## 5th homework <br> Due date: $4 / 21$

Recall that a matrix $A \in M_{n}(\mathbf{R})$ is orthogonal if $A A^{\mathrm{t}}=I_{n}$. and that a matrix $A \in M_{n}(\mathbf{C})$ is unitary if $A A^{*}=I_{n}$ and $A$ is normal if $A A^{*}=A^{*} A$. Let $i=\sqrt{-1} \in \mathbf{C}$.

Exercise 1. Let $A, B \in M_{n}(\mathbf{R})$. Show that $A+i B$ is unitary if and only if $\left(\begin{array}{cc}A & -B \\ B & A\end{array}\right) \in M_{2 n}(\mathbf{R})$ is orthogonal.
Exercise 2. Show that $A \in M_{n}(\mathbf{C})$ is normal if and only if there exists a polynomial $Q \in \mathbf{C}[X]$ such that $A^{*}=Q(A)$.

Exercise 3. Let

$$
A=\left(\begin{array}{ccc}
1 & i & 1 \\
-i & 1 & i \\
1 & -i & 1
\end{array}\right)
$$

Find an invertible matrix $P \in M_{3}(\mathbf{C})$ such that $P$ is unitary and $P^{*} A P$ is diagonal.

Exercise 4. Let $V$ be a finite dimensional inner product space over C. Let $T: V \rightarrow V$ be a self-adjoint operator. Show that
(1) $1+i T$ is invertible, and then
(2) $S:=(1-i T)(1+i T)^{-1}$ is a unitary operator.

Exercise 5. Let $A=\left(a_{i, j}\right) \in M_{n}(\mathbf{C})$ and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbf{C}$ be the eigenvalues of $A$ (counted with multiplicity). Show that $A$ is normal if and only if

$$
\sum_{1 \leq i, j \leq n}\left|a_{i, j}\right|^{2}=\sum_{k=1}^{n}\left|\lambda_{k}\right|^{2}
$$

