11th homework Due date: 12/09

Exercise 1 (30pts). Determine the Jordan form J of the following matrices A :
(1)

$$
A=\left(\begin{array}{cccc}
-1 & -1 & 4 & 0 \\
1 & -3 & 7 & 1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 1 & 0
\end{array}\right)
$$

(2)

$$
A=\left(\begin{array}{cccc}
5 & -5 & 2 & 4 \\
2 & -1 & 2 & -2 \\
1 & -1 & 4 & 1 \\
-1 & 2 & -1 & -4
\end{array}\right)
$$

$$
A=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \tag{3}\\
1 & 0 & 0 & 1 \\
-3 & 2 & 1 & 1 \\
3 & -6 & 1 & 4
\end{array}\right)
$$

Find $P \in M_{4}(\mathbf{Q})$ such that $P^{-1} A P=J$.
Exercise 2. Supose that
(1) $A \in M_{8}(\mathbf{R})$ is a real matrix with the minimal polynomial

$$
\mathrm{m}_{A}(x)=x^{2}(x-2)^{3}
$$

(2) B is a real matrix with the characteristic polynomial

$$
\operatorname{ch}_{B}(x)=(x+2)^{4}(x-5)^{2} .
$$

Find all possible Jordan forms of A and B.
Exercise 3. Give an example of two matrices $A, B \in M_{n}(\mathbf{C})$ such that $\operatorname{ch}_{A}(x)=\operatorname{ch}_{B}(x)$ and $\mathrm{m}_{A}(x)=\mathrm{m}_{B}(x)$, but A and B have different Jordan forms.

Exercise 4. Let $A, B \in M_{n}(\mathbf{C})$. Suppose that

$$
\left(\begin{array}{cc}
A & 0_{n} \\
0_{n} & A
\end{array}\right) \text { and }\left(\begin{array}{cc}
B & 0_{n} \\
0_{n} & B
\end{array}\right) \in M_{2 n}(\mathbf{C})
$$

are similar. Show that A and B are similar.

