10th homework
 Due date: 12/02

Exercise 1. Let $A, B \in M_{n}(F)$. Suppose that the characteristic polynomial of A is given by

$$
\operatorname{ch}_{A}(x)=\left(x-\lambda_{1}\right)^{n_{1}} \cdots\left(x-\lambda_{s}\right)^{n_{s}}
$$

with distinct roots λ_{i}. Assume that A and B have the same characteristic polynomial and the same minimal polynomial and that $n_{i} \leq 3$ for $1 \leq i \leq s$. Show that A is similar to B.

Exercise 2. Let $T: V \rightarrow V$ be a linear transformation with the charateristic polynomial $\mathrm{ch}_{T}(x)=x^{4}+3 x^{2}+x-2$. If V is T-cyclic, show that there exists a basis \mathscr{A} of V such that

$$
[T]_{\mathcal{A}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
2 & 0 & 0 & 0
\end{array}\right)
$$

Exercise 3. For $\alpha \in F$, define

$$
A:=\left(\begin{array}{cccc}
0 & 1 & \alpha & 0 \\
-1 & 2 & 0 & \alpha \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 2
\end{array}\right) .
$$

Let J be the Jordan form of A. Determine J in terms of α and find P such that $P^{-1} A P=J$.

Exercise 4. Let

$$
A=\left(\begin{array}{cccc}
4 & -4 & -11 & 11 \\
3 & -12 & -42 & 42 \\
-2 & 12 & 37 & -34 \\
-1 & 7 & 20 & -17
\end{array}\right)
$$

(1) Show that $\operatorname{ch}_{A}(x)=(x-3)^{4}$.
(2) Determine the Jordan form J of A.
(3) Find an invertible $P \in M_{4}(\mathbf{Q})$ such that $P^{-1} A P=J$.

