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Abstract

The minimum rank mr(G) (respectively, maximum nullity M(G)) of a graph G

with n vertices is the minimum rank (respectively, maximum nullity) of an n × n real

symmetric matrix A with its off-diagonal entry Aij ≠ 0 whenever ij is an edge of G.

There was an incomplete proof in a previous paper by Nazari and Radpoor [7] that

M(Cr
n) = 2r for the r-th power Cr

n of the n-cycle Cn when r ≤ n
2 . In this paper, we

give a complete proof for this result. We also determine M(T 2) for the square T 2 of a

tree T .
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1 Introduction

Graphs and symmetric matrices are in intimate relation. For an n×n real symmetric matrix

A, it is natural to consider the corresponding graph G = G(A) with

vertex set V (G) = {1,2, . . . , n} and edge set E(G) = {ij∶ i ≠ j,Aij ≠ 0},

where Aij is the ij-entry of A. Conversely, for a graph G with n vertices, there is a class of

n × n real symmetric matrices whose corresponding graph is G. Denote this class as

S(G) = {A ∈Mn×n(R)∶A = A⊺, G(A) = G},

whereMn×n(R) is the set of all n×n matrices over the field of real numbers. The minimum

rank of a graph G is

mr(G) =min{rank(A)∶A ∈ S(G)};

and the maximum nullity of G is

M(G) =max{null(A)∶A ∈ S(G)}.

It is easy to see that

mr(G) +M(G) = ∣V (G)∣.

So a result in mr(G) can be presented as a result in M(G) and vice versa. In this paper we

very often write results in terms of M(G) rather than mr(G).

For a positive integer r, the r-th power of a graph G is the graph Gr whose vertex set

is V (G) and two distinct vertices i and j are adjacent in Gr if their distance in G is at most

r. The maximum nullity of the path Pn of n vertices is 1. de Alba et al. [2] proved that

M(P r
n) =min{r, n − 1}. It is also known that the maximum nullity of cycle Cn of n vertices

is 2 for n ≥ 3. Nazari and Radpoor [7] proved that M(Cr
n) = 2r for r ≤ n

2 by using the

delta Conjecture that δ(G) ≤ M(G) for any graph G, which was posted in [4] but remains

unsolved. In Section 3, we prove this result without using the delta Conjecture. In Section

4, we determine the maximum nullity of the square of a tree.

2 Notation and terminology

For a positive integer n, the set {1,2, . . . , n} is denoted by [n]. The support supp(v) of a
vector v ∈ Rn is the index set of nonzero entries of v.

A zero forcing set of a graph G is a subset F ⊆ V (G) which can force all vertices black

at the end of repeatedly applying the following color changing rule:

• initially, all vertices in F are black and all other vertices are white;
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• if a black vertex x has exactly one white neighbor y, then y is changed to be black.

The zero forcing number Z(G) is the minimum size of a zero forcing set of G. In the above

rule, we write x → y to refer that a black vertex x forces its only white neighbor y to be

black. A chronological list is a chronological record {xi → yi}si=1, where xi → yi is the color

changing at iteration i. A zero forcing process ζ refers to a zero forcing set together with the

corresponding chronological list. For more detail on the parameter Z, see [3]. The following

inequality from [1] is particularly useful in this paper: for any graph G,

M(G) ≤ Z(G). (1)

A path cover of a graph G is a collection P of disjoint induced paths that cover all

vertices of G. The path cover number p(G) of G is the minimum size of a path cover of G.

It is known that M(G) = p(T ) for a tree T [6] and M(G) ≤ p(G) for an outerplanar graph

G [8]. For a positive integer r, the r-th weight of a path cover P is

wr(P) = ∑
π∈P

Z(πr);

and the r-th path cover number of G is

pr(G) =min{wr(P)∶P is a path cover of G}.

Since Z(π) = 1 for any path π, it is the case that p1(G) = p(G).

The clique cover number cc(G) of a graph G is the minimum number of (not necessarily

disjoint) cliques to cover E(G). It is known that cc(G) ≥ mr(G) for all G, even we replace

the field R by any other infinite field, see [5]. The star-clique cover C of a graph G is a set of

stars and cliques that cover all edges of G. The weight of C is w(C) = 2p + q when C consists

of p stars and q cliques. The star-clique number of G is

scc(G) =min{w(C)∶C is a star-clique cover of G}.

By the facts that rank(A +B) ≤ rank(A) + rank(B) and that mr(Ka,b) = 2 for a + b ≥ 3, it
follows that scc(G) ≥ mr(G) for any graph G. The dual star-clique cover number is defined

as scc(G) = ∣V (G)∣ − scc(G). Then, for any graph G,

scc(G) ≤M(G) ≤ Z(G). (2)

Section 4 shows that scc(T 2) =M(T 2) = Z(T 2) = p2(T ) for any tree T .

3 Powers of cycles

Recall that Nazari and Radpoor [7] proved that M(Cr
n) = 2r for r ≤ n

2 by using the delta

Conjecture that δ(G) ≤M(G) for any graphG, which was posted in [4] but remains unsolved.

The purpose of this section is to give a proof of this result without using the delta Conjecture.

The following lemma in [4] is useful.
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Lemma 1. For positive integers k ≤ n, there is a k×n real matrix C whose k×k submatrices

are nonsingular. Also, S is the support of a non-zero vector v with Cv = 0 if and only if

∣S∣ ≥ k + 1.

Theorem 2. If n ≥ 3, then M(Cr
n) = Z(Cr

n) =min{2r, n − 1}.

Proof. If 2r ≥ n − 1, then Cr
n =Kn and so M(Cr

n) = Z(Cr
n) = n − 1.

We now consider the case of 2r ≤ n − 2. Since each set of 2r consecutive vertices of the

cycle form a zero forcing set, M(Cr
n) ≤ Z(Cr

n) ≤ 2r. Next, we shall prove that M(Cr
n) ≥ 2r

by constructing a symmetric matrix A with G(A) = Cr
n and rank(A) ≤ n − 2r.

For k ∈ [n − r], let Ik be the subset {k, k + 1, . . . , k + r} of [n − r], where the addition

is taken module n − r, that is, k + i is k + i − (n − r) if k + i > n − r. By Lemma 1, we may

choose an r × (n − r) real matrix C whose r × r submatrices are nonsingular; also a vector

vk ∈ Rn−r such that Cvk = 0 with supp(vk) = Ik for each k ∈ [n− r]. Next, choose appropriate
coefficients ak such that A = ∑n−2r

i=1 aiviv
⊺

i has the property that G(A) = P r
n−r. This is possible

because we only have to worry about that some nonzero entries vanish under the process of

summation. However, there are only finitely many these conditions and we have infinitely

many choices for the coefficients. Furthermore, we can choose an−2r as small as we want.

Let B be the (n − r) × r matrix whose i-th column is vn−2r+i. Since all vi are in the

null space of C, the space spanned by {v1, v2, . . . , vn−r} has dimension at most n − 2r. Also,
rank(A) ≥ n−2r, since mr(P r

n−r) = n−2r. Hence, there is a matrix X such that AX = B. As

we may choose an−2r as small as we want, X⊺AX can be chosen to contain no zero entries.

Then

D = ( A B

B⊺ X⊺AX
) = ( A B

X⊺A X⊺B
)

has rank n − 2r and G(D) = Cr
n. These prove that M(Cr

n) ≥ 2r and so M(Cr
n) = Z(Cr

n) = 2r
as desired.

4 Squares of trees

The purpose of this section is to determine the maximum nullity of the square of a tree.

Besides a formula in terms of the zero forcing number, a procedure to compute it is also

given.

Theorem 3. If T is a tree, then scc(T 2) =M(T 2) = Z(T 2) = p2(T ).

The theorem follows from (2) that scc(T 2) ≤ M(T 2) ≤ Z(T 2) and the following two

lemmas. The first lemma proves that p2(T ) is an upper bound of Z(T 2) and the second

lemma proves that p2(T ) is a lower bound of scc(T 2).
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Lemma 4. If T is a tree, then Z(T 2) ≤ p2(T ).

Proof. Choose a path cover P of T with w2(P) = p2(T ). A vertex is special if it is of degree

2 and is adjacent to a leaf. We conclude the lemma by proving Claim 1 using an induction

on the number n of vertices of T .

Claim 1. ∣F ∣ ≤ w2(P) for some zero forcing set F of T 2 with a zero forcing process ζ for

which each forcing x→ y has the property that dT (x, y) = 2 whenever y is not special in T .

The claim is clear for n = 1. Now assume that n ≥ 2. For the case when T is a star,

T 2 is Kn. Choose F as a set of all vertices except a leaf of T . The claim follows from that

P consists of paths with minimum total weight n − 1. For the case when T is the n-path

v1, v2, . . . , vn with n ≥ 3, choose F = {v1, v2} which is a zero forcing set of T 2 using the

chronological list {vi → vi+2}n−2i=1 . Then Z(T 2) ≤ 2. As Z(T 2) ≥ δ(T 2) = 2. In fact Z(T 2) = 2.
The claim then follows.

Now we consider the case when T is neither a star nor a path. In this case, there is

always a path π∶ v1, v2, . . . , vr, . . . , vs in P such that v1 is a leaf in T and vr is the only vertex

of π adjacent to an unique vertex v ∉ π in T . Then, T1 ∶= T −π is a tree of at least 3 vertices

and P1 ∶= P − {π} is a path cover of T1. We claim that v is not a special vertex in T1 when

s = 2. Suppose to the contrary that s = 2 but v is of degree 2 and is adjacent to a leaf u in

T1. Suppose u is a vertex of a path π1 ∈ P.

Case 1. π1 = u. Suppose v is in path π2 ∈ P. In this case, we may replace P by the

path cover (P − {π2, π}) ∪ {π2 + π} of weight no more than P and replace π by u.

Case 2. π1 = uv. In this case, we may replace P by the path cover (P−{π1, π})∪{π1+π}
of weight no more than P and replace π by π1 + π.

Case 3. π1 has at leas 3 vertices. In this case, we may replace P by the path cover

(P − {π1, π}) ∪ {u, (π1 − u) + π} of weight no more than P and replace π by u.

So, we may assume that either s ≠ 2 or v is not special. By the induction hypothesis,

∣F1∣ ≤ w2(P1) for some zero forcing set F1 of T 2
1 with a zero forcing process ζ1 for which each

forcing x→ y has the property that dT1(x, y) = 2 whenever y is not special in T1, in particular

when y is v for the case of s = 2.

Let F = F1 ∪ {v1} when s ≤ 2 and let F = F1 ∪ {v1, v2} when s ≥ 3. We shall check that

F is a zero forcing set of T 2 by constructing a zero forcing process corresponding to F as

follows. First, if s ≥ 3, then do forcing vi → vi+2 for 1 ≤ i ≤ r − 2. By now, vr is black unless

s = 2. Next, do all forcing x→ y of ζ1 until v∗ → v. Notice that either vr is black or else s = 2
and so dT1(v∗, v) = 2. In either case, all the forcing of ζ1 mentioned above do not infect the

vertices in π. Then do the forcing v1 → v2 when s = 2 or the forcing vr−1 → vr+1 when s ≥ 3.
Finally, do the remaining forcing of ζ1, follow by the remaining forcing vi → vi+2 alone π for

r ≤ i ≤ s− 2. These give a zero forcing processing corresponding to F with the property that

dT (x, y) = 2 whenever y is not special in T . This completes the proof of Claim 1.
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For a vertex v in T , we use N(v) and N2(v) to denote the set of neighbors of v in T

and T 2 respectively. We use κv to denote the clique induced by N(v) ∪ {v} in T 2, and use

σv to denote the star in T 2 whose center is v and whose set of leaves is N2(v).

In a tree T , a pendent path is a maximal induced path that contains a leaf but no vertex

of degree more than 2. A pendent branch consists of vertex v with degree k + 1 ≥ 3 and k

pendent paths each has an end vertex adjacent to v. For the case when T is not a path, a

pendent branch can be obtained from a breadth first search. Equivalently, consider T rooted

at a chosen vertex r and choose a vertex v of degree k + 1 ≥ 3 farest from r. Then v has k

children and all proper descendants of v form k pendent paths of the pendent branch.

Lemma 5. If T is a tree, then p2(T ) ≤ scc(T 2).

Proof. We shall prove the lemma by induction on the number n of vertices of T . For the

case when T is a path π∶ v1, v2, . . . , vn, the lemma follows from considering the path cover

{π} and the star-clique cover {κvi ∶2 ≤ i ≤ max{2, n − 1}}. Now assume that T is not a path

and so n ≥ 4. Choose a pendent branch at a vertex v of degree k + 1 ≥ 3 with pendent paths

αi∶ vi1, vi2, . . . , visi for 1 ≤ i ≤ k. We consider three cases.

Case 1. One of the following conditions holds: (i) there is some si ≥ 4, (ii) there is

some si = 2, (iii) k = 2 and there is some si = 3 with the other sj = 1. Let T1 be the tree

obtained from T by deleting the leaf visi . By the induction hypothesis, p2(T1) ≤ scc(T 2
1 ).

Choose a path cover P1 of T1 with w2(P1) = p2(T1) and a star-clique cover C1 of T 2
1 with

w(C1) = scc(T 2
1 ). Let π be the path in P1 which contains the leaf visi−1 in T1. If ∣V (π)∣ = 2,

then we change P1 and π according to three subcases:

(i) The other end vertex visi−2 of π is adjacent to visi−3 which is an end vertex of a path π1

in P1. Since Z((π1+π)2) ≤ 2 ≤ Z(π2
1)+Z(π2), we may replace P1 by (P1−{π1, π})∪{π1+π}

and replace π by π1 + π.

(ii) The other end vertex v of π is adjacent to a neighbor of v which is an end vertex of

a path π1 in P1. Replace P1 by (P1 − {π1, π}) ∪ {π1 + π} and replace π by π1 + π.

(iii) The other end vertex vi1 of π is adjacent to v. Let v is in a path π1 in P1. If v is

an end vertex of π1, then replace P1 by (P1 − {π1, π}) ∪ {π1 + π} and replace π by π1 + π. If
v is not an end vertex of π1, then the leaf vj1 is an end vertex of π1. In this case, replace P1
by (P1 − {π1, π}) ∪ {vj1, (π1 − vj1) + π} and replace π by (π1 − vj1) + π.

By now we may assume that ∣V (π)∣ ≠ 2. Then P ∶= (P1−{π})∪{π+visi} is a path cover

of T with w2(P) = w2(P1), since Z((π + visi)2) = Z(π2) = 1 if ∣V (π)∣ = 1 and Z((π + visi)2) =
Z(π2) = 2 if ∣V (π)∣ ≥ 3. Also C ∶= C1∪{κvisi−1

} is a star-clique cover of C with w(C1)+1 = w(C).
Consequently,

p2(T ) ≤ w2(P) = w2(P1) ≤ scc(T 2
1 ) = ∣V (T1)∣ −w(C1) = ∣V (T )∣ −w(C) ≤ scc(T 2).

Case 2. k = 2 and s1 = s2 = 3. Let T1 be the tree obtained from T by deleting α1,

v and α2. By the induction hypothesis, p2(T1) ≤ scc(T 2
1 ). Choose a path cover P1 of T1
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with w2(P1) = p2(T1) and a star-clique cover C1 of T 2
1 with w(C1) = scc(T 2

1 ). Then P ∶=
P1∪{α1+v+α2} is a path cover of T with w2(P) = w2(P1)+2. Also C ∶= C1∪{σv, κv, κv12

, κv22
}

is a star-clique cover of T 2 with w(C1) + 5 = w(C). Consequently,

p2(T ) ≤ w2(P) = w2(P1) + 2 ≤ scc(T 2
1 ) + 2 = ∣V (T1)∣ −w(C1) + 2 = ∣V (T )∣ −w(C) ≤ scc(T 2).

Case 3. One of the following conditions holds: (i) k = 2 with s1 = s2 = 1, (ii) k ≥ 3
with some si say s1 = 1, (iii) k ≥ 3 with all si = 3. Let T1 be the tree obtained from T by

deleting α1. By the induction hypothesis, p2(T1) ≤ scc(T 2
1 ). Choose a path cover P1 of T1

with w2(P1) = p2(T1) and a star-clique cover C1 of T 2
1 with w(C1) = scc(T 2

1 ). We have the

following facts.

(a) We may assume that if σx ∈ C1, then x has degree at leat 3 in T1. For otherwise we

may replace σx by κy for all y ∈ NT1(x) to get a star-clique cover of weight no more

than C1.

(b) We may assume that if x has at least two neighbors y1 and y2 of degree 1 or 2 in T1,

then κx ∈ C1. As the edge y1y2 can be covered only by κx, σy1 or σy2 , this follows from

(a).

(c) Under condition (i), we may assume that κv ∈ C1. This follows from the facts that the

edge vv21 can only be covered by κv or κv21
and that κv covers more edges than κv21

.

(d) Under condition (iii), we may assume that σv ∈ C1. For otherwise κvi1
and κvi2

are in C1
for 2 ≤ i ≤ k and so we may replace κvi1

for 2 ≤ i ≤ k by σv to get a star-clique cover of

weight no more than C1.

Now P ∶= P1 ∪ {α1} is a path cover of T with w2(P) = w2(P1) + Z(α2
1). According

to (a), (b), and (c), κv ∈ C1 in any case. According to (d), σv ∈ C1 under condition (iii).

Under condition (i) or (ii), C ∶= (C1 − {κv in T1}) ∪ {κv in T}) is a clique cover of T with

w(C1) = w(C). Under condition (iii), C ∶= (C1 − {κv and σv in T1}) ∪ {κv and σv in T,κv12
})

is a clique cover of T with w(C1) + 1 = w(C). In any case, w(C1) + ∣V (α1)∣ − Z(α2
1) = w(C).

Hence,

p2(T ) ≤ w2(P) = w2(P1) +Z(α2
1) = p2(T1) +Z(α2

1) ≤ scc(T 2
1 ) +Z(α2

1)

= ∣V (T1)∣ −w(C1) +Z(α2
1) = ∣V (T )∣ −w(C) = scc(T 2).

The proof of the theorem in fact provides an algorithm for computing M(T 2). We

summary it as follows.

Corollary 6. If T is a path, then M(T 2) = 1 when ∣V (T )∣ ≤ 2 and M(T ) = 2 when ∣V (T )∣ ≥ 3.
If T is a tree containing a pendent branch B which has p pendent paths with at most 2 vertices

and q paths of at least 3 vertices, T1 is obtained from T by deleting B and T2 is obtained

from T by replacing B with a path of two vertices, then M(T ) =M(T1) + p + 2q − 2 if q ≥ 2
and M(T ) =M(T2) + p + q − 1 if q ≤ 1.
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