1st homework

Due date: $9 / 30$

Exercise 1. Let $v_{1}=(1,2,3)$ and $v_{2}=(1,-1,1)$ be two vectors in the vector space \mathbf{R}^{3} over \mathbf{R}. Determine if $(5,1,9)$ is a linear combination of v_{1} and v_{2} (or equivalently if $(5,1,9)$ belongs to the vector space $\operatorname{span}_{\mathbf{R}}\left\{v_{1}, v_{2}\right\}$.
Exercise 2. Let

$$
S=\left\{x^{3}+x^{2}+x+1, x^{2}+x+1, x+1\right\} \subset \mathbf{R}[x]
$$

be a subset of the vector space $\mathbf{R}[x]$ over \mathbf{R}. Determine if $-x^{3}+2 x^{2}+$ $3 x+3$ and $2 x^{3}-x^{2}+x+3$ are linear combinations of vectors in S. Justify your answer.

Exercise 3. Let V be the set of all functions $f: \mathbf{R} \rightarrow \mathbf{R}$. Then V is a vector space over \mathbf{R} endowed with the usual addition and scalar product between real-valued functions. Let

$$
S=\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}
$$

be the subset of monomials in V. Show that the function $f(x)=\sin x$ is NOT a linear combination of finitely many vectors in S over \mathbf{R}.
Exercise 4. Let V be a vector space over \mathbf{R}. Show that if a subset $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of V is linearly independent over \mathbf{R}, then so is the set $\left\{v_{1}-2 v_{2}, v_{2}-2 v_{3}, \ldots, v_{n-1}-2 v_{n}, v_{n}\right\}$.
Exercise 5. Let $V=\mathbf{R}^{2}$. Define the addition by

$$
\left(x_{1}, x_{2}\right) \boxplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2} y_{2}\right),
$$

and define the scalar product by

$$
\alpha \boxtimes\left(x_{1}, x_{2}\right):=\left(\alpha x_{1}, x_{2}\right) .
$$

Verify if V is a vector space over \mathbf{R} with \boxplus and \odot.
Exercise 6. Let $V=\mathbf{R}^{2}$. Then V is equipped with the usual addition + . Define a scalar product by

$$
\alpha \boxtimes\left(x_{1}, x_{2}\right):=\left(\alpha x_{1},-\alpha x_{2}\right), \quad \alpha, x_{1}, x_{2} \in \mathbf{R} .
$$

Verify if V is a vector space over \mathbf{R} with the usual + and \square.
Exercise 7. Let V be a vector space over \mathbf{R} and let W_{1}, W_{2} and W_{3} be subspaces of V. Suppose that

$$
W_{3} \subset W_{1} \cup W_{2}
$$

Show that either $W_{3} \subset W_{1}$ or $W_{3} \subset W_{2}$.

