4th homework Due date: 3/31

Let (V, \langle , \rangle) be a inner product space over F $(F = \mathbf{R} \text{ or } \mathbf{C})$.

Exercise 1. Let W be a subspace of V. Suppose the orthogonal projection $T := \operatorname{Proj}_W : V \to V$ onto W exists.

- (1) Show that T is self-adjoint.
- (2) Find a self-adjoint operator S such that $S^2 = T + 1$.

Exercise 2. Suppose that V is finite dimensional. Let $T: V \to V$ be a normal operator.

- (1) Prove that $\operatorname{Ker} T = \operatorname{Ker} T^n$ for any $n \ge 1$.
- (2) Im $T = \text{Im } T^n$ for any $n \ge 1$.

Exercise 3. Let $A \in M_3(\mathbf{R})$ with $AA^t = 1$ and det A = 1. Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ given by $T(v) = A \cdot v$. Show that there exists a line L passing through the origin such that for any $v \in \mathbf{R}^3$, T(v) is obtained by rotating v around L by an angle θ .

Exercise 4. For any linear transformation $T: V \to V$, define a new pairing $\langle x, y \rangle_T := \langle Tx, y \rangle$ for $x, y \in V$. We say T is *positive* if \langle , \rangle_T is a inner product on V.

- (1) Show that T is positive if and only if T is self-adjoint and all eigenvalues of T are positive real numbers.
- (2) If S and T are two positive linear transformations, show that ST is positive if and only if S and T commute, i.e. ST = TS.

Exercise 5. Let

$$A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \in M_3(\mathbf{R}).$$

For $x, y \in \mathbf{R}^3$ (viewed as column vectors), define

$$\langle x, y \rangle_A := x^{\mathrm{t}} A y.$$

Find the range of a such that \langle , \rangle_A is a inner product on \mathbb{R}^3 .

Exercise 6. Let

Find $P \in M_4(\mathbf{R})$ such that $PP^{t} = I_4$ and $P^{-1}AP$ is a diagonal matrix.