2nd homework Due date: 3/17

There are six problems.

Exercise 1. Find a set of three polynomials $p_1(x) = a$, $p_2(x) = b + cx$ and $p_3(x) = d + ex + fx^2$ with $a, b, c, d, e, f \in \mathbf{R}$ such that $\{p_1(x), p_2(x), p_3(x)\}$ is an orthonormal set with respect to the inner product $\langle f, g \rangle = \int_0^2 f(x)g(x)dx$.

Exercise 2. Let (V, \langle , \rangle) be a inner product space over **C**. For each $x, y \in V$ show that

$$||x - y||^{2} + ||x + y||^{2} = 2||x||^{2} + 2||y||^{2};$$

$$4\langle x, y \rangle = \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2}.$$

(recall that $||x|| := \sqrt{\langle x, x \rangle}$).

Exercise 3. Let $V = \mathbf{R}[x]$ be the space of polynomials with coefficients in **R**. Let b > a be real numbers. Define the inner product on V by

$$\langle f,g\rangle = \int_{a}^{b} f(x)g(x)dx.$$

For each positive integer n, define

$$q_{2n}(x) = (x-a)^n (x-b)^n$$

 $p_n(x) = \frac{d^n}{dx^n} (q_{2n}(x)).$

(1) Show that

$$\frac{d^{i-1}q_{2n}}{dx^{i-1}}(a) = \frac{d^{i-1}q_{2n}}{dx^{i-1}}(b) = 0$$

for all i = 1, 2, ..., n.

- (2) Show that p_n has degree n.
- (3) Show that p_1, p_2, \ldots, p_n are orthogonal (or perpendicular) to each other.

Exercise 4. Let \langle , \rangle be the standard inner product on \mathbb{R}^3 given by $\langle (a_1, a_2, a_3), (b_1, b_2, b_3) \rangle = a_1 b_1 + a_2 b_2 + a_3 b_3$. Let $v_1 = (1, 0, 1), v_2 = (1, 0, -1)$ and $v_3 = (0, 3, 4)$. Apply the Gram-Schmidt process to $\{v_1, v_2, v_3\}$ to obtain an orthonormal set $\{w_1, w_2, w_3\}$.

Exercise 5. Let

$$\Omega := \begin{pmatrix} 6 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \in M_3(\mathbf{R}).$$

Find $A \in M_3(\mathbf{R})$ such that $AA^* = \Omega$ (so Ω is positive definite). (Hint: Use Gram-Schmidt process).

Exercise 6. Let (V, \langle , \rangle) be an inner product space. If $T : V \to V$ is a projection (i.e. $T^2 = T$) such that $||T(x)|| \leq ||x||$ for all $x \in V$, show that T is an orthogonal projection.

(Hint: You may need to show $\langle x, y \rangle = 0$ for all $x \in \text{Ker } T$ and $y \in \text{Im } T$.)