7th homework Due date: 5/5

Exercise 1. Find the singular values of the matrix

$$
A=\left(\begin{array}{c|ccc}
1 & 1 & \cdots & 1 \\
\hline 1 & & \\
\vdots & -I_{n} \\
1 & &
\end{array}\right)
$$

What are the eigenvalues of A ?
Exercise 2. Let $A \in \mathrm{M}_{m \times n}(\mathbf{R})$ and $B \in \mathrm{M}_{r \times s}(\mathbf{R})$ and $C \in \mathrm{M}_{m \times s}(\mathbf{R})$ The matrix equation

$$
A X B=C
$$

has a solution $X \in \mathrm{M}_{n \times r}(\mathbf{R})$ if and only if $A A^{\dagger} C B^{\dagger} B=C$. Moreover, the solutions of $A X B=C$ are of the form

$$
X=A^{\dagger} C B^{\dagger}+Y-A^{\dagger} A Y B B^{\dagger}
$$

where $Y \in \mathrm{M}_{n \times r}(\mathbf{R})$
For $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{t}} \in \mathbf{C}^{n}$, define

$$
\|x\|:=\sqrt{\left|x_{1}\right|^{2}+\ldots\left|x_{n}\right|^{2}}
$$

For $A \in \mathrm{M}_{n}(\mathbf{C})$, define the spectral norm

$$
\|A\|_{\mathrm{sp}}:=\sup _{x \in \mathbf{C}^{n},\|x\|=1}\|A x\|=\sup _{x \in \mathbf{C}^{n}, x \neq 0} \frac{\|A x\|}{\|x\|} .
$$

Recall that $\rho(A)$ denotes the spectral radius of a square matrix A.
Exercise 3. (1) For $A, B \in \mathrm{M}_{n}(\mathbf{C})$, prove

$$
\|A B\|_{\mathrm{sp}} \leq\|A\|_{\mathrm{sp}}\|B\|_{\mathrm{sp}} ; \quad\|A+B\|_{\mathrm{sp}} \leq\|A\|_{\mathrm{sp}}+\|B\|_{\mathrm{sp}}
$$

(2) Show that $\|A\|_{\mathrm{sp}}=\sqrt{\rho\left(A A^{*}\right)}$ the maximal singular value of A.

Exercise 4. Let $A \in \mathrm{M}_{n}(\mathbf{R})$ be a stochastic matrix. Namely, $A=\left(a_{i j}\right)$ with

$$
a_{i j} \geq 0, \quad \sum_{i=1}^{n} a_{i j}=1 \text { for all } j=1, \ldots, n
$$

Show that the spectral radius $\rho(A)=1$.

Exercise 5 (15pts). Let

$$
\left(\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 8 & 3 / 8 & 1 / 2
\end{array}\right) \in \mathrm{M}_{3}(\mathbf{R})
$$

(1) Find a vector $u=\left(u_{1}, u_{2}, u_{3}\right)^{\mathrm{t}} \in \mathbf{R}^{3}$ such that $A u=u, u_{i}>0$ and $u_{1}+u_{2}+u_{3}=1$.
(2) Let $w=\left(w_{1}, w_{2}, w_{3}\right)^{\mathrm{t}} \in \mathbf{R}^{3}$ be an eigenvector of the transpose A^{t} with the eigenvalue 1 . Let $v=\left(v_{1}, v_{2}, v_{3}\right)^{\mathrm{t}} \in \mathbf{R}^{3}$ be any vector. Show that

$$
\lim _{k \rightarrow \infty} A^{k} v=\lambda u \text { for some } \lambda \in \mathbf{R}
$$

(3) Show that λ is non-zero if and only if

$$
v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3} \neq 0
$$

