12th homework Due date: 12/16

Let F be either \mathbf{Q}, \mathbf{R}, or \mathbf{C} and let V be a finite dimensional vector space over F. Recall that for $v \in V$, let

$$
C_{v}(f):=\operatorname{span}_{F}\left\{v, T v, T^{2} v, \ldots, T^{n-1} v\right\}
$$

the smallest T-invariant subspace containing v with f the characteristic polynomial of T restricted to $C_{v}(f)$.
Exercise 1. Let $V=\mathbf{Q}^{4}$ and

$$
A=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-2 & 2 & 0 & 1 \\
-1 & 3 & -1 & 0
\end{array}\right) \in M_{4}(\mathbf{Q})
$$

Let $T: V \rightarrow V$ be the linear transform defined by $T(v):=A \cdot v$. Decompose V into a direct sum of T-cyclic subspaces

$$
V=\bigoplus_{i=1}^{r} C_{v_{i}}\left(f_{i}^{n_{i}}\right)
$$

where $f_{i} \in \mathbf{Q}[x]$ are irreducible polynomials. Determine the set of irreducible polynomials $\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}$ and a set $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ of generators.

Exercise 2. Let $T: V \rightarrow V$ be a linear transformation. Show that if V is T-cyclic, then every linear transformation $S: V \rightarrow V$ that commutes with T is a polynomial in T.

Exercise 3. Describe all linear transfomation $T: V \rightarrow V$ such that V has only finitely many T-invariant subspaces.
Exercise 4. Let $A, B \in M_{n}(\mathbf{C})$ and let $T: M_{n}(\mathbf{C}) \rightarrow M_{n}(\mathbf{C})$ be the linear transformation defined by

$$
T(X)=A X-X B, \quad X \in M_{n}(\mathbf{C})
$$

Prove that the eigenvalues of A are distinct from eigenvalues of B if and only if T is an isomorphism.

