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Abstract

Particle swarm optimization (PSO) is an increasingly popular meta-
heurisitc search algorithm in complex optimization problems. Its popu-
larity is due to its repeated successes in finding an optimum or a near
optimal solution for problems in many applied disciplines. The algorithm
makes no assumption of the function to be optimized and for biomedical
experiments like those presented here, PSO typically finds the optimal
conditions in a few seconds of CPU time using a garden variety laptop.
We apply PSO to find various optimal designs for popular models in real-
life experiments and demonstrate its flexibility via a new website.

Keywords. Approximate design, Ds-optimal design, efficiency, meta-
heuristic algorithms, particle swarm optimization

1 Introduction

Optimal experimental designs are gaining in importance steadily over the last
two decades [1]. A main interest is rising cost in conducting experiments and
an increasing realization in more applied fields that optimal design ideas can
save costs substantially without sacrifice in statistical efficiency. Some real-life
examples are given in Dette and Beidermann [2], Dette et al. [3], Woods et al.
[4], Lopez-Fidalgo et al. [5] and, Gilmour and Trinca [6], where the applications
range from reaction kinetics to medical studies with a time-to-event outcome.
Berger and Wong [7] also provide a catalogue of concrete applications of optimal
designs that ranges from biomedical, social science applications to construction
of groundwater wells in the Los Angeles basin.

In practice, the construction of optimal designs can be problematic. One
reason is that many real-life experiments are studied using nonlinear models,
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which means that the optimal choice of the design depends on both the model
and nominal values of the model parameters [8]. Except for the simplest non-
linear models, formulae for optimal designs are rarely possible and when they
are available, they are oftentimes too complicated or limiting to be useful for
the practitioners. For instance, the formula is invariably derived under a strict
set of assumptions that may not apply to the problem at hand. In particular,
either they are too simplistic or are made on technical grounds that are unre-
alistic for practical applications. As a specific example, the dose interval and
the nonlinear mean function in a dose response study are always assumed in the
construction of an optimal design and it may not be clear at all how the optimal
design changes if the dose interval is changed or if the mean function is slightly
changed.

There are many algorithms for finding optimal designs and most are based
on heuristics or intuition and they do not have a theoretical basis. Only a couple
of algorithms can be proven to converge to the optimal designs and prominent
ones include Fedorov’s and Wynn’s algorithms for generating D and c-optimal
designs for linear models [9, 10]. The former designs are useful for estimating all
parameters in the mean function and the latter targets estimation of a specific
function of the model parameters by minimizing, respectively, the volume of the
confidence ellipsoid and the asymptotic variance of the estimated function of
interest. For the few algorithms that can be shown to converge mathematically,
problems may still exist and they include (i) they take too long to converge,
(ii) they may fail to converge for more complicated setups that they are not
designed for, such as for nonlinear for mixed effects nonlinear models, and (iii)
numerical issues due to rounding problems or the intrinsic nature of sequential
process; for example, many algorithms produce clusters of support points as the
algorithm proceeds and these clusters require periodic and judicious collapsing
into the correct distinct but unknown support points.

In the next section, we propose an exciting, easy and effective algorithm to
generate optimal designs for practitioners. This algorithm has been used for
almost one and a half decades in the computer science and engineering circles,
and exponentially more so in recent years due to its repeated successes in solving
an increasing large class of applied problems. The main reasons for its popularity
are its flexibility, ease of implementation and utility, and general applicability
to solve complex optimization problems (or nearly so) without making specific
assumptions on the objective function. Section 3 presents the methodology
with a few specific applications to find a variety of optimal designs for nonlinear
models in the biomedical arena. Section 4 concludes with a discussion.

2 Particle Swarm Optimization (PSO)

Nature-inspired algorithms have been gaining popularity and dominance in the
last decade both in academia and industrial applications after adjusting for dif-
ferent types of biases [11, 12].One of the most prominent examples of a nature-
inspired algorithm is Particle Swarm Optimization (PSO) based on swarm in-
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telligence. It is a metaheuristic algorithm and comes about from the research in
fish and swarm movement behavior. PSO is intriguing in that they always seem
to be able to quickly solve the optimization problem or provide good quality
solutions for many types of complex optimization problems, even though the
method itself lacks a firm theoretical justification to date. An attempt to ex-
plain its success from a biological viewpoint is given in Garnier, et al. [13] and
an overview of PSO is available in Poli et al. [14]. Common characteristics of
PSO includes its ability to find the optimal solution to a complex problem or
gets close to the optimal solution quickly without requiring any assumption on
the function to be optimized. The PSO generic code is easily available on many
websites such as http://www.swarmintelligence.org/ and or in books on meta-
heuristic methods such as Yang [15]. MATLAB also has a toolbox for running
the PSO code (http://www.mathworks.com/matlabcentral/fileexchange/7506).

PSO begins its search for the optimum with a population of randomly gener-
ated candidate particles that cover the search space. In our context, the particles
are candidate designs or starting designs. The number of such designs to begin
with is the flock size and is user-controlled. Each design or particle has the same
number of support points which is again pre-selected by the user; this number
is typically chosen to be the number of parameters in the model. At any time
point, each particle sequentially adapts its movement toward where it believes
the optimum is and does so with an velocity that depends on its current and
perceived optimum locations (i.e. the self-perceived best position pi) as well the
location that other particles collectively believe is the optimum (i.e. the global
position pg). These movements are elegantly governed by two key equations
with a few parameters that includes random vectors that are responsible for
the stochastic movement of the designs, a cognitive learning parameter and a
social learning parameter. These latter two parameters are time invariant and
not specific to a specific particle. In terms of the animal interpretation as birds
flocking in the sky to seek for food, these parameters measure the self-learning
ability and the sharing information ability of the flock to locate the optimum
(where the food is on the ground). There is also another inertia parameter
that controls the direction of the path it takes next based on knowledge at that
particular time point.

The two basic equations that drives movement for the each particle in the
PSO algorithm in its search to optimize an objective function h() is as follows.
At times t ant t+ 1, the movement of particle i is governed by

vt+1
i = ωtv

t
i + γ1β1(pi − xti) + γ2β2(pg − xti), (1)

and
xt+1
i = xti + vt+1

i . (2)

Here, vti is the particle velocity at time t and xti is the current particle position
at time t. The inertia weight ωt modulates the influence of the former velocity
and can be a constant or a decreasing function with values between 0 and 1.
For example, a linearly decreasing function over the specified time range with
initial value 0.9 and end value 0.4 [16]. Further, the vector pi is the personal
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best (optimal) position as perceived by the ith particle and the vector pg is the
global best (optimal) position as perceived by all particles, up to time t. This
means that up to time t, the personal best for particle i is pbesti = h(pi) and
gbest = h(pg). The two random vectors in the PSO algorithm are β1 and β2 and
their components are usually taken to be independent random variables from
U(0, 1). The constant γ1 is the cognitive learning factor and γ2 is the social
learning factor. These two constants determine how each particle moves toward
its own personal best position or overall global best position. The default values
for these two constants in the PSO codes are γ1 = γ2 = 2 and they really seem
to work well in practice for nearly all problems that we have investigated so far.
Note that in equation (1), the product in the middle two terms is Hadamard
product. The pseudo code for the PSO procedure for a flock of size n is as
follows.

In every iteration, each particle is updated by following two “best” values.
The first one is the best solution (fitness) it has achieved so far. (The fitness
value is also stored.) This personal best value is called pbest. Another “best”
value that is tracked by the particle swarm optimizer is the best value, obtained
so far by any particle in the population. This best value is a global best and
called gbest. When a particle takes part of the population as its topological
neighbors, the best value is a personal best.

In practice, particles’ velocities along each dimension are restricted to a user-
specified maximum value of Vmax. This is to prevent particles searching beyond
the design space which sometimes happens because of accelerations due to the
stochastic elements in the process. The initial velocity for each particle may be
set equal to 0 or be randomly assigned from U(0, 1).

3 Generating Optimal Designs for Biomedical
Studies using PSO

In this section, we apply PSO to find various types of optimal designs for com-
mon models in the biomedical studies. These models may appear small in
terms of number of parameters they have but as noted in Konstantinou el at.
[8], among many others, they can still be difficult to find by traditional numeri-
cal methods or analytically. Here and throughout, our focus in on approximate
designs, which are probability measures defined on the given design space [17].
The worth of a design is measured by its Fisher information matrix formed
by taking the negative of the expectation of the second derivatives of its log
likelihood function with respect to the parameters. Our goal is to minimize an
appropriate convex function of the information matrix. Given a fixed sample
size, a model and a design criterion, an optimal approximate design minimizes
the criterion by choice of (i) the number (k) of points, (ii) where these design
points x1, . . . , xk are and (iii) the mass distribution p1, . . . , pk at the design
points subject to the constraint that the nonnegative weights pi’s sum to unity.
Because each design criterion is convex, we can use results from convex analysis
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and verify the optimality of an approximate design ξ by examining the plot of
its directional derivative over the design space. If the design is not optimal,
using results from convex analysis, one can also ascertain how close the design
is to the optimum without knowing the latter by means of an efficiency lower
bound. Details can be found in standard design monographs such as Berger and
Wong [7], Fedorov [9] and Silvey [18].

Our experience is that PSO can also find optimal designs for more compli-
cated models just as efficient. To date we had used PSO and successfully found
optimal designs for experiments up to 8 factors for a mixture model, nonlinear
models up to 6 parameters and also for more involved design criteria, such as a
minimax type of optimality criterion. We discuss these “larger” models further
in the last section.

The PSO code is initiated as follows. The user first selects the flock size,
the number of iterations desired and parameters for the design problem, such as
the limits of the design space and the nominal values of the model parameters
for the particular problem at hand. The rest of the PSO parameters like the
inertia, cognitive and social learning parameters are all set to their default
values. Consequently, we only have to fuss with the flock size and the number
of iterations. This simplifies the process and is an appealing feature of PSO.
The search for the optimal design by PSO begins with a randomly generated
flock of size specified by the user. These designs all have the same fixed number
of points, k equal to the number of parameters in the mean response function.
When the algorithm is run, the k-point optimal is usually found very quickly.
When the design optimality is convex, which is true for all our examples, the
generated design can be verified using an equivalence theorem derived from the
directional derivative.

If the above strategy fails to produce the optimal design, meaning that re-
peated searches by PSO with different number of iterations and different flock
sizes produced a design that did not meet the equivalence theorem conditions,
we continue the search to all designs with k + 1 points. Our experience is that
such a strategy always produce a locally optimal design and we only need to
search among designs with k + j points where j is usually 1 or 2. For Bayesian
optimal designs, j can be much larger than 2 especially if the prior distribution
is diffuse. On the other hand, if we have over-specified the number of support
points required by the optimal design, then PSO will report an optimal design
with some identical points or some points with extremely small weights. The
masses at these identical points are then summed to obtain the optimal design.
Such situations arise when the optimal design has a singular information ma-
trix and an example of such a case is provided below when we want to find the
locally optimal design for estimating the area under curve in the 3-parameter
compartmental model.

We have set up a website at http://www.math.ntu.edu.tw/∼optdesign/ with
examples discussed in this paper so that the reader can verify our results and ap-
preciate how PSO works in practice. Many of the codes can be readily changed
to solve another problem since only the information matrix and the criterion
need to be changed while leaving much of the rest of the code intact. For exam-
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ple, the first author took about 15 minutes to re-code the PSO code for finding
the c-optimal design for estimating the area under the curve in the compart-
mental model to one for estimating the two model parameters in the survival
model, exclusive of time to read the paper by Konstantinou el at. [8]. Our
website has a swarm movement plot that shows whether the particles visually
converge to a single location. However this plot sometimes can be misleading
because of the default values we simply employed for the other parameters in
the PSO algorithm. To obtain a more accurate picture of the swarm movement
and its convergence, other PSO parameters will have to be properly fine-tuned.
However, we do not think it is worth the trouble as the plot is only a visual guide
whether the PSO-generated design is truly optimal or not. A more definitive
way to confirm optimality is via an equivalence theorem by examining prop-
erties of the directional derivative of the convex functional evaluated at the
PSO-generated design. For this purpose, we also provide an ‘equivalence’ plot
to verify optimality of the PSO-generated design.

The instructions for downloading the MATLAB P-codes are available on
our website. After the specific code for a particular problem is downloaded into
the reader’s computer and activated, the software provides a window for the
reader to input the necessary design parameters for the problem. These typically
include the design interval and the nominal values for the model parameters. For
the PSO operation, at least two inputs are needed: the flock size and the number
of iterations. Sometimes, for more complicated problems such as minimax design
problems, additional PSO parameters will be required to be specified but for
the most part, we minimize the need to change the default values that come
with the PSO codes. Upon hitting the button ‘run’, PSO finds the optimal
design iteratively and stops when the maximum number of iterations allowed
is reached. Typically, one will notice PSO gets to the vicinity of the optimum
quickly after a few iterations and spends the rest of the time converging to it
and making sure the support points and weights all agree to 5 or 6 decimal
places. By hitting the button ‘Swarm plot’ on the interface window we observe
the swarm in action and whether it converges or not. Note that this plot is
usually a 2-dimensional plot and sometimes a 3-dimensional plot, so not all
support points of the PSO-generated design are displayed in the swarm plot.
There is an additional button that says ‘Equivalence Plot’, and that shows the
plot of the directional derivative of the PSO-generated design. If PSO finds the
optimum, the shape of the graph should exhibit properties of an optimal design
discussed in the context of the equivalence theorem in Section 1. In each case,
the CPU time required to generate the design is also reported in the interface
window. We invite the reader to download the P-code into their own computer
and use their MATLAB software to view demonstrations on how PSO works
for some of these applications and verify the results claimed in the next section.
Figures generated from the interface can be saved as eps files. Because of the
stochastic nature of the algorithm, the numerical results from the MATLAB P
codes and the reported CPU times in this paper will not be identical. All CPU
times reported in the paper were obtained using a laptop equipped with an Intel
i5 2520M, 2.5GHz. 8GB RAM, Windows 7 professional operating system and
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Matlab version 2010b.
In what is to follow, we present different types of optimal designs found by

PSO for the following models: (i) a 3-parameter compartmental models used
in pharmacokinetics, (ii) 2 and 3-parameter logistic models for studying binary
responses, (iii) a double exponential model for studying tumor regrowth rate
and (iv) a 2-parameter survival model. These models are selected to facilitate
comparisons with known reported results from the literature. The design crite-
ria are D or Ds or c-optimality but as we discuss in the last section, we have also
applied PSO successfully to generate optimal designs under more complicated
design criteria and optimization problems that involve a hundred dimensions or
more. We provide a bit more technical details and discuss impact of choices of
flock size and number of iterations for the first example to show some character-
istics of PSO. Similar pattern of observations also apply to the other examples.

3.1 Locally optimal designs for compartmental models

Compartmental models are commonly used to model drug movement through
the body. They are not limited to pharmaceutical applications; for instance,
the 3-parameter model described below was also used by Fresen [19] in veteri-
nary science to model the effect of theophylline on horses and the 2-parameter
model is used to study homogeneous chemical reactions [20, 21]. For space
consideration, we focus on the 3-parameter model in this paper.

Let θ = (θ1, θ2, θ3)T be the vector of model parameters for the 3-parameter
compartmental model and let θ0 = (θ01, θ

0
2, θ

0
3)T be the nominal values for θ for

the compartmental model given by

η(x, θ) = θ3{exp(−θ2x)− exp(−θ1x)} ≈ η(x, θ0) + [
∂η(x, θ)

∂θ
|θ0 ]T (θ − θ0)

with θ2 > θ1 > 0 and θ3 > 0. A direct calculation shows the gradient of the
approximated mean function at the point x is

fT (x, θ0) =(
∂η(x, θ)

∂θ1
,
∂η(x, θ)

∂θ2
,
∂η(x, θ)

∂θ3
)|θ0 ,

with

∂η(x, θ)

∂θ1
=xθ3exp(−θ1x)

∂η(x, θ)

∂θ2
=− xθ3exp(−θ2x)

∂η(x, θ)

∂θ3
=exp(−θ2x)− exp(−θ1x).

When the sample size is fixed and the design ξ takes independent observa-
tions at x1, . . . , xn, the total information matrix is proportional to M(ξ) =∑
i

f(xi, θ
0)fT (xi, θ

0). If there are replications, we use weights p1, . . . , pk to rep-

resent the proportions of observations at these points and the information matrix
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becomes
∑
i

pif(xi, θ
0)fT (xi, θ

0), apart from an unimportant multiplicative con-

stant. For D-optimality, the objective function is to maximize log(det(M(ξ)),
or equivalently, minimize the convex functional -log(det(M(ξ))) by choice of a
design. Here and elsewhere, we have for simplicity, suppressed the dependence
of the information matrix on the vector of model parameters.

To implement PSO to find locally optimal design for the 3-parameter com-
partment model, we assumed for comparison purposes, we have the same dose
interval and same set of nominal parameters used in Atkinson, Donev and To-
bias’s book [22] with θ01 = 0.05884, θ02 = 4.298 and θ03 = 21.8. These values
were obtained from the least square estimates of the parameters from Fresen’s
dataset [19].

As a first attempt, we used 100 iterations and a flock size of 100 particles
each with 3 support points in the PSO algorithm to find the locally D-optimal
design for this compartmental model. This is a 5 dimension optimization prob-
lem to find the best choices of x1, x2, x3, p1, p2, where 0 < x1 < x2 < x3 < 30,
0 < p1 < 1, 0 < p2 < 1,0 < p3 = 1 − p1 − p2. The PSO-generated design
was equally supported at 0.2288, 1.3886 and 18.4168 and it coincides with the
locally D-optimal design in Atkinson, Donev and Tobias’s book [22] on page
264. The equivalence plot confirms the optimality of the design over all designs
on the designated dose interval and we do not need to search further. The CPU
time was 0.408 seconds and if we had used just 50 particles and 50 iterations,
we would also have obtained the same design in 0.381 seconds. In both cases,
the swarm plot almost converged and the ‘equivalence’ plot confirms optimal-
ity. Interestingly, if had used 8 particles and 50 iterations, the PSO took 0.308
seconds to generate a design supported at 0.2305, 1.4197 and 18.8277 with mass
distribution at these points equal to 0.3687, 0.3109 and 0.3204 respectively. The
swarm converged but the plot shows the PSO-generated design is not optimal,
suggesting that more particles are required and the swarm plot can be mis-
leading. Even with 1000 iterations and 8 particles, the optimal design is still
not found. A reason for this is that there was simply not enough starting de-
signs (particles) to cover the design space adequately to bring about an effective
search.

Three common properties a drug are time to maximum concentration in the
target compartment, time to maximum concentration and the average time it
spends inside the compartment. We discussed only the latter two objective for
space consideration because finding optimal design for the first objective can
be carried out in a similar way. The locally c-optimal design for estimating the
time to max concentration of a drug can be found by integration directly from
the model. This time as a function of the model parameters is

g(θ) =
logθ1 − logθ2
θ1 − θ2

.

Our goal then is to choose a design to minimize the asymptotic variance of the
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estimated time given by

[
∂g(x, θ)

∂θT
]M(ξ)−

∂g(x, θ)

∂θ
.

Here ∂g(x,θ)
∂θT

= (a/θ1−b)/a2, (b−a/θ2)/a2, 0) where a = θ1−θ2, b = log θ1−log θ2
and M(ξ)− is a generalized inverse of the information matrix. Using the same
set of nominal values of the parameters, we use PSO to minimize the variance
of g(θ̂) in a similar way as before. In our case here, we started with two points
implying that we sought to minimize by choice of (x1, x2, p1), 0 < x1 < x2 < 30,
0 < p1 < 1, p2 = 1− p1.

The locally optimal design for estimating the time to maximum concentra-
tion is a c-optimal design with only 2 support points, which means that its
information matrix is singular because the matrix is now a sum of two rank-one
matrices. To get around having to find the inverse of singular information ma-
trix M(ξ), we followed convention and added a small multiple to the identity
matrix and worked with the invertible matrix

Mε(ξ) = M(ξ) + εI3.

We implemented PSO to find the optimal values of x1, x2, p1 subject to 0 <
x1 < x2 < 10 and 0 < p1 < 1 with p2 = 1 − p1. The PSO parameters we used
were ε = 10−6 and 200 particles all with k = 2 points. Expecting a singular
information matrix for the optimal design, we allowed for a larger number of
iterations and after 1000 iterations, PSO generated a two-point design supported
at 0.1793 and 3.5658 with weight 0.3938 at the latter point. This optimal design
also agrees with the c-optimal design reported in Atkinson, Donev and Tobias’s
book [22] on page 264.

A similar procedure is used to find the optimal design for estimating the
time the drug spends inside the compartment. A direct calculation shows this
function is simply 1/θ1−1/θ2. Proceeding as before, we applied PSO to minimize
the asymptotic variance of the estimated AUC. Setting k = 2 and using 100
particles and 1000 iterations, PSO took 6.185 seconds to generate a two-point
design supported at 0.2326 and 17.6339 with mass 0.0135 at the smaller point.
This design also agreed with the optimal design in Atkinson, Donev and Tobias’s
book [22] on page 264.

It is interesting to observe what happens if we had used starting designs
all with k = 3 points. the PSO-generated design obtained using 200 particles
and 500 iterations was supported at 0.2337, 17.6269 and 17.7176 with mass
distribution at these points equal to 0.0135, 0.8983 and 0.0882. Increasing the
number of iterations to 1000 results in a design support at 0.2332, 17.6336
and 17.6626 with mass distribution at these points equal to 0.0135, 0.9535 and
0.03296. These results are consistent with the expectation that a longer iteration
and/or more particle usually produces a higher quality solution. It also shows
a very nice feature of PSO in that when we over-specify the number of support
points the optimal design has, PSO can also automatically find the optimal
design directly; in the above case, the 3 points found above get increasingly
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closer to 2 points as more iterations are used, leaving the mass at the smaller
point unchanged.

3.2 Locally Optimal Designs for the simple and quadratic
logistic models

For modeling binary responses, logistic models are among the most popular be-
cause of their simplicity and ease of interpretation. Frequently, we have simple
logistic models with two parameters and sometimes quadratic logistic models
with three parameters. We consider locally D and Ds-optimal designs for esti-
mating all or a user-selected subset of the model parameters. Probably the first
description of the locally D-optimal design for the simple logistic model was
given in a doctoral thesis [23] for the prototype interval [−1, 1] and reported in
Silvey [18]. The formula is complicated for a relatively simple model. When we
ran PSO to compare results, we were unable to verify Ford’s results. A corrected
formula for the locally D-optimal design on an arbitrary interval was given in
Sebastiani and Settimi [24] and we were able to verify the results there using
the MATLAB P-code available on the website.

Quadratic logistic models are sometimes employed to explore possible curva-
ture in the model or for estimating an interesting characteristic of an agent in a
dose response study. For example, in radiology and radiotherapy, there is often
interest in estimating the ratio of the coefficients associated with the linear and
quadratic terms in the quadratic logistic model [25] Selected locally c-optimal
designs for the quadratic logistic model were found theoretically in Fornius and
Nyquist [26]after re-parameterizing the model in the following way using their
notation:

log
Ey

1− Ey
= α+ β(x− µ)2.

Here y is the binary response taking on values 0 or 1 with certain probabilities at
dose x. We provide on our website PSO codes for generating locally D-optimal
design on an arbitrary interval and as usual, we began our search for the locally
D-optimal design among all 3- point designs first. As an example, suppose the
design interval is [−3, 1] and the nominal values for the 3 parameters are α = 2,
β = 3 and µ = 0. With a flock size of 128 and the number of iterations set
at 150, the PSO-generated design took 6.623 seconds to find a design equally
supported at −0.7270, 0 and 0.7270. The directional derivative plot confirms
the D-optimality of this design. If fewer number of iterations were used, say 50
iterations, the pattern of the optimal design will also emerge quickly and clearly,
except that the weights are only approximately equal and the extreme support
points are less symmetric about 0. PSO took 3.104 seconds to produce the design
and also reports the design has an efficiency of 99.98%. Interestingly, when the
maximum probability of response is high, there are 4-point locally D-optimal
design. For instance suppose the design interval is [−1, 1] and the nominal
values for the 3 parameters are α = 3, β = −5 and µ = 0. With a flock size
of 256 and the number of iterations set at 200, the PSO-generated design took
18.317 seconds to find a symmetric design supported at−0.9217,−0.5921, 0.5921
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Figure 1: The plot of the directional derivative of the D-optimal criterion
for the PSO-generated 4-point design for the quadratic logistic model when
(α0, β0, µ0) = (3,−5, 0).

and 0.92170. The weights at −0.9217 and at −0.5921 are 0.2966 and 0.2034,
respectively. As always here and elsewhere, in order to ensure a higher chance
that PSO will generate the optimal design, we report flock size and number
of iterations larger than are usually necessary. Frequently, smaller flock size
and smaller number of iterations will suffice which mean shorter CPU time can
usually also produce the optimal design. Figure 1 is obtained from the P-code
and it shows the plot of the directional derivative of the D-optimal criterion for
this PSO-generated 4-point design for the quadratic logistic model. The plot is
bounded above by 0 throughout the design interval with equality at the support
points of the PSO-generated design and so the figure confirms its D-optimality.

Oftentimes in practice, certain parameters are more important or more bio-
logically meaningful than others. For example, in the Michaelis-Menten model,
the Michaelis-Menten constant is clearly more interesting than the other pa-
rameter and so more resources should be used for estimating the more interest-
ing parameter. Optimal designs for estimating selected model parameters are
called Ds-optimal designs and they are usually more involved than D-optimality
[20, 27] One partitions the information matrix appropriately and minimizes only
the determinant of the covariance matrix corresponding to the selected param-
eters of interest. For example, suppose we are interested to make inference on
the last two parameters in the above compartmental model, i.e. θ2 and θ3. The
optimal design that provides the best inference for this purpose is the design ξ∗

that satisfies

ξ∗ = arg min
ξ
|M22(ξ)−M21(ξ)M+

11(ξ)M12(ξ)| = arg max
ξ
|M(ξ)/|M11(ξ)|.

Here M11(ξ) is the top left part or the (1, 1) element of the appropriately block
partitioned 2× 2 matrix M , M+

11(ξ) is the Moore-Penrose inverse of the matrix
M11(ξ) with similar interpretations for the submatrices M21(ξ) and M12(xi).
The resulting design ξ∗ is called a Ds-optimal design with the subscript s stand-
ing for subset (of the models).

We implemented PSO codes in a few lines of codes for finding locally Ds-
optimal design on the website. For example, the PSO-generated Ds-optimal
design for estimating both β and µ only was found to be unequally supported at
1, 1.2126 and 1.5725 with mass distribution at these points equal to 0.1995, 0.3166
and 0.4839. The dose interval was arbitrarily set to [1, 4], the nominal values
for the 3 parameters were α = −2, β = 4 and µ = 0 and PSO took 3.1 seconds
to locate the above design among all 3-point designs using a flock size of 64
and 100 iterations. This design has at least 99.99% efficiency even though the
directional derivative plot suggests optimality. If we had used only 25 iterations
with everything else the same as before, the PSO-generated design found in

11



Table 1: Locally D-optimal designs for estimating the the three parameters in
the quadratic logistic model for different nominal values and different design
intervals.

(α0, β0, µ0) Design space Locally D-optimal designs

(0,−1, 0) [−1, 1]

(
−1.0000 0.0000 1.0000
0.3333 0.3333 0.3333

)
(0,−1, 0) [−2, 2]

(
−1.4073 0.0000 1.4073
0.3333 0.3333 0.3333

)
(3,−1, 0) [−1, 1]

(
−1.0000 0.0000 1.0000
0.3333 0.3333 0.3333

)
(3,−1, 0) [−2, 2]

(
−2.0000 −1.2506 1.2506 2.0000

0.3061 0.1939 0.1939 0.3061

)
(3,−1, 0) [−4, 4]

(
−2.0609 −1.3239 1.3239 2.0609

0.2966 0.2034 0.2034 0.2966

)

1.310 seconds still had an efficiency at least equal to 87.41%. In this case, of
course the directional derivative plot clearly shows that the generated design is
not optimal. Additional locally D-optimal designs and locally and Ds-optimal
designs for estimating the two parameters β and µ in the quadratic logistic
regression model are given in Tables 1 and 2.

There are additional interesting design questions for the quadratic model
that a c-optimal can be useful. Quadratic logistic models are sometimes em-
ployed to explore possible curvature in the model or for estimating an interesting
characteristic of an agent in a dose response study. In the former case estimat-
ing the coefficient associated with the quadratic term provides an indication of
curvature presence in the the model. An example of an interesting quantity to
estimate in radiology and radiotherapy is the ratio of the coefficients associated
with the linear and quadratic terms in the quadratic logistic model [25]. PSO
codes can also be implemented directly to find these c-optimal designs.

3.3 Locally optimal designs for a double exponential model

Double-exponential regrowth model was developed by Demidenko [?] to describe
the dynamics of post-irradiated tumors based on the two-compartment model.
One may categorize tumor cells as proliferating or quiescent and under appro-
priate assumptions, the natural logarithm of the tumor volume of the two kinds
of cells may be expressed as

yi = α+ ln[βeνti + (1− β)e−φti ] + εi,

where εi ∼ N(0, σ2). After linearizing the model by a Taylor’s first order
expansion of the mean function, the gradient vector is

f(t, θ) = (1,
eνt − eφt

βeνt + (1− β)e−φt
,

βteνt

βeνt + (1− β)e−φt
,
−(1− β)te−φt

βeνt + (1− β)e−φt
)T ,
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Table 2: Locally Ds-optimal designs for estimating the two parameters β and µ
in the quadratic logistic model for different nominal values and different design
intervals.

(α0, β0, µ0) Design space Locally Ds-optimal designs for estimating β and µ

(0,−1, 0) [−1, 1]

(
−1.0000 0.0000 1.0000
0.3423 0.3153 0.3423

)
(0,−1, 0) [−2, 2]

(
−1.5449 0.0000 1.5449
0.3779 0.2442 0.3779

)
(3,−1, 0) [−1, 1]

(
−1.0000 0.0000 1.0000
0.3042 0.3916 0.3042

)
(3,−1, 0) [−2, 2]

(
−2.0000 −1.0516 1.0516 2.0000

0.2963 0.2037 0.2037 0.2963

)
(3,−1, 0) [−4, 4]

(
−2.1428 −1.1867 1.867 2.1428

0.3063 0.1937 0.1937 0.3063

)

where θ = (α, β, ν, φ)T is the vector of model parameters. To find the locally D-
optimal design, we assume θ0 is the vector of nominal values for θ and maximize
det(M(ξ)).

Li and Balakrishnan [28] had shown that det(M(ξ) depends only on β0 and
ν0 +φ0, which implies that only two nominal values are required to generate the
locally D-optimal design, i.e. a nominal value for β and a nominal value for the
sum of the two parameters ν and φ. Proceeding as before, PSO readily generated
locally D-optimal designs that matched those in Li and Balakrishnan [28]. Some
of these locally D-optimal designs for selected nominal parameter settings are
given below. PSO codes for generating the locally D-optimal designs can be
downloaded from the cited website and the reader can run and verify directly
the above claimed results. For instance, suppose we used the default values in
the code, namely set β = ν + φ = 0.2 and the interval is [0, 10]. Then the PSO
code with 100 particles and 100 iterations produced in 1.041 seconds the locally
D-optimal design equally supported at 0, 2.660, 6.707 and 10 reported on the
first line in Table 3 in Li and Balakrishnan [28]. Likewise, the same flock size
and same number of iterations will also produce in 1.085 seconds the optimal
design in the last row of their Table where β = 0.8 and ν + φ = 1. Other cases
including the case for verifying the c-optimal designs reported in their paper
can be similarly verified.

3.4 Locally optimal designs for a survival model

Konstantinou et al. [8] investigated a two-parameter exponential model with
type I right censored data, where all individuals entered the study at the same
time and stayed until time c or until failure, whichever was earlier. Right-
censoring occurs when survival times are greater than c. Let t1, ..., tn be the
observed values for n subjects and xi ∈ χ be the experimental condition at
which the ith observation was taken. The design space could be a dose interval
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or the set {0, 1} representing two treatment conditions, say treated or not.
The maximum time for observing outcomes in the study is c = 30 so that all
observations are right censored if the outcome is not observed by that time.
They used an exponential regression model with probability density function
f(ti) and a survival function S(ti) given respectively by

f(ti) = eα+βxi exp(−tieα+βxi)

and
S(ti) = exp(−tieα+βxi).

Without loss of generality, we assumed that the first k observations were
failure times and rest n−k observations were right censored. A direct calculation
shows when all observations are independent, the log-likelihood is

l(α, β, x1, ..., xn) = log{
k∏
i=1

f(ti)

n∏
i=k+1

S(ti)} =

k∑
i=1

(α+βxi)−
n∑

i=k+1

ti exp(α+βxi).

It follows that the information matrix using design ξ is

M(ξ, α, β) =

n∑
1

pi(1− exp(−ceα+βxi))

[
1 xi
xi x2i

]
.

The information matrix M(ξ) depends on unknown parameters α and β
because the model is nonlinear. Four sets of nominal value were used to find
the locally D-optimal design, which is always equally supported at two points.
Using 20 particles and 50 iterations, PSO was able to find the locally D-optimal
designs as claimed in their paper.

In practice, the parameter β in the model always has a clear biological in-
terpretations and so it is often of interest. If we have a dose response study, β
measures the effect of increasing dose on the response and if we have two treat-
ment conditions, β represents the effect on the hazard of death when say the
new treatment is compared with the placebo condition. The locally c-optimal
design for estimating β is the design that minimizes the asymptotic variance of
its estimate: [

0 1
]
M−(ξ)

[
0
1

]
.

To minimize this variance, we resort to a c-optimal design. For this two-
parameter model, it can be shown that the c-optimal design is always supported
at 0 and 1 but with unequal weights that depend on the nominal values. Using
20 particles and 50 iterations, our PSO code can find and verify all the c-optimal
designs for the four sets of nominal values used in Konstantinou et al. [8] and
these weights are shown in Table 3.
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Table 3: Weights of selected locally c-optimal designs for the Survival Model.

Nominal values p1 p2
α0 = −2.163, β0 = −0.1 0.498 0.502
α0 = −2.163, β0 = −0.405 0.491 0.509
α0 = −2.163, β0 = −1.526 0.425 0.575
α0 = −2.163, β0 = −2.623 0.324 0.676

4 Discussion

We discussed using PSO to find locally D, Ds and c-optimal designs for compart-
mental models, logistic models, a double exponential model useful for monitoring
tumor regrowth and estimating parameters in a survival model. The computa-
tional experience we had with these and many other problems we had looked
at were similar to what is reported in the literature. First, many parameters in
the PSO did not seem to matter much; following convention, we used default
parameters in the PSO algorithm in all our examples. Interestingly, our expe-
rience also supports what is reported in the literature that setting γ1 = γ2 = 2
seemed to be the most efficient choice; other values tended to take a longer time
for the swarm to converge, if it did at all. The only two parameters we changed
were number of iterations and flock size. For optimal designs with a singular in-
formation matrix or with Bayesian optimal designs (not reported here), a larger
number of iterations and a larger flock size are usually required for convergence.

In general, PSO generates the optimal designs very quickly for all our ex-
amples in this paper and elsewhere compared with our experiences with other
algorithms. The CPU time for generating each optimal design each time for
the same setting is variable because of the stochastic nature of the algorithm.
Convergence for the PSO was defined as when the design criterion value does
not change by more than 10−7 deviation from the known optimum value. Table
4 below reports the CPU times for PSO to generate the various optimal designs
averaged over 30 replications, along with their standard deviations.

From Table 4, we observe that on average, less than 0.3 second in CPU time
was required to find the locally D-optimal designs and a longer time is required
to generate c-optimal designs with a singular information matrix. In the latter
case, CPU time required is generally still short and only required less than 10
seconds to find the locally c-optimal designs for estimating time to maximum
concentration or the area under the curve in the 3-parameter compartmental
model. Not surprisingly, a larger number of particles to cover a larger area of
search space to begin with will require a longer time to find the optimal designs,
but the increase in time is quite negligible for all our examples. We note that
the standard deviations of the CPU times for PSO to generate the design with
20 particles are usually larger than those when a large number of particles is
used. This is because the smaller number of starting designs (particles) were
not enough to cover the design space adequately and in a consistent manner,
and so more variability in the search capability.
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Table 4: CPU times in seconds (standard deviations) required by PSO to gen-
erate the various locally optimal designs averaged over 30 replications.

Particle D-optimal design for AUC-optimal design for Time-To-Max Conc-optimal
number compartmental model compartmental model design for compartmental model

20 1.477 (4.005) 4.514 (2.455) 6.511 (2.871)
40 0.131 (0.027) 4.796 (3.822) 6.012 (1.808)
60 0.146 (0.032) 6.026 (1.346) 6.674 (2.064)
80 0.160 (0.022) 6.137 (1.867) 7.427 (2.089)
100 0.179 (0.018) 6.312 (1.548) 8.565 (2.195)
120 0.193 (0.020) 6.295 (1.924) 9.044 (2.711)
140 0.225 (0.026) 7.513 (1.367) 9.302 (2.236)
160 0.240 (0.031) 6.608 (2.362) 9.273 (2.530)
180 0.251 (0.029) 7.609 (2.730) 10.233 (3.325)
200 0.275 (0.020) 8.741 (2.519) 9.708 (3.082)

Particle D-optimal design for D-optimal design for c-optimal design for
number double exp. model survival model survival model

20 0.773 (2.117) 0.042 (0.021) 0.010 (0.004)
40 0.483 (0.258) 0.040 (0.004) 0.011 (0.003)
60 1.172 (2.641) 0.047 (0.005) 0.013 (0.002)
80 0.990 (1.138) 0.056 (0.007) 0.014 (0.001)
100 1.074 (1.043) 0.065 (0.007) 0.016 (0.002)
120 1.562 (1.226) 0.073 (0.008) 0.018 (0.003)
140 1.293 (0.615) 0.084 (0.008) 0.020 (0.002)
160 1.802 (1.780) 0.092 (0.009) 0.023 (0.003)
180 2.443 (2.428) 0.098 (0.009) 0.025 (0.002)
200 1.617 (0.773) 0.104 (0.017) 0.026 (0.002)
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PSO differs from current algorithms for finding optimal designs in a number
of ways. First, unlike the setup for the Fedorov-Wynn’s types of algorithms for
finding optimal designs [9, 10], the design criterion does not need not be convex
and differentiable for PSO to work. PSO requires no assumption on the func-
tion to be optimized. Second, PSO uses many random particles from the start
to search for the optimum and these particles communicate with each other;
traditional algorithms typically start with a single design and improves upon it
sequentially to locate the optimum. PSO is therefore appealing because it uses
many starting designs (particles) at the initial stage to cover the search space
and so one can expect such an approach is preferable to the traditional approach
that uses only a single starting design to find the optimal design. Third, the
traditional algorithms usually produce several clusters of support points because
at each iteration one point is added to the current design sequentially and over
time one has to collapse these clusters of points judiciously to a few points that
supposedly are the support points of the optimal design. PSO finds the optimal
design neatly; very often it identifies a candidate optimal design after a few
iterations and subsequent iterations only seek to ensure that all the points and
weights of the candidate optimal design agree up to 4 or 5 decimal places.

Our experience is that in terms of time, PSO typically identifies the opti-
mum usually in a few seconds of CPU time for most of the problems we had
worked with. They include different types of optimal designs for nonlinear
models with up to 5 parameters or models with rational polynomials as mean
functions. Additionally, we have applied PSO to solve minimax design prob-
lems which are notoriously difficult to solve because they involve two layers of
optimization over two spaces. If one of these spaces is discrete, as in E-optimal
design problems or minimax single-parameter optimal design problems, time
required to determine the optimal design is significantly shorter than when the
two spaces are non-discrete, as in finding a design to minimize the maximum
variance of the predicted response over a compact design interval. For such
minimax problems, where optimization is sought over two non-discrete compact
spaces, we are not aware of any traditional algorithms that converge to the
minimax optimal design even for linear models. The literature suggests that for
complicated or high-dimensional problems, it is often helpful to hybridize PSO
with another algorithm to take full advantages of the nice features from the
two algorithms to improve its search capability. Our boldest attempt to date
was to test PSO search ability for finding the D-optimal design for the Scheffe’s
quadratic mixture model with 10 factors. This optimization problem involved
optimizing hundreds of variables and we were pleased that PSO was able to
get very close to the optimal design and found a design with a D-efficiency of
99.98%. PSO took a long time largely because we were using the basic PSO
algorithm, like the one used in this paper. Part of our ongoing work is to find
a suitable algorithm to hybrid it with PSO to reduce the time it takes to find
the optimal design in large dimensional optimization problems. A second part
of our ongoing work is to more generally incorporate use of parallel computing
via GPU to boost speed in PSO.

In conclusion, particle swarm optimization techniques seem like a very pow-
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erful, interesting but under-utilized tool for solving optimization problems in
statistics. We have shown here that PSO is an efficient and flexible method
for finding optimal experimental designs for biomedical studies, but clearly the
applications are not restricted to biomedicine. A further strong point for PSO
is that, it being a metaheuristic algorithm, it does not respect the technical
requirements imposed on the problem to obtain the optimal designs. For ex-
ample, Konstantinou et al. [8] and Li and Balakrishnan [28] assumed technical
conditions to arrive at the theoretical descriptions of the optimal designs. PSO
does not incorporate the technical conditions in its search, suggesting that PSO
can generate optimal designs for a wider class of problems that do not meet the
assumptions.

We close with a note that the only role the convexity assumption in our
design criterion plays is that it enables us to definitively confirm the quality
of the generated design. Our repeated successes with PSO this far have now
encouraged us to further apply PSO to find optimal designs under non-convex
criteria, where there is no definitive and general way to check whether the gener-
ated design is optimal. Some examples are the search for exact optimal designs,
minimum bias designs and designs that minimize the mean squared error. We
hope to report further results in the near future.
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