6th homework Due date: 4/28

Exercise 1. Let V be a finite dimensional vector space over \mathbf{Q} and let $\langle , \rangle : V \times V \to \mathbf{Q}$ be an inner product. Put

 $O(V) = \{ \text{ linear transformation } T: V \to V \mid ||T(v)|| = ||v|| \text{ for every } v \in V \}.$ Prove that if $x, y \in V$ with ||x|| = ||y||, then there exists $T \in O(V)$ such that T(x) = y.

Exercise 2 (Bonus). If $A \in M_n(\mathbf{Q})$ such that $A^t = -A$, show that $\det A \in \mathbf{Q}^2$. Namely, $\det A$ is a square in \mathbf{Q} .

Exercise 3 (20pts). Find the singular value decomposition and the Moore-Penrose inverse for the following matrices:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -2 \\ 1 & 2 & 0 \end{pmatrix}.$$

Exercise 4. Let $\sigma_1, \ldots, \sigma_n$ be the singular values of $A \in M_n(\mathbf{C})$. Prove that the eigenvalues of $\begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$ are equal to $\sigma_1, \ldots, \sigma_n, -\sigma_1, \ldots, -\sigma_n$.

Exercise 5. Let $A \in M_n(\mathbb{C})$. Show that AA^* is similar to A^*A .