1st homework

Due date: $3 / 3$

Let F be either \mathbf{Q}, \mathbf{R}, or \mathbf{C} and let V be a finite dimensional vector space over F. Let n be a positive integer.
Exercise 1. Let $V=F^{4}$. Let $v_{1}=(2,1,2,3)$ and $v_{2}=(1,-1,0,2)$ be vectors in V. Let $W=F v_{1}+F v_{2}$ be a subspace of V. Let $v_{3}=$ $(1,1,0,0)$ and $v_{4}=(0,2,2,-1)$. Show that $\left\{\left[v_{3}\right],\left[v_{4}\right]\right\}$ is a basis of V / W. Let $v_{5}=(1,2,3,-2)$. Then

$$
\left[v_{5}\right]=\alpha_{1} \cdot\left[v_{3}\right]+\alpha_{2} \cdot\left[v_{4}\right]
$$

for $\alpha_{1}, \alpha_{2} \in F$. Find α_{1}, α_{2}.
Exercise 2. Let V_{1} and V_{2} be subspaces of V. Let $i: V_{1} \hookrightarrow V_{1}+$ V_{2} be the inclusion map. Show that the inclusion map i induces an isomorphism

$$
\bar{i}: \frac{V_{1}}{V_{1} \cap V_{2}} \simeq \frac{V_{1}+V_{2}}{V_{2}},
$$

where \bar{i} is the map defined by

$$
\bar{i}\left(v+V_{1} \cap V_{2}\right):=i(v)+V_{2} .
$$

Exercise 3. Let $T: V \rightarrow V$ be a linear transformation. Let $W \subset V$ be a T-invariant subspace. Show that T is an isomorphism if and only if $T: W \rightarrow W$ and $\bar{T}: V / W \rightarrow V / W$ are both isomorphisms.

Exercise 4. Let m be any positive integer. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m} \in V$ be non-zero vectors in V. Show that there exists a linear functional $\ell \in V^{\vee}$ such that

$$
\ell\left(\alpha_{i}\right) \neq 0 \text { for all } i=1,2, \ldots, m .
$$

Exercise 5. If $\ell \in \operatorname{Hom}_{F}\left(M_{n}(F), F\right)$ is a linear functional of $M_{n}(F)$, show that there exists $B \in M_{n}(F)$ such that

$$
\ell(A)=\operatorname{Tr}(A B) \text { for all } A \in M_{n}(F) .
$$

Exercise 6. Let $\ell: M_{n}(F) \rightarrow F$ be a linear functional. If $\ell(A B)=$ $\ell(B A)$ for all $A, B \in M_{n}(F)$, show that ℓ is a multiple of the trace function, i.e. there exists $\alpha \in F$ such that $\ell(A)=\alpha \cdot \operatorname{Tr}(A)$ for all $A \in M_{n}(F)$.

