.
Exercise 4 (Extension lemma). Let V be a finite dimensional vector space over F with $\operatorname{dim}_{F} V=n$. Let $v_{1}, v_{2}, \ldots, v_{k} \in V$ be linearly independent vectors. Show that there exists $(n-k)$ vectors $v_{k+1}, v_{k+2}, \ldots, v_{n}$ such that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of V.

Exercise 5. Let V be a finite dimensional vector space over F. Let W_{1} and W_{2} be subspaces of V. Define

$$
W_{1}+W_{2}:=\left\{x+y \in V \mid x \in W_{1}, y \in W_{2}\right\} .
$$

(1) Show that $W_{1}+W_{2}$ is a subspace of V.
(2) Use the previous exercise Extension lemma to show

$$
\operatorname{dim}_{F}\left(W_{1}+W_{2}\right)+\operatorname{dim}_{F}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}_{F} W_{1}+\operatorname{dim}_{F} W_{2}
$$

