1st homework Due date: 3/3

Let F be either \mathbf{Q} , \mathbf{R} , or \mathbf{C} and let V be a finite dimensional vector space over F. Let n be a positive integer.

Exercise 1. Let $V = F^4$. Let $v_1 = (2, 1, 2, 3)$ and $v_2 = (1, -1, 0, 2)$ be vectors in V. Let $W = Fv_1 + Fv_2$ be a subspace of V. Let $v_3 = (1, 1, 0, 0)$ and $v_4 = (0, 2, 2, -1)$. Show that $\{[v_3], [v_4]\}$ is a basis of V/W. Let $v_5 = (1, 2, 3, -2)$. Then

$$[v_5] = \alpha_1 \cdot [v_3] + \alpha_2 \cdot [v_4]$$

for $\alpha_1, \alpha_2 \in F$. Find α_1, α_2 .

Exercise 2. Let V_1 and V_2 be subspaces of V. Let $i : V_1 \hookrightarrow V_1 + V_2$ be the inclusion map. Show that the inclusion map i induces an isomorphism

$$\overline{i}: \frac{V_1}{V_1 \cap V_2} \simeq \frac{V_1 + V_2}{V_2},$$

where \overline{i} is the map defined by

 $\bar{i}(v + V_1 \cap V_2) := i(v) + V_2.$

Exercise 3. Let $T: V \to V$ be a linear transformation. Let $W \subset V$ be a *T*-invariant subspace. Show that *T* is an isomorphism if and only if $T: W \to W$ and $\overline{T}: V/W \to V/W$ are both isomorphisms.

Exercise 4. Let *m* be any positive integer. Let $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_m \in V$ be non-zero vectors in *V*. Show that there exists a linear functional $\ell \in V^{\vee}$ such that

$$\ell(\alpha_i) \neq 0$$
 for all $i = 1, 2, \ldots, m$.

Exercise 5. If $\ell \in \operatorname{Hom}_F(M_n(F), F)$ is a linear functional of $M_n(F)$, show that there exists $B \in M_n(F)$ such that

$$\ell(A) = \operatorname{Tr}(AB)$$
 for all $A \in M_n(F)$.

Exercise 6. Let $\ell : M_n(F) \to F$ be a linear functional. If $\ell(AB) = \ell(BA)$ for all $A, B \in M_n(F)$, show that ℓ is a multiple of the trace function, i.e. there exists $\alpha \in F$ such that $\ell(A) = \alpha \cdot \text{Tr}(A)$ for all $A \in M_n(F)$.