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Abstract

A strong edge-coloring of a graph is a function that assigns to each edge a

color such that two edges within distance two apart receive different colors. The

strong chromatic index of a graph is the minimum number of colors used in a

strong edge-coloring. This paper determines strong chromatic indices of cacti,

which are graphs whose blocks are cycles or complete graphs of two vertices.

The proof is by means of jellyfish graphs.

1 Introduction

The coloring problem considered in this article has restrictions on edges within

distance two apart. The distance between two edges e and e′ in a graph is the

minimum k for which there is a sequence e1, e2, . . . , ek of distinct edges such that

e = e1, e
′ = ek, and ei−1 shares an end vertex with ei for 2 ≤ i ≤ k. A strong
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edge-coloring of a graph is a function that assigns to each edge a color such that any

two edges within distance two apart receive different colors. A color class of a strong

edge-coloring is the set of all edges using the same color. A strong k-edge-coloring is

a strong edge-coloring using at most k colors. An induced matching is an edge set in

which two distinct edges are of distance at least two. Finding a strong k-edge-coloring

is equivalent to partitioning the edge set of the graph into k induced matchings. The

strong chromatic index of a graph G, denoted by χ′
s(G), is the minimum k such that

G admits a strong k-edge-coloring.

Strong edge-coloring was first studied by Fouquet and Jolivet [11, 12] for cubic

planar graphs. By a greedy algorithm, it is easy to see that χ′
s(G) ≤ 2∆2−2∆+1 for

any graph G of maximum degree ∆. Fouquet and Jolivet [11] established a Brooks

type upper bound χ′
s(G) ≤ 2∆2 − 2∆, which is not true only for G = C5 as pointed

out by Shiu and Tam [26]. The following conjecture was posed by Erdős and Nešetřil

[8, 9] and revised by Faudree, Gyárfás, Schelp and Tuza [10]:

Conjecture 1. If G is a graph of maximum degree ∆, then χ′
s(G) ≤ ∆2 + ⌊∆

2
⌋2.

For graphs with maximum degree ∆ = 3, Conjecture 1 was verified by Andersen

[1] and by Horák, Qing and Trotter [15] independently. For ∆ = 4, while Conjecture

1 says that χ′
s(G) ≤ 20, Horák [14] obtained χ′

s(G) ≤ 23 and Cranston [7] proved

χ′
s(G) ≤ 22. Molloy and Reed [22] proved that for large ∆ every graph of maximum

degree ∆ has χ′
s(G) ≤ 1.998∆2 using probabilistic method. Mahdian [19] proved

that for a C4-free graph G, χ′
s(G) ≤ (2 + o(1))∆2/ ln∆. Faudree, Gyárfás, Schelp

and Tuza [10] proved that for graphs where all cycle lengths are multiples of four,

χ′
s(G) ≤ ∆2. They mentioned that this result could probably be improved to a linear

function of the maximum degree. Brualdi and Massey [2] improved the upper bound

to χ′
s(G) ≤ αβ for such graphs, where α and β are the maximum degrees of the

respective partitions. Nakprasit [23] proved that if G is bipartite and the maximum

degree of one partite set is at most 2, then χ′
s(G) ≤ 2∆. Chang and Narayanan [6]

proved that χ′
s(G) ≤ 8∆−6 for chordless graphs G. This settles the above question by

Faudree, Gyárfás, Schelp and Tuza [10] in the positive, since graphs with cycle lengths

divisible by 4 are chordless graphs. They also established that χ′
s(G) ≤ 10∆− 10 for

2-degenerate graphs G.

Strong edge-coloring on planar graphs is also extensively studied in the litera-

ture. Faudree, Gyárfás, Schelp and Tuza [10] asked whether χ′
s(G) ≤ 9 if G is cubic

planar. If this upper bound is proved to be true, it would be the best possible.
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Faudree, Gyárfás, Schelp and Tuza [10] used the Four-color theorem to show that

χ′
s(G) ≤ 4∆(G) + 4 for any planar graph G of maximum degree ∆. They also ex-

hibited a planar graph G whose strong chromatic index is 4∆(G) − 4. Their proof

also gives a consequence that χ′
s(G) ≤ 3∆ for planar graphs G of girth at least 7.

Chang, Montassier, Pecher and Raspaud [5] further proved that χ′
s(G) ≤ 2∆− 1 for

planar graphs G with large girth. Strong chromatic index for Halin graphs was first

considered by Shiu, Lam and Tam [25] and then studied in [4, 16, 18, 26]. For trees

G they obtained that χ′
s(G) = σ(G), where

σ(G) := max
uv∈E(G)

(dG(u) + dG(v)− 1) (1)

is an easy lower bound of χ′
s(G), that is,

σ(G) ≤ χ′
s(G) for any graph G. (2)

An edge xy in a graph G is σ-tight if dG(x) + dG(y) − 1 = σ(G). Liao [17] studied

cacti, which are graphs whose blocks are cycles or complete graphs of two vertices.

Notice that cacti are planar graphs and include trees. He established that for a cactus

G, χ′
s(G) = σ(G) if the length of any cycle is a multiple of 6, χ′

s(G) ≤ σ(G) + 1 if

the length of any cycle is even, and χ′
s(G) ≤ ⌊3σ(G)+1

2
⌋ in general. For other results

on strong edge-coloring, see [3, 13, 20, 21, 24, 27].

The purpose of this paper is to determine strong chromatic indices of cacti. The

method is by means of jellyfish graphs to be introduced later. We first establish

a decomposition theorem saying that the strong chromatic index of a graph is the

maximum strong chromatic index of a block-jellyfish, which is a block together with

edges with one vertex in the block and the other outside. Then we determine the

strong chromatic index of a Cn-jellyfish, which is a graph obtained from the cycle Cn

by attaching pendent edges to the cycle vertices.

2 Preliminary

For an integer n ≥ 3, the n-cycle is the graph Cn with vertex set V (Cn) =

{v1, v2, . . . , vn} and edge set E(Cn) = {vivi+1 : 1 ≤ i ≤ n}, where vn+1 = v1. More

generally, when the indices of the vertices of an n-cycle are arithmetic expressions,

they are considered to be taken modulo n.

A cut-vertex of a graph is a vertex whose removing results in a graph with more

components than the old graph. A block of a graph is a maximal connected subgraph
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without cut-vertices in itself. Any two blocks of a graph have at most one vertex

in common, and if they meet at one vertex, then it is a cut-vertex. An end block

is a block with exactly one cut-vertex. A block graph is a graph whose blocks are

complete graphs. A cactus is a graph whose blocks are cycles or complete graphs of

two vertices.

For a graph H, the H-jellyfish H(pv : v ∈ V (H)) is the graph obtained from H

by adding pv new vertices adjacent to v for each vertex v in H. An edge joining a

new vertex to v is called a pendent edge at v. For a block H of a graph G, any vertex

u ∈ V (G) − V (H) is adjacent to at most one vertex v ∈ V (H), and if the vertex v

exists then it is a cut-vertex of G. A block-jellyfish of a graph G is the H-jellyfish H ′

for some block H of G, where the new vertices of H ′ are all vertices of V (G)− V (H)

having exactly one neighbor in V (H). A block-jellyfish is trivial if it is an H-jellyfish

for an end block H which is K2, otherwise it is non-trivial.

Lemma 2. If H is a subgraph of G, then χ′
s(H) ≤ χ′

s(G).

As any three consecutive edges in Cn use different colors in a strong edge-coloring,

the following lemma is an easy consequence of parity checking.

Proposition 3. If n ≥ 3, then χ′
s(Cn) = 5 for n = 5, χ′

s(Cn) = 3 for n is a multiple

of 3 and χ′
s(Cn) = 4 otherwise.

Notice that a trivial block-jellyfish H ′
1 is a star; and if it is not a component, then

it is a subgraph of a non-trivial block-jellyfish H ′
2. By Lemma 2, χ′

s(H
′
1) ≤ χ′

s(H
′
2).

Theorem 4. Suppose G is a connected graph that is not a star. If G has exactly r

non-trivial block-jellyfishes G1, G2, . . . , Gr, then χ′
s(G) = max

1≤i≤r
χ′
s(Gi).

Proof. Since the graphs Gi are subgraphs of G, by Lemma 2, χ′
s(G) ≥ max

1≤i≤r
χ′
s(Gi).

Next, we shall prove by induction on r that χ′
s(G) ≤ max

1≤i≤r
χ′
s(Gi). In the case where

r = 1, G = G1 and so the inequality is clear. Assume r ≥ 2. Suppose the corre-

sponding block of Gi in G is Hi. Then there is some Hi, say H1, which meets exactly

one Hj at a cut-vertex of G. Let G′ be obtained from G by deleting G1 but keeping

those vertices and edges in Gj undeleted. Then the non-trivial block-jellyfishes of

G′ are exactly G2, G3, . . . , Gr. By the induction hypothesis, χ′
s(G

′) ≤ max
2≤i≤r

χ′
s(Gi).

Color G′ with χ′
s(G

′) colors. Since every two edges in E(G1) ∩ E(Gj) are adja-

cent, meeting at the cut-vertex, we may assume that edges in E(G1) ∩ E(Gj) are
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colored by {1, 2, . . . , |E(G1) ∩ E(Gj)|}. On the other hand, since d(e, e′) > 2 for

any e ∈ E(G1) − E(Gj) and e′ ∈ E(G) − E(G1), we can color edges in E(G1) by

{1, 2, . . . , χ′
s(G1)}. Hence, we have colored G by max{χ′

s(G
′), χ′

s(G1)} ≤ max
1≤i≤r

χ′
s(Gi)

colors.

As an easy consequence, we have the following results for block graphs.

Corollary 5. If G is a block graph, then χ′
s(G) = max{|E(H)| : H is a non-trivial

block-jellyfish of G}.

Proof. This follows from Theorem 4 and the fact that any two edges in H are of

distance within two.

Corollary 6. If G is a C3-jellyfish, then χ′
s(G) = |E(G)|.

Proof. This follows from Corollary 5 and the fact that G is the only non-trivial block-

jellyfish of itself.

Lemma 7. If G = H(pv : v ∈ V (H)) is an H-jellyfish such that {v : pv ̸= 0} ⊆ X ∪Y

for two independent sets X and Y , then χ′
s(G) ≤ χ′

s(H) + max{pu + pv : u ∈ X, v ∈
Y, uv ∈ E(H)}.

Proof. Let s = max{pu + pv : u ∈ X, v ∈ Y, uv ∈ E(H)}. For each vertex u ∈ X,

color the pendent edges incident to u by {1, 2, . . . , pu}, and for each vertex v ∈ Y ,

color the pendent edges incident to v by {s − pv + 1, s − pv + 2, . . . , s}. We verify

that the coloring is legal. In fact, if a pendent edge uu′ is within distance two from a

pendent edge vv′, then uv ∈ E(H). The assumption pu+pv ≤ s gives pu < s−pv+1,

so uu′ and vv′ are colored differently. We then use s+1, s+2, . . . , s+χ′
s(H) to color

the edges of H. These give a strong edge-coloring of G and the lemma follows.

Corollary 8. If G is a Cn-jellyfish with even n, then χ′
s(G) ≤ σ(G) + χ′

s(Cn)− 3.

Proof. Let X = {vi : i is odd} and Y = {vi : i is even}. The corollary follows from

Lemma 7 and the fact that max
1≤i≤n

(pi + pi+1) = σ(G)− 3.

Corollary 9. ([17]) If G is a Cn-jellyfish with even n, then χ′
s(G) ≤ σ(G) + 1.

Proof. This follows from Corollary 8 and the fact that χ′
s(Cn) ≤ 4.

Corollary 10. If G is a C4-jellyfish, then χ′
s(G) = σ(G) + 1.
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Proof. By Corollary 9, χ′
s(G) ≤ σ(G) + 1. On the other hand, consider a cycle edge

xy such that dG(x) + dG(y) − 1 = σ(G). Since the cycle edge not incident to x or y

is within distance 2 from the edges incident to x or y, we have χ′
s(G) ≥ σ(G) + 1, so

χ′
s(G) = σ(G) + 1.

Corollary 11. ([17]) If G is a Cn-jellyfish with n a multiple of 6, then χ′
s(G) = σ(G).

Proof. This follows from Corollary 8 and the fact that χ′
s(Cn) = 3.

Corollary 12. Suppose G is a Cn-jellyfish with dG(vj) = 2 for some j. If G ̸= C5,

then χ′
s(G) ≤ σ(G) + 1. If n is a multiple of 3, then χ′

s(G) = σ(G).

Proof. Without loss of generality, we may assume that j = n. Let X = {vi : i ̸= n

and i is odd} and Y = {vi : i ̸= n and i is even}.

Since max
1≤i≤n−1

(pi + pi+1) = σ(G) − 3, by Lemma 7, χ′
s(G) ≤ χ′

s(Cn) + σ(G) − 3.

In the case where n ̸= 5, this and χ′
s(Cn) ≤ 4 together imply that χ′

s(G) ≤ σ(G) + 1.

In the case where n is a multiple of 3, this and χ′
s(Cn) = 3 together imply that

χ′
s(G) ≤ σ(G), so χ′

s(G) = σ(G).

For the case of n = 5, consider the C5-jellyfish H = C5(min{pi, 1} : 1 ≤ i ≤ 5).

Notice that every cycle vertex of H has at most one pendent edge. Then χ′
s(H) ≤ 5,

since we can color the edges of H with 5 colors by coloring the pendent edge at vi

(if any) with the same color as the cycle edge vi+2vi+3, where the indices are taken

modulo 5. Let p′i = pi − min{pi, 1} for 1 ≤ i ≤ 5. Notice that p5 = p′5 = 0 and

max
1≤i≤4

(p′i + p′i+1) ≤ σ(G) − 4, since there is at least one pi ̸= 0. Then G is the H-

jellyfish H(p′i : 1 ≤ i ≤ 5), where the un-presented pu = 0 for all leaves u of H. By

Lemma 7, χ′
s(G) ≤ max

1≤i≤4
(p′i + p′i+1) + χ′

s(H) ≤ σ(G)− 4 + 5 = σ(G) + 1.

3 Strong edge-coloring on cacti

The purpose of this section is to give the strong chromatic indices of cacti. Notice

that a block-jellyfish of a cactus is either a K2-jellyfish or a Cn-jellyfish. The strong

chromatic index of a K2-jellyfish is equal to its number of edges. So we only need

to consider the case of Cn-jellyfish. Now suppose that G is a Cn-jellyfish. Notice

that G = Cn(p1, p2, . . . , pn), where pi = dG(vi) − 2 for 1 ≤ i ≤ n. A rotation of a

Cn-jellyfish G = Cn(p1, p2, . . . , pn) is a Cn-jellyfish G′ = Cn(p
′
1, p

′
2, . . . , p

′
n) with all
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p′i = pi+r for a constant r, where the index in pi+r is taken modulo n. As we have the

values for cycles in Proposition 3, we may only consider the case of σ(G) ≥ 4.

Theorem 13. If G is a Cn-jellyfish of m edges with σ(G) ≥ 4, then χ′
s(G) =

m, if n = 3;

σ(G) + 1, if n = 4;

⌈ m
⌊n/2⌋⌉, otherwise, if n is odd with all dG(vi) = d but (n, d) ̸= (7, 3),

or ⌈ m
⌊n/2⌋⌉ ≥ σ(G) + 1;

σ(G) + 1, otherwise, if (n, d) = (7, 3) with all dG(vi) = d,

or n ̸≡ 0 (mod 3) such that up to rotation

dG(vi) = σ(G)− 1 for i ≡ 1 (mod 3) with 1 ≤ i ≤ 3⌊n
3
⌋ − 2,

or (n, σ(G)) = (10, 4) with dG(vi) = 3 for all odd or all even i;

σ(G), otherwise.

To prove the main theorem, we first establish a sequence of lemmas as follows.

Lemma 14. If G is a Cn-jellyfish graph of m edges, then any color class of a strong

edge-coloring has at most ⌊n/2⌋ edges and ⌈ m
⌊n/2⌋⌉ ≤ χ′

s(G).

Proof. We claim that there are at most ⌊n/2⌋ edges using the same color in a strong

edge-coloring of G. For 1 ≤ i ≤ n, consider the set Ei consisting all edges incident

to vi or vi+1 except the edge vi−1vi. Then for a fixed color c, each Ei contains

at most one edge colored by c. As each edge of G appears in exactly two sets in

E1, E2, . . . , En, there are at most ⌊n/2⌋ edges using the color c. Hence m
⌊n/2⌋ ≤ χ′

s(G)

and so ⌈ m
⌊n/2⌋⌉ ≤ χ′

s(G).

Lemma 15. If n is even or dG(vj) = 2 for some j, then ⌈ m
⌊n/2⌋⌉ ≤ σ(G). If n is

odd and dG(vi) = d for 1 ≤ i ≤ n, then ⌈ m
⌊n/2⌋⌉ = σ(G) for 2 ≤ d ≤ (n + 1)/2,

⌈ m
⌊n/2⌋⌉ = σ(G) + 1 for (n+ 3)/2 ≤ d ≤ n and ⌈ m

⌊n/2⌋⌉ ≥ σ(G) + 2 for d ≥ n+ 1.

Proof. If n is even or dG(vj) = 2 for some j, say j = n, thenm−1 ≤
∑⌊n/2⌋

i=1 (dG(v2i−1)+

dG(v2i) − 2) ≤ ⌊n/2⌋(σ(G) − 1), so m
⌊n/2⌋ ≤ σ(G). If n is odd and dG(vi) = d for

1 ≤ i ≤ n, then ⌈ m
⌊n/2⌋⌉ = 2d − 2 + ⌈2d−2

n−1
⌉ = σ(G) − 1 + ⌈2d−2

n−1
⌉, which is σ(G) for

2 ≤ d ≤ (n + 1)/2, is σ(G) + 1 for (n + 3)/2 ≤ d ≤ n and is at least σ(G) + 2 for

d ≥ n+ 1.
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Lemma 16. If G is a Cn-jellyfish with dG(vi) = d ≥ 3 for 1 ≤ i ≤ n, then

χ′
s(G) =


σ(G) + 1, if n = 4 or (n, d) = (7, 3);

σ(G), if n ≥ 6 is even;

⌈ m
⌊n/2⌋⌉, if n ≥ 3 is odd but (n, d) ̸= (7, 3).

Proof. Case 1. n = 4. In this case, the lemma follows from Corollary 10.

Case 2. (n, d) = (7, 3). In this case, an induced matching has at most 3 edges

by Lemma 14. If χ′
s(G) ≤ 5, then there are at least two color classes containing 2

cycle edges, each of which must be precisely of size 2. Then all color classes contain

at most 13 edges, contradicting to the fact that G has 14 edges. Hence χ′
s(G) ≥ 6.

Figure 1 gives a strong 6-edge-coloring of G, so χ′
s(G) = 6 = σ(G) + 1.

u 3 u 2 u 1 u
u6 u5 u6 u5

4 3

u
1

u
2

u
u

5

u
6

u
4

Figure 1: A strong 6-edge-coloring of G.

Case 3. n ≥ 6 is even. In this case, by Corollary 11, we only need to consider

the case of n ̸≡ 0 (mod 3). For 1 ≤ i ≤ n, let ei = vivi+1 and fi,1, fi,2, . . . , fi,d−2 be the

pendent edges at vi. The lemma follows from the fact that we may partition E(G)

into σ(G) = 2d− 1 induced matchings as follows:

for n ≡ 2 (mod 3),



M1 = {f1,1, e3} ∪ {ei : 6 ≤ i ≤ n, i ≡ 0 (mod 3)},
M2 = {f3,1, e5} ∪ {ei : 6 ≤ i ≤ n, i ≡ 2 (mod 3)},
M3 = {f5,1, e2} ∪ {ei : 6 ≤ i ≤ n, i ≡ 1 (mod 3)},
M4 = {e1, e4} ∪ {fi,1 : 7 ≤ i ≤ n, i ≡ 1 (mod 2)},
M5 = {fi,1 : 2 ≤ i ≤ n, i ≡ 0 (mod 2)};

for n ≡ 1 (mod 3),



M1 = {f1,1, f6,1, e3} ∪ {ei : 6 ≤ i ≤ n, i ≡ 2 (mod 3)},
M2 = {f2,1, f4,1} ∪ {ei : 6 ≤ i ≤ n, i ≡ 0 (mod 3)},
M3 = {f3,1, f5,1} ∪ {ei : 6 ≤ i ≤ n, i ≡ 1 (mod 3)},
M4 = {e1, e4} ∪ {fi,1 : 7 ≤ i ≤ n, i ≡ 1 (mod 2)},
M5 = {e2, e5} ∪ {fi,1 : 7 ≤ i ≤ n, i ≡ 0 (mod 2)};

for 2 ≤ j ≤ d− 2,

{
M2j+2 = {fi,j : 1 ≤ i ≤ n, i ≡ 1 (mod 2)},
M2j+3 = {fi,j : 1 ≤ i ≤ n, i ≡ 0 (mod 2)}.
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Case 4. n ≥ 3 is odd but (n, d) ̸= (7, 3). In this case, ⌊n/2⌋ = (n − 1)/2,

m = n(d − 1) and m
⌊n/2⌋ = 2n(d − 1)/(n − 1). By Lemma 14, χ′

s(G) ≥ ⌈ m
⌊n/2⌋⌉. We

shall show the upper bound by considering two subcases.

Case 4-1. 3 ≤ d ≤ (n + 1)/2. We will show that χ′
s(G) ≤ 2d − 1 and since

2d − 1 < m
⌊n/2⌋ + 1, χ′

s(G) = ⌈ m
⌊n/2⌋⌉. For any integer t and odd q with 1 ≤ q ≤ n/3,

let

I(t, q) = {et+3, et+6, et+9, . . . , et+3q} ∪ {ft+3q+3, ft+3q+5, ft+3q+7, . . . , ft+n+1},

where the indices are taken modulo n and we denote every pendent edge at vi by fi

for simplicity. This is an induced matching containing q cycle edges and (n − 3q)/2

pendent edges. Since 5 ≤ 2d − 1 ≤ n, n is odd and (n, d) ̸= (7, 3), we can write n

as a sum of 2d− 1 odd numbers q1, q2, . . . , q2d−1, each of which is no more than n/3.

This can be done by choosing qi’s such that the gap between the maximum and the

minimum is at most 2. Let Qi =
∑i

j=1 3qj for 0 ≤ i ≤ 2d− 1.

In the case where n is not a multiple of 3, we claim that the induced match-

ings I(Qi−1, qi), for 1 ≤ i ≤ 2d − 1, partition E(G). First, the cycle edges used are

e3, e6, e9, . . . , e3q1 ; e3q1+3, e3q1+6, e3q1+9, . . . , e3q1+3q2 ; . . . ; eQ2d−2+3, eQ2d−2+6, eQ2d−2+9, . . . ,

eQ2d−2+3q2d−1
= e3n, which cover each cycle edge exactly once as n is not a multiple of 3.

Secondly, the pendent edges used, viewing backward, are fn+1, fn−1, fn−3, . . . , f3q1+3;

f3q1+1, f3q1−1, f3q1−3, . . . , f3q1+3q2+3; . . . ; fQ2d−2+1, fQ2d−2−1, fQ2d−2−3, . . . , fQ2d−2+3q2d−1+3

= fn+3, which cover pendent edges at each cycle vertex exactly 1
n

∑2d−1
i=1 (n−3qi)/2 =

d− 2 times.

In the case where n is a multiple of 3, we modify the above arguments as follows.

We may assume that n ≥ 9 as the case for n = 3 follows from Corollary 6. In this

case, we may choose q1, q2, . . . , q2d−1 so that they can be divided into 3 parts, each

summing up to n/3. This can be done by first choosing q1, q2, q3 to be n/3, n/3, n/3,

and then properly shifting 1’s from them to other qi’s. We adopt similar arguments

as above for the 3 parts separately, but consider rather Qi = r +
∑i

j=1 3qj for the

rth part, 1 ≤ r ≤ 3. The induced matchings in part r cover all the n/3 cycle edges

ei with i ≡ r (mod 3), and the pendant edges fr+n+1, fr+n−1, fr+n−3, . . . , fr+3(3n)+3,

with a total number of a multiple of n. Similarly, pendant edges at each cycle vertex

are also covered d− 2 times.

Case 4-2. d > (n + 1)/2. In this case, we partition the edges of G into two

parts: the first part consists of the cycle edges together with (n − 3)/2 pendent

edges at each cycle vertex, and the second part consists of d − (n + 1)/2 pendent

9



edges at each cycle vertex. The first part has m1 = n(n − 1)/2 edges. By Case

4-1, it can be partitioned into n induced matchings. Next, we order the pendant

edges in the second part as h1, h2, . . . , hm−m1 , where hj is a pendant edge at cycle

vertex vi with i ≡ 2j − 1 (mod n). Notice that for any integer t and any integer

r ≤ (n− 1)/2, the set {ht+1, ht+2, . . . ht+r} is an induced matching. Hence the second

part can be partitioned into ⌈ m−m1

(n−1)/2
⌉ induced matchings. Totally, the edges of G can

be partitioned into ⌈ m
(n−1)/2

⌉ as desired.

We now consider the case where dG(vj) = 2 for some vj, say vn. By Corollary

12, χ′
s(G) = σ(G) or σ(G) + 1.

Lemma 17. If n ̸≡ 0 (mod 3) and G is a Cn-jellyfish such that dG(vi) = σ(G) − 1

for i ≡ 1 (mod 3) and 1 ≤ i ≤ 3⌊n/3⌋ − 2, then χ′
s(G) = σ(G) + 1.

Proof. First, the assumption gives that dG(vj) = 2 for j = n or j ̸≡ 1 (mod 3) with

1 ≤ j ≤ 3⌊n/3⌋ − 1. By Corollary 12, χ′
s(G) ≤ σ(G) + 1. Suppose to the contrary

that G had a strong edge-coloring using σ(G) colors. Then for each i ≡ 1 (mod 3)

with 1 ≤ i ≤ 3⌊n/3⌋ − 2, the σ(G) − 3 pendent edges at vi, ei−1, ei, together with

ei−2 (respectively, ei+1) would use all the σ(G) colors. It follows that ei−2 and ei+1

would use the same color. Hence en−1, e2, e5, . . . , e3⌊n/3⌋−1 would all use the same

color. Since n ̸≡ 0 (mod 3), en−1 and e3⌊n/3⌋−1 are two distinct edges within distance

two, which leads to a contradiction.

Lemma 18. If G is a C10-jellyfish such that dG(vi) = σ(G) − 1 = 3 for all odd i,

then χ′
s(G) = σ(G) + 1 = 5.

Proof. First, the assumption gives that dG(vj) = 2 for all even j. By Corollary 12,

χ′
s(G) ≤ σ(G) + 1. Suppose to the contrary that G had a strong edge-coloring using

σ(G) = 4 colors. Then for each odd i, the σ(G)− 3 = 1 pendent edge at vi, ei−1, ei,

together with ei−2 (respectively, ei+1) would use all the σ(G) colors. This gives that

ei−2 and ei+1 use the same color. Since we only had 4 colors for the 10 cycle edges,

there would be one color used for at least 3 edges. But a color should appear in a pair

of edges as shown above. This color would then be used for at least 4 cycle edges,

which is impossible.

Lemma 19. If G is a Cn-jellyfish with σ(G) = 4, then χ′
s(G) = σ(G) except that

χ′
s(G) = σ(G) + 1 when, up to rotation, n ̸≡ 0 (mod 3) such that dG(vi) = 3 for

i ≡ 1 (mod 3) with 1 ≤ i ≤ 3⌊n
3
⌋ − 2 or n = 10 such that dG(vi) = 3 for all odd i.

10



Proof. If n is a multiple of 3, then the lemma follows from Corollary 12. Now assume

that n ̸≡ 0 (mod 3). The exceptional cases follow from Lemmas 17 and 18.

Up to rotation, we may assume that 1 = i1 < i2 < . . . < is are all the indices

for which vir is of degree 3. For 1 ≤ r ≤ s, the path Pr from vir to vir+1 consists of

nr = ir+1− ir cycle edges, where is+1 = n+1. Using this notion, the Cn-jellyfish G is

completely determined by the sequence n1, n2, . . . , ns. Notice that the first exceptional

case is the same as that all nr = 3 except exactly one nr ∈ {2, 4, 5} or exactly two

consecutive nr = 2, and the second exceptional case is the same as that n = 10 and

all nr = 2. We consider cases other than the two exceptional cases. Since the cases

for n = 4, 5 are included in the first exceptional case, and 6 is a multiple of 3, we may

assume n ≥ 7. The aim is to find a strong 4-edge-coloring for G. By adding suitable

pendent edges, we may assume that all nr ∈ {2, 3} and there are two non-consecutive

nr = 2.

If there is at least one nr = 3, then up to rotation we may assume that ns = 2,

and there exists some t ≤ s − 1 such that nr = 3 for all 1 ≤ r ≤ t and nt+1 = 2.

Otherwise, if all nr = 2, then s ≥ 4, s ̸= 5, and we choose t = 0. We define an

edge-coloring on cycle edges first as follows.

@
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3
3 u
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1
1 u

e3
2
2 u

e4
3
3 u

e5
1
1 u . . . u
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2
2 u

e3t−2

3
3 u

e3t−1

1
1 u

e3t
2
2 u���

u

u
v3t+1

en42 u
en−111

�
��u
vn−1 uen−2

2
3

uen−3

4
2

uen−4

3
4

uen−5

2
3

uen−6

4
2

u . . . ue3t+6

3
3

ue3t+5

2
2

ue3t+4

4
4

ue3t+3

3
3

uv3t+3@
@@

e3t+1 4 4

u
e3t+2 1 1

Figure 2: Inner labels are for n ≡ 1 (mod 3) and outer labels are for n ≡ 2 (mod 3).

Notice that in the coloring as shown in Figure 2, the edges in the upper path

e1, e2, e3, . . . , e3t−2, e3t−1, e3t are colored by 3, 1, 2 periodically; the edges in the lower

path e3t+3, e3t+4, e3t+5, . . . , en−3−x, en−2−x, en−1−x are colored by 3, 4, 2 periodically,

where x = (n mod 3). These colors for the cycle edges satisfy the following two

conditions.

(i) Any two distinct cycle edges within distance two receive distinct colors.

(ii) The two cycle edges with distance exactly two from a pendent edge receive a

same color.
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By (ii), the four cycle edges within distance two from a pendent edges use only 3

colors. Hence we may color any pendent edge with the remaining color to form a

strong 4-edge-coloring of G.

Lemma 20. If G is a Cn-jellyfish with σ(G) ≥ 4 and dG(vj) = 2 for some j, then

χ′
s(G) = σ(G) except that χ′

s(G) = σ(G) + 1 when, up to rotation, n ̸≡ 0 (mod 3)

such that dG(vi) = σ(G)− 1 for i ≡ 1 (mod 3) with 1 ≤ i ≤ 3⌊n
3
⌋ − 2 or n = 10 such

that dG(vi) = σ(G)− 1 = 3 for all odd i.

Proof. The exceptional cases follow from Lemmas 17 and 18. We shall prove the

lemma by induction on σ(G). The case of σ(G) = 4 follows from Lemma 19. Now

assume that σ(G) ≥ 5.

A run is a maximal sequence vi, vi+1, . . . , vi+j of cycle vertices in which every

vertex is of degree at least 3. The even-half (respectively, odd-half) of the run is the

vertices vi+r with 0 ≤ r ≤ j and r even (respectively, odd). Notice that an even-

half of a run is always non-empty, while an odd-half is empty if and only if j = 0.

Consider a Cn-jellyfish G′ obtained from G by deleting a pendent edge at each vertex

of exactly one of the even-half or the odd-half of each run. Then σ(G) = σ(G′) + 1

and χ′
s(G) ≤ χ′

s(G
′) + 1 as the deleted edges form an induced matching.

Suppose that G′ is not in the exceptional cases. By the induction hypothesis,

χ′
s(G

′) = σ(G′). Then χ′
s(G) ≤ χ′

s(G
′) + 1 = σ(G′) + 1 = σ(G), so χ′

s(G) = σ(G).

Now we may assume that G′ is in the exceptional cases. If there is a run of length

one in G′ obtained from some run of length not one in G, then we change to delete

the other half of this run in G and obtain a new G′ which is not in the exceptional

cases. Now every run of length one in G′ is obtained from a run of length one in

G, and since G′ is in the exceptional cases but not G, it must be that n = 10 and

dG(vi) = σ(G) − 1 = 4 for all odd i. Then χ′
s(G) = σ(G) = 5 as shown in Figure

3.

u 3 u 1 u 2 u 5 u
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u
4
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3
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u
4

uA
AA
u
5

�
��
u
1

A
AA
u
1

�
��
u
2

A
AA
u
2

�
��
u
3

Figure 3: The C10-jellyfish G with dG(vi) = σ(G)− 1 = 4 for all odd i.
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Having the above lemmas established, we are now ready to prove Theorem 13.

For the case of n = 3, the theorem follows from Corollary 6. For the case of n = 4,

the theorem follows from Corollary 10. Now we may assume that n ≥ 5.

If dG(vj) = 2 for some j, then ⌈ m
⌊n/2⌋⌉ ≤ σ(G) by Lemma 15, so the third case of

the theorem does not happen. The theorem then follows from Lemma 20.

We now consider the case where dG(vi) ≥ 3 for all i. There are two subcases to

be considered depending on the parity of n.

We first consider the subcase where n is even. By Lemma 15, ⌈ m
⌊n/2⌋⌉ ≤ σ(G),

so the third case of the theorem does not happen. We then only need to prove that

χ′
s(G) = σ(G). Let H be the Cn-jellyfish with each cycle vertex vi of degree 3. By

Lemma 16, χ′
s(H) = 5. Then G is obtained fromH by adding pvi = dG(vi)−3 pendent

edges at vi for 1 ≤ i ≤ n. Let X = {vi : 1 ≤ i ≤ n and i odd} and Y = {vi : 1 ≤ i ≤ n

and i even}. Then max{pu + pv : u ∈ X, v ∈ Y, uv ∈ E(H)} = σ(G)− 5. By Lemma

7, χ′
s(G) ≤ χ′

s(H) + max{pu + pv : u ∈ X, v ∈ Y, uv ∈ E(H)} ≤ 5 + σ(G)− 5 = σ(G)

and so χ′
s(G) = σ(G).

Next we consider the second subcase when n is odd. If all cycle edges vivi+1 are

tight, then dG(vi) + dG(vi+1)− 1 = dG(vi+1) + dG(vi+2)− 1 and so dG(vi) = dG(vi+2)

for all i. Since n is odd, all dG(vi) are equal.

Suppose, up to rotation, that vnv1 is a non-tight edge. Consider the Cn-jellyfish

graph G1 obtained from G0 := G by deleting one pendent edge at vi for all even

i. Then σ(G1) = σ(G0) − 1 and G1 has m1 = m − ⌊n/2⌋ edges. Since we can use

one color for the deleted edges, χ′
s(G0) ≤ χ′

s(G1) + 1. Repeating the same process

gives that there is an integer s ≥ 0 and Cn-jellyfish graphs G0, G1, . . . , Gs such that

σ(Gr) ≥ 4, σ(Gr) = σ(G) − r, Gr has mr = m − r⌊n/2⌋ edges, χ′
s(G) ≤ χ′

s(Gr) + r

for 0 ≤ r ≤ s, and either dGs(vj) = 2 for some j or else dGs(vi) is a constant ds for

all i.

For the former case, Gs−1 has the property that all cycle vertices have degree at

least 3. But after deleting (n− 1)/2 pendent edges, the resulting graph Gs has some

cycle vertex vj with degree 2. It then must be the case thatGs is not in the exceptional

cases in Lemma 20. Hence χ′
s(Gs) = σ(Gs) and χ′

s(G) ≤ χ′
s(Gs) + s = σ(Gs) + s =

σ(G). By Lemma 15, ms

⌊n/2⌋ ≤ σ(Gs), so
m

⌊n/2⌋ = ms

⌊n/2⌋ + s ≤ σ(Gs) + s = σ(G). It

follows that G fits the fifth case.

Now we may assume that dGs(vi) is a constant ds for all i. If (n, ds) ̸= (7, 3), then
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by Lemma 16, χ′
s(Gs) = ⌈ ms

⌊n/2⌋⌉ and so χ′
s(G) ≤ χ′

s(Gs) + s = ⌈ ms

⌊n/2⌋⌉ + s = ⌈ m
⌊n/2⌋⌉.

By Lemma 14, χ′
s(G) = ⌈ m

⌊n/2⌋⌉. If (n, ds) = (7, 3), then Gs−1 must be the graph

as in Figure 4 from which we conclude that χ′
s(Gs−1) = σ(Gs−1). Then χ′

s(G) ≤
χ′
s(Gs−1) + s − 1 = σ(Gs−1) + s − 1 = σ(G). Notice that ⌈ ms

⌊n/2⌋⌉ = 5 = σ(Gs) and

⌈ m
⌊n/2⌋⌉ = ⌈ ms

⌊n/2⌋⌉+ s = σ(Gs) + s = σ(G), so G fits the fifth case.
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Figure 4: The graph Gs−1 for (n, ds) = (7, 3).
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