4th homework
 Due date: $3 / 31$

Let $(V,\langle\rangle$,$) be a inner product space over F(F=\mathbf{R}$ or $\mathbf{C})$.
Exercise 1. Let W be a subspace of V. Suppose the orthogonal projection $T:=\operatorname{Proj}_{W}: V \rightarrow V$ onto W exists.
(1) Show that T is self-adjoint.
(2) Find a self-adjoint operator S such that $S^{2}=T+1$.

Exercise 2. Suppose that V is finite dimensional. Let $T: V \rightarrow V$ be a normal operator.
(1) Prove that $\operatorname{Ker} T=\operatorname{Ker} T^{n}$ for any $n \geq 1$.
(2) $\operatorname{Im} T=\operatorname{Im} T^{n}$ for any $n \geq 1$.

Exercise 3. Let $A \in M_{3}(\mathbf{R})$ with $A A^{\mathrm{t}}=1$ and $\operatorname{det} A=1$. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by $T(v)=A \cdot v$. Show that there exists a line L passing through the origin such that for any $v \in \mathbf{R}^{3}, T(v)$ is obtained by rotating v around L by an angle θ.

Exercise 4. For any linear transformation $T: V \rightarrow V$, define a new pairing $\langle x, y\rangle_{T}:=\langle T x, y\rangle$ for $x, y \in V$. We say T is positive if \langle,\rangle_{T} is a inner product on V.
(1) Show that T is positive if and only if T is self-adjoint and all eigenvalues of T are positive real numbers.
(2) If S and T are two positive linear transformations, show that $S T$ is positive if and only if S and T commute, i.e. $S T=T S$.

Exercise 5. Let

$$
A=\left(\begin{array}{ccc}
a & 1 & 1 \\
1 & a & 1 \\
1 & 1 & a
\end{array}\right) \in M_{3}(\mathbf{R})
$$

For $x, y \in \mathbf{R}^{3}$ (viewed as column vectors), define

$$
\langle x, y\rangle_{A}:=x^{\mathrm{t}} A y .
$$

Find the range of a such that \langle,\rangle_{A} is a inner product on \mathbf{R}^{3}.
Exercise 6. Let

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Find $P \in M_{4}(\mathbf{R})$ such that $P P^{\mathrm{t}}=I_{4}$ and $P^{-1} A P$ is a diagonal matrix.

