2nd homework
 Due date: 3/17

There are six problems.
Exercise 1. Find a set of three polynomials $p_{1}(x)=a, p_{2}(x)=$ $b+c x$ and $p_{3}(x)=d+e x+f x^{2}$ with $a, b, c, d, e, f \in \mathbf{R}$ such that $\left\{p_{1}(x), p_{2}(x), p_{3}(x)\right\}$ is an orthonormal set with respect to the inner product $\langle f, g\rangle=\int_{0}^{2} f(x) g(x) d x$.
Exercise 2. Let $(V,\langle\rangle$,$) be a inner product space over C. For each$ $x, y \in V$ show that

$$
\begin{aligned}
& \|x-y\|^{2}+\|x+y\|^{2}=2\|x\|^{2}+2\|y\|^{2} \\
& 4\langle x, y\rangle=\sum_{k=0}^{3} i^{k}\left\|x+i^{k} y\right\|^{2}
\end{aligned}
$$

(recall that $\|x\|:=\sqrt{\langle x, x\rangle}$).
Exercise 3. Let $V=\mathbf{R}[x]$ be the space of polynomials with coefficients in \mathbf{R}. Let $b>a$ be real numbers. Define the inner product on V by

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

For each positive integer n, define

$$
\begin{aligned}
q_{2 n}(x) & =(x-a)^{n}(x-b)^{n}, \\
p_{n}(x) & =\frac{d^{n}}{d x^{n}}\left(q_{2 n}(x)\right) .
\end{aligned}
$$

(1) Show that

$$
\frac{d^{i-1} q_{2 n}}{d x^{i-1}}(a)=\frac{d^{i-1} q_{2 n}}{d x^{i-1}}(b)=0
$$

for all $i=1,2, \ldots, n$.
(2) Show that p_{n} has degree n.
(3) Show that $p_{1}, p_{2}, \ldots, p_{n}$ are orthogonal(or perpendicular) to each other.

Exercise 4. Let \langle,$\rangle be the standard inner product on \mathbf{R}^{3}$ given by $\left\langle\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)\right\rangle=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$. Let $v_{1}=(1,0,1), v_{2}=$ $(1,0,-1)$ and $v_{3}=(0,3,4)$. Apply the Gram-Schmidt process to $\left\{v_{1}, v_{2}, v_{3}\right\}$ to obtain an orthonormal set $\left\{w_{1}, w_{2}, w_{3}\right\}$.

Exercise 5. Let

$$
\Omega:=\left(\begin{array}{lll}
6 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) \in M_{3}(\mathbf{R}) .
$$

Find $A \in M_{3}(\mathbf{R})$ such that $A A^{*}=\Omega$ (so Ω is positive definite).
(Hint: Use Gram-Schmidt process).
Exercise 6. Let $(V,\langle\rangle$,$) be an inner product space. If T: V \rightarrow V$ is a projection (i.e. $T^{2}=T$) such that $\|T(x)\| \leq\|x\|$ for all $x \in V$, show that T is an orthogonal projection.
(Hint: You may need to show $\langle x, y\rangle=0$ for all $x \in \operatorname{Ker} T$ and $y \in \operatorname{Im} T$.)

