2nd homework Due date: 9/30

Let F be either \mathbf{Q} , \mathbf{R} , or \mathbf{C} .

Exercise 1. Show that (1, 1, 0, 1), (1, 0, 1, 1), (0, 0, 1, 1) and (0, 1, 0, 2) form a basis of F^4 .

Exercise 2. Let $S = \{u_1, u_2, u_3\} \subset F^4$ be a subset of vectors in F^4 given by

$$u_1 = (1, 10, -6, -2), \quad u_2 = (-2, 0, 6, 1), \quad u_3 = (3, -1, 2, 4).$$

Let $W := \operatorname{span}_F S$. Find $\dim_F W$.

Exercise 3. Let V be a vector space over F and let $\{v_1, v_2, v_3\}$ be a basis of V. Show that

$$\{v_1 + v_2 + v_3, v_1 + 2v_2 + 4v_3, v_1 + 3v_2 + 9v_3\}$$

is also a basis of V.

Exercise 4 (Extension lemma). Let V be a finite dimensional vector space over F with $\dim_F V = n$. Let $v_1, v_2, \ldots, v_k \in V$ be linearly independent vectors. Show that there exists (n - k) vectors $v_{k+1}, v_{k+2}, \ldots, v_n$ such that $\{v_1, v_2, \ldots, v_n\}$ is a basis of V.

Exercise 5. Let V be a finite dimensional vector space over F. Let W_1 and W_2 be subspaces of V. Define

 $W_1 + W_2 := \{ x + y \in V \mid x \in W_1, y \in W_2 \}.$

- (1) Show that $W_1 + W_2$ is a subspace of V.
- (2) Use the previous exercise *Extension lemma* to show

 $\dim_F(W_1 + W_2) + \dim_F(W_1 \cap W_2) = \dim_F W_1 + \dim_F W_2.$