3rd homework Due date: 3/24

Exercise 1. Let $v_1 = (3, 0, 4)$, $v_2 = (-1, 0, 7)$ and $v_3 = (2, 9, 11)$ be vectors in \mathbb{R}^3 equipped with the standard inner product $\langle (a_1, a_2, a_3), (b_1, b_2, b_3) \rangle = a_1b_1 + a_2b_2 + a_3b_3$. Let W be the subspace spanned by v_2 and v_3 . Find $\operatorname{Proj}_W(v_1) = ?$.

Exercise 2. If (V, \langle , \rangle) is a finite dimensional inner product space over **C**, show that any linear functional $\ell : V \to \mathbf{C}$ is bounded.

Exercise 3. Let (V, \langle , \rangle) be a Hilbert space.

(1) If S is any subset of V, show that

$$S^{\perp} := \{ x \in V \mid \langle x, s \rangle = 0 \text{ for all } s \in S \}$$

is a closed subspace of V.

(2) Show that if W is a subspace of V, then W is closed if and only if $W = W^{\perp \perp}$.

Exercise 4. Let V be the space \mathbb{C}^2 with the standard inner product. Let $T : \mathbb{C}^2 \to \mathbb{C}^2$ be the linear transformation defined by T(1,0) = (1,-2) and T(0,1) = (i,-1). Let T^* be the adjoint of T. Find $T^*(x_1,x_2)$ for any $(x_1,x_2) \in \mathbb{C}^2$.

Exercise 5. Let V be the space of all real valued continuous functions on [0, 1] with the inner product

$$\langle f,g\rangle := \int_0^1 f(t)g(t)dt.$$

Define $T: V \to V$ by

$$T(f)(x) := \int_0^x f(t)dt, \quad x \in [0, 1].$$

Show that the adjoint of T exists.