3rd homework
 Due date: 3/24

Exercise 1. Let $v_{1}=(3,0,4), v_{2}=(-1,0,7)$ and $v_{3}=(2,9,11)$ be vectors in \mathbf{R}^{3} equipped with the standard inner product $\left\langle\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)\right\rangle=$ $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$. Let W be the subspace spanned by v_{2} and v_{3}. Find $\operatorname{Proj}_{W}\left(v_{1}\right)=$?

Exercise 2. If $(V,\langle\rangle$,$) is a finite dimensional inner product space over$ \mathbf{C}, show that any linear functional $\ell: V \rightarrow \mathbf{C}$ is bounded.

Exercise 3. Let $(V,\langle\rangle$,$) be a Hilbert space.$
(1) If S is any subset of V, show that

$$
S^{\perp}:=\{x \in V \mid\langle x, s\rangle=0 \text { for all } s \in S\}
$$

is a closed subspace of V.
(2) Show that if W is a subspace of V, then W is closed if and only if $W=W^{\perp \perp}$.

Exercise 4. Let V be the space \mathbf{C}^{2} with the standard inner product. Let $T: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ be the linear transformation defined by $T(1,0)=$ $(1,-2)$ and $T(0,1)=(i,-1)$. Let T^{*} be the adjoint of T. Find $T^{*}\left(x_{1}, x_{2}\right)$ for any $\left(x_{1}, x_{2}\right) \in \mathbf{C}^{2}$.

Exercise 5. Let V be the space of all real valued continuous functions on $[0,1]$ with the inner product

$$
\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t
$$

Define $T: V \rightarrow V$ by

$$
T(f)(x):=\int_{0}^{x} f(t) d t, \quad x \in[0,1] .
$$

Show that the adjoint of T exists.

