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Abstract

To evaluate overall discrimination capacity of a marker for multi-class classification
tasks, the performance function is a natural assessment tool and fully provides the es-
sential ingredients in receiver operating characteristic (ROC) analysis. The optimal ROC
manifolds supply a geometric characterization of the magnitude of separation among mul-
tiple classes. It has been shown from our foregoing work that the hypervolume under the
optimal ROC manifold (HUM) is a well-defined and meaningful accuracy measure only in
suitable ROC subspaces. In this article, we provided a rigorous proof for the equality of
HUM and its alternative form, the correctness probability, which is directly related to an
explicit U -estimator. In addition, extensive simulations are conducted to investigate the
finite sample properties of the proposed estimators and the related inference procedures.
Further, a rule of thumb is given in application to assess for the HUM. Conclusively, our
theoretical framework allows more sophisticated modeling on performance of markers and
helps practitioners examine the optimality of applied classification procedures.

Keywords: Gaussian process; Hypervolume; Manifold; Optimal classification; Receiver op-
erating characteristic; U -estimator; Utility

1 Introduction

The past decade has seen the rapid development of multi-classification in various areas of sci-

ence. For instance, distinguishing species in biology, image recognition in electronic engineering,

and pricing strategy in business can be formulated as multi-classification problems. Recently,

biomedical researchers have shown an increased interest in accurately determining types of

specific diseases or staging cancers, provided that markers contain only limited information

regarding the true types. Despite well-established statistical methods for binary classification
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problems, such as for distinguishing between diseased and non-diseased patients, it is still ques-

tionable whether the existing methodology can appropriately help working scientists to compare

performances of various markers, and, if possible, find an optimal marker based on some rational

criteria.

A typical task of multi-classification is mainly based on data of the type (G,Y) and a

classifier Ĝ, where G ∈ {1, . . . , K} represents the true class, Y ∈ Y denotes a univariate or

multivariate marker, and Ĝ is a random function from Y to the support of G. The performance

probabilities pjk(Ĝ) = P (Ĝ(Y) = j|G = k), j, k ∈ {1, . . . , K}, of (Ĝ,Y) are commonly used

to assess the considered classification procedure. For the sake of numerical stability in esti-

mation, pjk(Ĝ)’s are frequently applied and more preferred than the prediction probabilities

P (G = k|Ĝ(Y) = j)’s. Furthermore, we can show that there is little connection between the

optimization in terms of prediction and performance probabilities although these two are equiv-

alent in binary classification. Since an assessment measure based on performance probabilities

is of the form f(Ĝ,Y), performance of certain classifiers only represent partial information on

discrimination capacity of markers. Thus, evaluation of markers with respective to only a part

of classifiers could be too naive to be used to make a fair comparison among markers. Indeed, a

rational assessment index of each marker should be a function only of Y and then is unchanging

with chosen classifiers. One of the most practical ways to adopt for this reason is to address

the marker of interest with respect to the overall performance of all classifiers. To achieve this

research aim, receiver operating characteristic (ROC) analysis, a technique initially only for

binary classification tasks, has been extended to multi-classification in recent years.

Meaning of optimality in classification could be various, but some optimal criteria are shown

to be equivalent in the sense of overall performance. A seminal work on optimal ROC mani-

folds was promulgated by Scurfield (1998) via maximizing
∑K

k=1 P (Ĝ = k,G = k). The author

constructed ROC manifolds based on performance probabilities of optimal deterministic clas-
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sifiers with the maximal sum of true probabilities and derived that HUM equals to correctness

probability for the ternary classification procedures; the optimal classifiers can be represented

as combinations of linear classifiers in the decision space spanned by log-likelihood ratio scores.

Since K2 performance probabilities are available to describe a K-classification procedure, Ed-

wards et al. (2004) explained that it would be insufficient to describe the complete information

of a classifier only based on true probabilities pkk(Ĝ)’s for K ≥ 3; they further suggested to

maximize the expected utility (or minimize the expected cost), and this criterion can be formu-

lated in a manner of linear classifiers in the decision space. For ternary classification, He and

Frey (2006) indicated that the utility classifiers have maximal sum of true probabilities under

the setting of equal error utilities. As an alternative approach, Schubert et al. (2011) utilized

Minkowski’s functionals to determine the optimal classifier. Roughly speaking, the functional is

to define an optimal classifier as that with the minimal misclassification rates under constraints

on ratios among these probabilities. The criterion is essentially analogue to maximizing the

expected utility under some conditions, although their illustrated examples do not actually

achieve its optimality and it is difficult to give a feasible formula of their defined optimal clas-

sifier. Due to the difficulty in visualization for performance in multi-classification, a vital issue

arises to define an appropriate summary index for the performance of a marker. Naturally,

HUM is a direct extension of the area under the ROC curve (AUC) and was employed in many

foregoing works. In binary classification, the induced optimal ROC curve certainly separates

the ROC space into two regions. However, optimal ROC manifolds may be unable to enclose

a bounded set and, hence, the well-definition of HUM might be thrown in doubt. Besides,

Edwards et al. (2005) used some examples to explain that both of the resulting HUMs from

near-perfect and non-informative markers are near zero; these authors further concluded that

HUM is not a suitable summary index for performance of a marker.

The breakthrough results we have achieved are initially based on a theoretical formulation in
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terms of utility, which concisely describes current results regarding multi-class ROC analysis.

The groundwork leads a better understanding of some geometric characteristics of optimal

ROC manifolds, such as regularity (see Jost, 2008) and smoothness, whereas non-optimal ROC

manifolds may not enjoy these attractive features; moreover, the asymptotic process of empirical

optimal ROC manifolds is established. We also address the sufficient and necessary conditions to

ensure the well-behaved HUM; one can clearly interpret some peculiar numerical and algebraic

results occurring in the foregoing works and further advocate practitioners to create a handy

summary assessment. Instead of the setting in ternary classification, we borrowed a tool in

graph theory to confirm the validation of HUM = CP for any K-class optimal procedures.

Thus, by using this explicit and meaningful probability expression, an U -estimation for HUM

then becomes applicable for more general classification procedures. In considering practical

implications, we proposed an estimation approach for HUM with related inference procedures

through some widely-used models on the relationship between G and Y through a prospective or

retrospective perspective. Furthermore, an empirical rule based on partial-classification HUMs

is proposed to assist practitioners to evaluate the disciminability. Although our work focuses

on continuous markers, most of these results are comfortably adapted to evaluation of discrete

or mixture markers and could serve as a basis for more sophisticated statistical methods.

On the whole, based on the properties of optimal ROC manifolds we have established, we

provide estimation and inference procedure for discriminability of multi-classification markers.

The properties enables us to draw pointwise and functional inference for optimal ROC manifolds

in Section 2. Section 3 is devoted to estimation and model-based inference procedures for

HUM. Numerical experiments and an application to empirical data in Section 4 illustrate the

practicality of our developed methodology. Finally, Section 6 summarizes the findings in this

study and make some remarks for future research.
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2 Optimal ROC Manifolds

Some researchers have worked on construction of ROC manifolds; however, without optimality

in classifiers, the so-called ROC manifold could be an arbitrary subset of a projection of the

performance set

φ(C) = {φ(Ĝ) : Ĝ ∈ C},

where φ(Ĝ) is the performance of Ĝ defined as vec[pjk(Ĝ)], in the ROC space

R = {p = vec[pjk] :
K∑
j=1

pjk = 1 ∀k = 1, . . . , K}.

rather than a manifold in the context of geometry. Therefore, few features of the ROC manifold

sets could be pinpointed, and estimation of ROC manifold sets and related summary measures

might lead to a more complicated situation. We hence introduce optimal ROC manifolds

for multi-classification as an extension of optimal ROC curves for binary classification. For K-

classification tasks, there areK redundant coordinates inR. Practically, not allK2 performance

probabilities are of interest. We can further consider a ROC subspace RS where S denotes the

set of coordinates of concern. In the sequel, sets or operators with the subscripted S denotes

that they are restricted in the ROC subspace RS

Indeed, the performance set φ(C) is a convex and compact set and hence can be completely

characterized through investigating its boundary set ∂φ(C); these features also hold in arbitrary

RS. Moreover, ∂φ(C) is also able to be regarded as a function only depending on Y . Through the

connection of admissibility and maximizing-utility criterion, we have obtained severals results:

First, performance of each admissible classifier is located in ∂φ(C) ; this justifies using the

optimal ROC manifold

MS = {φS(Ĝ) : Ĝ is admissible in S.}

as a measure of discriminability of markers. Second, maximizing-utility criterion gives a natural

parametric system to describe MS. Hence, MS can be treated as actually a function of u ∈ U
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on an interesting set U of utility values, denoted by MS(u), with some desirable functional

asymptotic properties of the corresponding empirical estimators. For a specific pjk, since in the

perspective of geometry points in MS can be regarded as the performance with the highest pjk

for every fixed performance probabilities S\{pjk}, MS(u) can be rewritten as M∗
S(pS\{pjk}).

An admissible classifier can be derived as that Ĝ(y) = k if

L(y) ∈ Dk(u) =
⋂
j 6=k

{L(y) :
K∑
i=1

(uki − uji)LiK(y) ≥ 0,y ∈ Y}, (1)

where L(y) = (L1K(y), . . . , L(K−1)K(y))> with the likelihood ratio Lij between ith and jth

classes. We should note that each Dk(u) is an intersection of K − 1 half spaces in the space

spanned by likelihood ratio scores and so simple enough to be practically applied.

Based on a random sample {(Ym, Gm)}nm=1, an empirical estimator of pjk(Ĝu) is proposed

to be

p̂jk(Ĝu) = n̂−1k

n∑
m=1

1(L(Ym) ∈ Dj(u))1(Gm = k),

where n̂k =
∑n

m=1 1(Gm = k) and M̂S(u) is set to be φ̂S(Ĝu) with p̂jk(Ĝu) substituting for

pjk(Ĝu). Given fixed pj′k′ = p∗j′k′ for all pj′k′ ∈ S\{pjk}, the asymptotic normality of M̂S(u)

enables us to have an approximate 1 − α, 0 < α < 1, confidence interval for M∗
S(pS\{pjk}).

By replacing pjk(Ĝu) with p̂jk(Ĝu), M∗
S(pS\{pjk}) and its asymptotic variance are naturally

estimated by

M̂∗
S(pS\{pjk}) = max{p̂jk(Ĝu) : p̂j′k′(Ĝu) ≥ p∗j′k′ ∀pj′k′ ∈ S\{pjk}} (2)

and

σ̂2(M̂∗
S(pS\{pjk})) = M̂∗

S(pS\{pjk})(1− M̂
∗
S(pS\{pjk})).

Thus, the normal-type confidence interval for M∗
S(pS\{pjk}) can be constructed by

M̂∗
S(pS\{pjk})± z1−α/2n

−1/2σ̂M̂∗
S(pS\{pjk}), (3)

where z1−α/2 is the (1− α/2)th quantile of a standard normal distribution. The interval in (3)

provides us a base to build up pointwise confidence bands of pjk(Ĝu). Similar construction can
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also be done for performance probabilities of any non-optimal classifier. Although it could be

harder to be visualized and interpreted, a pointwise confidence region of {pjk(Ĝu) : u ∈ U} can

be constructed in a similar manner. By applying the central limit theorem and the Slutsky’s

theorem, one can readily derive that

n1/2(M̂S(u)−MS(u))
d−→ N#S(0,Σ(u)), (4)

where the asymptotic covariance between p̂jk(Ĝu) and p̂j′k′(Ĝu) is

Σjk,j′k′(u) =


pjk(Ĝu)(1− pjk(Ĝu)) for (j, k) = (j′, k′),

−pjk(Ĝu)pj′k′(Ĝu) for j 6= j′, k = k′,

0 otherwise.

An approximate 1− α pointwise confidence region is then given by

{pS : n(pS − M̂S(u))T Σ̂
−1

(u)(pS − M̂S(u)) < χ2
#S,α}, (5)

where χ2
#S,α is the αth quantile of a chi-square distribution with the degrees of freedom #S.

Before establishing a simultaneous confidence region for MS, the related asymptotic proper-

ties of φ̂S(Ĝ) for some Ĝ ∈ C are derived first. The main difficulty in theoretical development

is that classifiers of interest could be a family including perplexing functions. In contrast, an

optimal classifier Ĝu can be reformulated as a linear combination of the indicator functions∑K
k=1 k1(L(Y) ∈ Dk(u)) on D with Dk(u) begin an intersection of K − 1 half-spaces. It is

well-known that the collection of half-spaces of (K − 1) dimensional space is of the Vapnik-

Chervonenkis (VC) dimension K. Thus, the collection of Dk(u), a subset of intersections of

K half-spaces indexed by u, also has finite VC-dimension. That is, Dk(u) and all optimal

classifiers are of VC-class. This ensures that the covering number of the collection of Ĝu grows

in a polynomial way. By Theorem 2.6.4 in Vaart and Wellner (1996), the finite VC dimension

of {Ĝu}u∈U gives a universal bound of the covering number of optimal classifiers. Together

with the measurability of Ĝu and Theorems 2.4.3 and 2.5.2 in the same reference, the family

of optimal classifiers are of P -Glivenko-Cantelli and also of P -Donsker class. The results are

summarized by the following theorem.
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Theorem 2.1. The empirical estimator of an optimal ROC manifold M̂S(u) has the functional

asymptotic properties:

i. supu∈U ‖M̂S(u)−MS(u)‖ a.s.−→ 0.

ii. n1/2(M̂S(u)−MS(u)) converges in distribution to a Gaussian process with mean zero and

a covariance function, where the asymptotic covariance between p̂jk(Ĝu1) and p̂j′k′(Ĝu2),

say Σjk,j′k′(u1,u2), is

P (L(Y) ∈ Dj(u1) ∩Dj′(u2)|G = k)− pjk(Ĝu1)pj′k(Ĝu2),

for k = k′ and 0 otherwise.

With Theorem 2.1, a simultaneous confidence region for {MS(u) : u ∈ U} can be built up

through

P (n sup
u∈U

(M̂S(u)−MS(u))>Σ−1(u)(M̂S(u)−MS(u)) < cα) = 1− α,

whereas the quantile value cα is not easy to obtain directly. By using

n1/2(M̂S(u)−MS(u)) = n−1/2
n∑

m=1

Nm(u) + rn(u)

with Nm(u) = E[M̂S(u) −MS(u)|Ym] and supu∈U ‖rn(u)‖ = op(1), one can follow the same

argument in Lin et al. (2000) to show that

Pn(n−1 sup
u∈U

(
n∑

m=1

N̂m(u)wm)>Σ̂
−1

(u)(
n∑

m=1

N̂m(u)wm) < cα)
p−→ 1− α, (6)

where Pn is the probability measure conditioning on {(Gm,Ym)}nm=1, wm’s are independently

drawn from a standard normal distribution, Σ̂(u) is a moment estimator of Σ(u) in (4), and

N̂m(u) is a consistent estimator of Nm with

N̂m,jk(u) = 1(L(Ym) ∈ Dj(u))1(Gm = k)− p̂jk(Ĝu).

The convergence property in (6) enables us to estimate cα by the Monte-Carlo quantile c∗α. An

approximate 1− α simultaneous confidence region for {MS(u) : u ∈ U} is then given by

{pS : n(pS − M̂S(u))>Σ̂
−1

(u)(pS − M̂S(u)) < c∗α,∀u ∈ U}. (7)
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In high-dimensional RS, it is usually difficult to concretely illustrate implications from the

constructed confidence regions (5) and (7) for optimal ROC manifolds. Researchers might like

to adopt the coverage probability of a confidence region to evaluate its performance or draw

inferences on some meaningful summary indices of MS.

3 Hypervolumes under Optimal ROC Manifolds

Once there are more than three classes and the number of considered pjk’s is greater than three,

the ROC subspace of interest might involve complication in visualization. An appropriate sum-

mary index of the performance of a marker becomes practically important. Ideally, an applied

summary index should satisfy at least two requirements: the index must facilitate comparisons

for all markers so that their performances are comparable with each other; the index should

provide a reasonable ordering of performance of markers. For binary classification tasks, AUC

is the most widely-used accuracy measure, and the measure could be well-defined since the

corresponding ROC curve can usually separate a ROC subspace. The accuracy measure HUM

is a natural extension of AUC and has been proposed and applied in former literature, whereas

its features still remain largely unexplored. Since the optimality of ROC manifolds guarantees

its continuity, it is possible to constitute a separation of a ROC subspace by the manifolds.

For this reason, we use the term HUM, denoted by VS, referring hypervolume under MS until

further notice.

For binary classification, the dimensionality of φ(C) equals 2 and then ensures the existence

of optimal AUC. However, even with optimality, HUM is generally not well-defined or might

be ill-behaved for K ≥ 3. A series of results are further established in the following to clearly

characterize such an accuracy assessment. Indeed, the set under the opimal ROC manifolds

MS has a well-defined volume VS form if and only if the manifolds is restricted in RS for either
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S = {pkk : k = 1, . . . , K} or S = {pkσ(k) : k = 1, . . . , K, k 6= σ(k)}. In this situation, the HUM

as a summary index actually assist us to evaluate the discriminability of markers. Furthermore,

optimal classifiers can be simplified as that Y is classified as the kth class if Y ∈ Dk(u) with

Dk(u) =
⋂
j 6=k

{L(y) : Ljk(y) ≥ ukk
ujj

,y ∈ Y}.

Utilities ujk’s are also able to be reparametrized as threshold values ck = uKK/ukk, k =

1, . . . , K − 1, and, for convenience, let c = (c1, . . . , cK−1).

3.1 Estimation and Inference Procedures for HUM

An estimation for HUM directly through its Riemann integral usually involves a computational

difficulty in a high dimensional space. A related algorithm might lead to numerical instability

and terrible computational cost even for K = 3. A probability expression of HUM would greatly

enhance the efficiency of its estimation. Indeed, the HUM corresponding to S = {pkσ(k)}Kk=1

has an explicit connection with the event that the K subjects (G = k,Yk)’s can be classified to

the class σ(k) for each k by one classifier Ĝu. To simplify the succeeding discussion, we define

hS(Y1, . . . ,YK) = 1(∃ u : Ĝu(Y1) = σ(1), . . . , Ĝu(YK) = σ(K)). (8)

The expectation of hS(Y1, . . . ,YK) given {G1 = 1, . . . , GK = K} is the correctness probability.

For ternary classification, Scurfield (1998) has shown HUM = CP , which is convenient to

access an U -estimator for the probability expression of the HUM. However, further confirming

the equality for any K ≥ 4 involves more tedious calculations because it needs to compute

integrals on some domain like the form ∂DK(u) × {×K−1k=1 Dk(u)}. An alternative exposition

in the sense of spanning trees in graph theory can be utilized to establish the validity of a

sharpened version of Scurfield’s theorem. The following technical lemma is devoted to the main

theorem, but is of separated interest that an optimal classifier gives the maximum likelihood

prediction.
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Lemma 3.1. Given any permutation σ0 associated with S,

hS(Y1, . . . ,YK) = 1(
K∏
k=1

fk(Yσ0(k)) ≥
K∏
k=1

fk(Yσ(k)) ∀σ).

Proof. See Appendix.

Lemma 3.1 makes an equivalent statement of the event that {Y(k)}Kk=1 can be correctly classified

by one optimal classifier. Particularly, for σ0 being the identity permutation, the optimal

classifiers guarantee that probabilities of subjects being classified into the true classes are higher

than into other classes. We can now rephrase HUM = CP for any K-classification as follows:

Theorem 3.2. Suppose that S = {p11, . . . , pKK} or S = {pkσ(k) : σ(k) 6= k}Kk=1 for some σ.

Then,

VS = E[hS(Y1, . . . ,YK)|G1 = 1, . . . , GK = K}].

Proof. See Appendix.

Lemma 3.1 and Theorem 3.2 justify a more general U -estimator of VS as

V̂S =

∑
{i1,...,iK}⊂[n]

hS(Yi1 , . . . ,YiK )
∏K

k=1 1(Gik = k)∑
{i1,...,iK}⊂[n]

∏K
k=1 1(Gik = k)

. (9)

Following the asymptotic normality of U -statistics in the former works, one can also show that

n1/2(V̂S − VS)
d−→ N(0, ξ), (10)

where ξ =
∑K

k=1 p
−1
k Var(E[hS(Y1, . . . ,YK)|Yk, G1 = 1, . . . , GK = K]). It is straightforward to

obtain a consistent estimator of ξ as

ξ̂ =
K∑
k=1

n̂−1k

n∑
m=1

(V̂S(m, k)− V̂S)21(Gm = k), (11)

where

11



V̂S(m, k) =
∏
k′′ 6=k

n̂−1k′′
∑

{i1,...,iK}⊂[n]
ik=m

hS(Yi1 , . . . ,YiK )
K∏
k′=1

1(Gik′
= k′).

From (9) and (10), we can readily construct an approximate 1−α confidence interval for VS as

V̂S ± n−1/2z1−α/2ξ̂1/2.

3.2 Model-based HUM

In the preceding work, hS in (9) is known to be a composite function of an unknown likelihood

ratio transformation. Appropriate modeling would simplify classification tasks, such as sequen-

tial classification procedures in MLR models. Thus, a model-based estimator for VS usually

has a simple representation. However, even with specific parametric models, (10) cannot be

obtained straightforward because some parameters in hS are still unknown. For explanatory

simplicity, we only consider S = {p11, . . . , pKK}. The inference for {pkσ(k) : σ(k) 6= k}Kk=1 can

be established in a parallel manners.

A direct approach to estimation for VS is to model the likelihood ratios

LkK(y) = gk(y;θ0) (12)

for k = 1, . . . , K−1, where gk is a specified function with unknown parameters θ0. Correspond-

ingly, Ljk(y) = gjk(y;θ0) = gj(y;θ0)/gk(y;θ0) and L(y) = g(y;θ) = (g1(y;θ), . . . , gK−1(y;θ))>.

Since LkK(y) is proportional to P (G = k|Y = y)/P (G = K|Y = y), the overall accuracy mea-

sure, denoted by V (θ0), of markers is irrelevant with sampling schemes. Thus, V (θ0) can be

derived through modeling either fk’s in a retrospective perspective or P (G = k|Y = y)’s in

a prospective one. Under the model (12) with given θ0, the estimated HUM in (9) can be

parametrically expressed as
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V̂ (θ0) =

∑
{i1,...,iK}⊂[n]

hS(Yi1 , . . . ,YiK ;θ0)
K∏
k=1

1(Gik = k)

∑
{i1,...,iK}⊂[n]

K∏
k=1

1(Gik = k)

(13)

with hS(Yi1 , . . . ,YiK ;θ0) = 1(
K∑
k=1

ln gkσ(k)(Yik ;θ0) ≥ 0 ∀σ). By replacing θ0 in (13) with

a
√
n-consistent estimator θ̂, the final estimator V̂ (θ̂) is naturally obtained. Under some

suitable conditions, V̂ (θ̂) and V̂ (θ0) are shown to be asymptotically equivalent. The limiting

distribution of n1/2(V̂ (θ̂)− V (θ0)) is further established by the following theorem:

Theorem 3.3. Under the validity of the model (12) with g(Y;θ) being Lipschitz continuous

on a compact set Θ,

n1/2(V̂ (θ̂)− V (θ0))
d−→ N(0, ξ(θ0)),

provided ξ(θ0) =
∑K

k=1 p
−1
k Var(E[hS(Y1, . . . ,YK ;θ0)|Yk, G1 = 1, . . . , GK = K]) > 0.

Proof. See Appendix.

From Theorem 3.3, an approximate 1− α confidence interval for V (θ0) is given by

V̂ (θ̂)± n−1/2z1−α/2ξ̂1/2(θ̂), (14)

where ξ̂(θ̂) is the same as that in (11) with θ̂ substituting for θ0. Generally, the Lipschitz

continuity of g is assured through some widely applied models. At the end of this discussion,

we illustrate three parametric models and concisely rewrite their hS’s in (8).

Example 3.1. Under the validity of a multinomial logistic model, one has gk(y;θ0) = exp(θ>0kY)P (G =

K)/P (G = k), θ0 = (θ>01, . . . ,θ
>
0(K−1))

>. It follows that hS is with the exposition

∏
σ

1(
K∑
k=1

(θ0k − θ0σ(k))>Yk ≥ 0),θ0K = 0.

Example 3.2. When Y|G = k follows a multivariate normal distribution with mean µ0k and

covariance matrix Σ0k, k = 1, . . . , K, the induced hS is of the form
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∏
σ

1(
K∑
k=1

(Yk − µ0σ(k))
>Σ−10σ(k)(Yk − µ0σ(k)) ≥

K∑
k=1

(Yk − µ0k)
>Σ−10k (Yk − µ0k)).

Example 3.3. Let Y be univariate with the corresponding family of distributions fk’s satisfying

the MLR condition with respect to θ0. Specifically, gk1k2(y;θ0) = gk1(y; θ0k1)/gk2(y; θ0k2) is

strictly increasing in y for θ0k1 > θ0k2 . Then, hS can be simplified as∏
k1 6=k2

1(Yk1 > Yk2)1(θ0k1 > θ0k2).

4 Numerical Experiments

To investigate the finite sample properties of V̂ (θ̂) and the proposed inference procedure for

V (θ0), we conducted a series of numerical experiments with the three models illustrated in

Examples 3.1 through 3.3 in the first three sections. The simulation results were based on

2,000 replications of each assignment to preserve values stabilized up to the third decimal

digit. For each simulation setting, means, standard deviations (sd), and standard errors (se)

of the estimated accuracy measures with known and estimated parameters were exhibited. In

addition, the relation between V̂ (θ̂) and V̂ (θ0) was detected under variant sample sizes. As for

the assessment of the constructed confidence interval in (14), we provided the quantile intervals

(QI) of 2,000 V̂ (θ̂) with length (Lq), the averages of 0.95 normal-type confidence intervals (CIz)

of V (θ0) with length (Lz), and the empirical coverage probabilities (Ecp).

4.1 Scenario I: Multinomial Logistic Regression

Assuming optimality of linear combinations of original markers, multinomial logistic regression

in Example 3.1 is a widely used approach to the multi-classification problem. Let (Y1, Y2, Y3)
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be a trivariate normal distribution with mean zero, standard deviation (1, 1, 1), and correlation

coefficient of 0.2, 0.5, or 0.8. The first investigated model was designed to be

P (G = k|Y = y) =
exp((1,y>)θ0k)

1 +
∑2

j=1 exp((1,y>)θ0j)
(15)

for k = 1, 2 with θ01 = (−0.2, 1, 1,−1)> and θ02 = (0.2, 1,−2, 1)>. The induced propor-

tions (P (G = 1), P (G = 2), P (G = 3)) for ρ = 0.2, 0.5, and 0.8 are further computed to be

(0.327, 0.426, 0.247), (0.320, 0.418, 0262), and (0.269, 0.402, 0.329), respectively.

Tables 1 and 2 report the means and standard deviations of V̂ (θ0) and V̂ (θ̂) under different

correlations of markers and sample sizes. The numerical results indicate that V̂ (θ̂) overesti-

mates V (θ0) and its asymptotic variance is slightly underestimated in some case. In addition,

the difference between V̂ (θ0) and V̂ (θ̂) steadily declines as n increases although it is relatively

notable for small sample sizes. The results manifest their asymptotic equivalence for an appro-

priately large sample size. One can see that the estimates of bounds in normal-type confidence

intervals are fairly reliable. Suffering from the small sample size in the case of n = 150, the

estimated normal-type intervals are notably biased and the empirical coverage probabilities are

substantially smaller than the nominal level. Furthermore, it is detected from Table 2 that the

empirical coverage rates for ρ = 0.2 are lower than those for ρ = 0.5 and 0.8. This phenomenon

emerges due to a high value of V (θ0) and is apparent in the next numerical experiment. Gen-

erally, the empirical coverage probabilities are very close to the assigned nominal level.

4.2 Scenario II: Multivariate Normal Marker

In classification, multivariate markers are popularly modeled via multivariate normal distribu-

tions. With a common correlation structure, linear classifiers based on original markers actually

achieve optimality with

hS(Y1, . . . ,YK) =
∏
σ

1(
K∑
k=1

(µ0σ(k) − µ0k)
>Σ−10 Yk ≥ 0).
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The distributions of Y conditioning on G = 1, 2, and 3 were specified with means (1, 0, 0),

(0, 1, 0), and (0, 0,−1), respectively, and the common standard deviation (1, 1, 1) and correlation

coefficient of 0.2, 0.5, or 0.8. The proportion of each class was further set to be equal on

average. To evaluate the impact of over-parameterization, we used pooled and group-specific

sample covariance matrices in classification. Both of the procedures are optimal in classification,

whereas estimation of redundant parameters usually leads to some numerical instability and

loses efficiency.

It is detected in Tables 3 and 4 that the biases rapidly become negligible with increasing

sample sizes, although V (θ0) tends to be overestimated and an apparent bias appears in over-

parameterization. Specifically, the biases of V̂ (θ̂) estimated with unequal covariance matrices

when n = 600 are between those estimated with equal ones when n = 150 and 300; it indicates

that a larger sample size is required to abate the nuisances due to over-parameterization. These

tables further show that the estimates of asymptotic variances are fairly accurate. However, the

bounds of normal-type confidence intervals seem to be easily overestimated, and these intervals

are wider than the quantile ones. Again, the inference procedure based on the pooled sample

covariance matrix outperforms that based on the group-specific sample covariance matrices.

The results can be explained as a consequence of a high value of V (θ0) and a poor symmetric

approximation to the left-skewed sampling distribution of V̂ (θ̂) with small sample size.

4.3 Scenario III: Univariate Normal Marker

The last simulation was implemented to examine the rationale of sequential classification pro-

cedures. The univariate normal markers Y conditioning on G = 1, 2, and 3 were specified

with means 0, 1, and 1.4, respectively, and the same standard deviation of 1. It is easy to

justify that the designed models in the first setting satisfy the MLR condition. In addition, we

consider markers with standard deviations (1, 1.1, 1.3) as in the numerical study of Nakas and
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Yiannoutsos (2004) and (1, 2, 3), which correspond with a mild and a serious violation of the

MLR. In this scenario, the HUM V (θ0) was estimated with sequential classification based on

the original markers and optimal classification after transformation of likelihood ratios. Indeed,

sequential classification achieves optimality only in the first setting. We note that the sequential

procedure only requires to estimate the sample means in the classification rule

Ĝ(Y ) = k11(Y < c1) + k21(c1 < Y < c2) + k31(Y > c2)

with c1 < c2 and Y k1 < Y k2 < Y k3 . Without relying on the mechanism of MLR, the opti-

mal classification needs to further estimate the variance of each class in the likelihood ratio

transformation.

Tables 5 and 6 show that the influence of sample size on bias is similar to those in Sections

4.1 and 4.2. It is worth pointing out that the bounds of normal-type confidence intervals un-

derestimate the true bounds, the tendency toward the side opposite to estimated bounds in the

previous settings. This may similarly result from using the normal approximation to the right-

skewed sampling distribution of V̂ (θ̂) as V (θ0) < 0.5 with small sample size. Misspecification

of models for classification is also at issue in this scenario. With the validity of a MLR model,

the sequential procedure takes advantage of estimating fewer parameters and gives more precise

estimators, whereas the optimal procedure suffers from over-parameterization. In contrast, the

absence of the MLR condition leads to a biased estimator of V (θ0), which loses the benefit from

fewer parameter estimates and even has an unacceptable bias in estimation for V (θ0). Although

marked variation is detected due to small sample sizes, performance of optimal classification

procedure is free from the invalidity of a MLR model and the corresponding estimates actually

move toward the true values. This simulation suggests that the validity of the MLR condition

should be tested before conducting a sequential classification procedure.
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5 Application to Hepatic Enzyme Profile

An analysis for liver function data was carried out to illustrate the usefulness of optimal ROC

manifolds and HUMs. In most foregoing analyses, the data set of liver function tests in Albert

and Harris (1987) was used to outline approaches of model fitting in discriminant analysis. Here

we show that optimal ROC manifolds and HUMs will greatly assist in evaluating overall dis-

criminability through outlining the capacity of enzymes for discrimination of viral hepatitis. Of

these 218 patients, there are 57, 44, 40, and 77 ones diagnosed as acute viral hepatitis (Class 1),

persistent chronic hepatitis (Class 2), aggressive chronic hepatitis (Class 3), and post-necrotic

cirrhosis (Class 4), respectively. The four disease groups were determined by laparoscopy and

biopsy. Four enzymes aspartate aminotrasferase (AST ), alanine aminotransferase (ALT ), glu-

tamate dehydrogenase (GLDH), and ornithine carbonyltransferase (OCT ) were collected and

treated as biomarkers in classification. As Lesaffre and Albert (1989) suggested, these four vari-

ables were logarithmically transformed to remove skewness and outliers; a multinomial logistic

regression model was adopted to fit P (G = k|{AST,ALT,GLDH})’s with the biomarker OCT

being excluded in the following analysis due to its insignificant explanatory power.

For binary classification tasks, researchers have established some empirical rules of thumb for

interpreting AUC, whereas no standard criterion can be followed in multi-classification. Using

the relation between measures of a convex set and its projections, we suggest an estimated

bounds of the HUM in K-classification based on performance of the marker in K − 1 partial

classifications. Since the set {λp1 + (1− λ)p2 : p1 ∈ φS(C),p2 ∈ RS, p2,jk = δjk} is convex and

compact, some tools in convex geometry allow us to give a more precise range of VS in terms

of the HUMs in partial classifications. Based on a upper (UB) bound and a lower bound (LB)

derived by Loomis and Whitney (1949) and Meyer (1988), respectively, with some modification,

we have
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max{ 1

K!
, (
K!

KK

K∏
k=1

AS,k)
1/(K−1)} ≤ VS ≤ min{AS,1, . . . , AS,K ,

K∏
k=1

A
1/(K−1)
S,k } (16)

with S = {p11, . . . , pKK} and AS,k being the HUM in S\{pkk}-classification. The upper bound

in (16) can be actually attained only when a marker is perfect in at least K − 2 (K − 1)-

classifications, and the lower bound is attained only for performance of non-informative K-

classification markers. These bounds will provide additional information to assess the perfor-

mance of markers.

Table 7 and Figure 1 illustrate the total and partial discriminatory potential of the biomarker

(AST,ALT,GLDH). For each ternary classification, using the estimator in (2), the optimal

ROC manifolds can be visualized in Figure 1 and convey sufficient information. The manifolds

in Figure 1 (a) and (b) have shapes like unit cubes with the corresponding HUMs near 1.

It suggests that classifiers based on the linear predictors have near perfect discrimination for

patients in {1, 2, 3} or {1, 2, 4}-classification. Comparatively, restricted by the ability of the

biomarker in discerning aggressive chronic hepatitis and post-necrotic cirrhosis, the manifolds

including the coordinates p33 and p44 take on cylinder-like shapes. Their HUM estimates are

apparently reduced to 0.811 and 0.785. Even so, the performances are still closed to the

theoretical upper bounds in (16). Their optimal ROC curves accompanied with confidence

bands are included in the manifolds; see Figure 2 for instance. Nevertheless, for 4-classification,

we are merely able to rely the accuracy summary to assess the classification capacity of the

marker. Although each HUM in ternary classification is more than 0.8, VS dramatically declines

to 0.601. That is, even though it is actually well-performed in each 3-classification, the liver

function test could not provide sufficient information and so the four disease groups have a

overlap to some extent in the decision space. This example addresses that we could not capture

the complete discriminability of a marker in quaternary-classification only through performances
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in any partial ternary-classification.

Remark 5.1. When some false probabilities are concerned, a formula for VS similar to (16) could

not be obtained straightforward. For any nonempty set S̃ ⊂ S = {p11, . . . , pKK}, performance

of markers in #S̃-classification can be fully represented in RS̃ and the relation between VS and

VS̃ will be established. Instead, admissibility of S̃ ⊂ S = {pkσ(k), k 6= σ(k)}Kk=1 usually involves

the number of classes more than the size of S̃ and the performance set will degenerate to a

space of a lower dimensionality; for instance, S̃ = {p12, p23} ⊂ {p12, p23, p31}. Therefore, similar

bounds either are too rough to be applied or do not exist at all.

6 Conclusive Discussion

We begin our discussion by reviewing the developed theoretical framework, and turn to different

aspects of assessment of markers in multi-classification. This conclusion is devoted to stressing

out new possibilities for future research.

6.1 Limitation of Prediction Probability

The performance probabilities pjk’s play a pivotal role in the methodology we have established.

Having this work, one may surmise that the prediction probabilities P (G = k|Ĝ = j)’s seem to

be a plausible basis for an alternative evaluation of markers. After all, for binary classification,

if Ĝ1 �S Ĝ2, it follows that

p11(Ĝ1)

p11(Ĝ2)
≥ p11(Ĝ1)p1 + p12(Ĝ1)p2

p11(Ĝ2)p1 + p12(Ĝ2)p2
≥ p12(Ĝ1)

p12(Ĝ2)
,

which implies that P (G = 1|Ĝ1 = 1) ≥ P (G = 1|Ĝ2 = 1) and P (G = 2|Ĝ1 = 1) ≥ P (G =

2|Ĝ2 = 1). Thus, an admissible classifier is an optimal predictor, which has the highest pre-

diction probabilities, and vice versa. However, generally, the convexity of the set formed by

prediction probabilities of all classifiers is valid only for K = 2, that makes characterization of
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such a set complicated. Furthermore, estimates of P (G = k|Ĝ = j)’s are usually sensitive to

noise as P (Ĝ = j) moves toward zero. This will be inevitable to estimate prediction probabili-

ties of those classifiers once one attempts to establish an overall evaluation of markers. Thus,

even if we can surmount this theoretical impediment, the numerical instability in estimation

for prediction probabilities often causes the lack of practicality in assessment.

6.2 Markers with Discrete or Mixture Distributions

Indeed, without assuming that LkK(Y)’s are continuous random variables, the developed theory

is still compatible with multi-classification tasks based on markers with discrete or mixture

distributions. Once P (LkK(Y) = c) > 0 for some k and c > 0, it reveals that L(Y) is

a discrete or mixture random quantity. Consequently, there exists a subset of ∂Dk(u) with

positive probability mass in D. Correspondingly, in ROC subspaces, φS(C) would lose its strict

convexity, and some points in MS(u) form a flat part of ∂φS(C). To enhance the theoretical

framework, we summarize its influence and make necessary modification. Specifically, it only

needs a further investigation for Ĝu with φS(Ĝu) locating on the flat parts of MS. First, the

classifier Ĝu can be reformulated as

P (Ĝu(Y) = k|L(Y) ∈ D̃) =

{
1 for D̃ = Dk(u)\∂Dk(u)

λI,k for D̃ = ∩k∈I∂Dk(u)

with I ⊂ [K] and
∑

k∈I λI,k = 1. With continuous optimal markers, the admissibility induces a

deterministic classification rule. Instead, an admissible classifier could be randomized since the

connection between admissibility and utility criterion still maintains. Second, MS remains to

be a manifold under the considered types of markers. Since MS(u) ⊂ HS(supĜ∈C u>φS(Ĝ),u),

the identity mapping from MS(u) to HS ensures that the set MS(u) is structurally similar to

Euclidean space, and its differentiable structure follows. For Ym ∈ ∩k∈I∂Dk(u), Ĝu is randomly

generated from a multinomial distribution with parameters λI,k’s. The empirical estimator of
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MS is naturally replaced by

p̂jk(Ĝu) = n̂−1k

n∑
m=1

1(Ĝu(Ym) = j)1(Gm = k).

Similar modification in the estimators can be made, and their functional asymptotic properties

hold because the VC dimension of the family of Ĝu is unchanged. Finally, the characterization

of HUM is still sound since the conditions we established before for the well-definition and well-

behavior of HUM do not rely on the continuity assumption of L(Y). Following the proof of

Theorem 3.2, we can further verify the equality HUM = CP , although tediously, by separately

considering the two sets of L(Y) having probability mass or not. To avoid generating random

quantity for Ĝ(Yk)’s, the kernel hS(Y1, . . . ,YK) of V̂ can be slightly simplified as∏
I⊂[K]

[1 + (#I!−1 − 1)1(∃ u : ∩k/∈I{L(Yk) ∈ Dσ(k)(u)\∂Dσ(k)(u)})

· 1(∃ u : L(Yk) ∈ ∩k∈I∂Dσ(k)(u)\ ∪k/∈I Dσ(k)(u))].

Thus, the modified U -estimator for V is still consistent. However, for model-based inference,

the asymptotic normality of V̂ (θ̂) may not remain due to the violation of an applied model.

6.3 Comparisons among Optimal ROC Manifolds

Once optimal ROC manifolds are built up, we now return to the motivating interest in this

article: drawing a fair comparison among markers. For this purpose, testing the equality

between the HUMs V1 of Y1 and V2 of Y2 can be simply establish. Their optimal ROC

manifolds M1 and M2 are different whenever V1 6= V2. In addition, V1 = V2 ensures M1 = M2 if

the two manifolds do not cross each other. Consider that Y2 contains only partial information

of Y1; that is, Y1 = g(Y2) for some function g. Since Ĝ(Y1) can be rewritten as Ĝ(g(Y2)) for

any Ĝ, there is no doubt about the relation φY1(C) ⊂ φY2(C). Thus, it suffices to evaluate the

difference between V1 and V2. In application, researchers would be interested in comparison

between Y1 and Y2 = (Y>1 , Y
∗)>. In this case, V2 − V1 can be interpreted as the marginal
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discriminability of Y ∗, which provides a reference for practitioners to decide the necessity of Y ∗

in classification. An estimator V̂2 − V̂1 for the difference V2 − V1 is naturally proposed and its

asymptotic properties are inherited from V̂1 and V̂2.

Without the mentioned relation between Y1 and Y2, HUMs are unable to fully represent

discrepancy between markers in performance. A justifiable approach becomes urgently neces-

sary and important. It is naturally proposed to test M∗
S(S\pij) via comparing pij with other

performance probabilities being fixed, or MS(u) via examining the difference of performance of

optimal classifiers over utility criteria u. Similar to the inference for difference between HUMs,

the discrepancy of the manifolds M1 and M2 can be estimated by M̂∗
S,1(S\pij)− M̂∗

S,2(S\pij) or

M̂S,1(u)− M̂S,2(u). Their practicality and powers remain for future research.
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A Appendix

A.1 Proof of Lemma 3.1

Let Y(k) be a marker from the kth class with its realization being denoted by y(k). For the

identity σ0, suppose that {L(y(k))}Kk=1 can be correctly classified by one classifier Ĝu with

respective to c(u) = (c1, . . . , cK−1)
>. That is, we have the inequalities

Lij(y
(j)) ≤ ci/cj ≤ Lij(y

(i)) (17)

for all i, j with i ≤ K − 1 and cK = 1. It follows from (17) that

Lij(y
(j)) ≤

o(σ)−1∏
k=0

cσk(i)

cσk+1(i)

≤ Lij(y
(i)) (18)

for non-identity σ’s, where o(σ) = arg mink{σk(j) = j ∀j}. Trough tedious algebra, the roles

of ci’s in (18) can be eliminated and the inequalities can be further simplified as

o(σ)−1∏
k=0

Lσk(i)σk+1(i)(y
(σk(i))) ≥ 1,

which implies that
∏K

k=1 fk(y
(k)) ≥

∏K
k=1 fk(y

(σ(k))). Similarly, the proof for the converse part

can be completed by showing⋂
σ

{c : ci/cσ(i) ∈ [Lσ(i)i(y
(σ(i))),

o(σ)−1∏
k=0

Lσk(i)σk+1(i)(y
(i))]} 6= ∅.

As for the general permutation σ0, we first substitute y(k) by y(σ0(k)) and σ by σ(σ−10 ). Along

the same lines as the above proof, the lemma is directly obtained.

A.2 Proof of Theorem 3.2

Without loss of generality, we consider S = {p11, . . . , pKK}. Let ` = L(y) and `(k) = L(y(k)).

For S = {pkσ(k) : σ(k) 6= k}Kk=1, the proof can be accomplished in the same manner by replacing

y(k) with y(σ(k)). By definition, the HUM can be expressed as an integral with respect to the
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critical point c(u) ∈ D as follows:

VS =

∫
RK−1

pKK(Ĝu(c))| det J(c)|dc, (19)

where J(c) = ∂c(p11(c), . . . , p(K−1)(K−1)(c)). Here, the (i, j)th element Jij(c) in J(c) can be

explicitly derived to be

Jij(c) =

∫
Hij(c)

fLi
(`)d`− δij

K∑
k=1

∫
Hik(c)

fLi
(`)d`

with Hij(c) = Di(u(c)) ∩Dj(u(c)). Since it is a weighted Laplacian submatrix in the sense of

graph theory, the matrix-tree theorem (Beineke and Wilson, 2004) enables us to calculate its

determinant as

det J(c) = (−1)K
∑

T⊂G[K]

∏
(i,j)∈T

∫
Hij(c)

fLi
(`(i))d`(i) (20)

= (−1)K
∫
H(c)

K−1∏
k=1

fLk
(`(k))d(`(1), . . . , `(K−1)),

where T is a spanning tree of G[K], a directed graph with the vertex set [K] and the weighted

edges Jij(c), and H(c) =
⋃
T∈G[K]×(i,j)∈THij(c). By replacing det J(c) in (19) with (20), we

can immediately obtain that

VS =

∫
H(c)×DK(u(c))

fX(x)dx,

where X = (L(Y(1)), . . . , L(Y(K)))> and fX denotes the joint probability density function of X.

Moreover, it follows from Lemma 3.1 that the remaining work of this proof is to demonstrate

the equality

{(c,x) : x ∈ H(c)×DK(u(c))} = {(c,x) : `(k) ∈ Dk(u(c)) ∀k = 1, . . . , K}.

Obviously, the containing relation “⊂” is trivial. Conversely, for given realization x, we specify

c = arg max
c∗

{P (L(Y(K)) ∈ DK(u(c∗))) : c∗i /c
∗
j ∈ [`

(j)
i /`

(j)
j , `

(i)
i /`

(i)
j ]>∀i, j, c∗K = 1}.

Let G∗ be a graph with the vertex set [K] and the edge set {(i, j) : `(i) ∈ Hij(c), i = 1, . . . , K−

1}. Suppose that G∗ contains no tree as its subgraph and so some vertex, say i0, is isolated.

26



There exists cδ = (c1, . . . , ci0 + δ, . . . , cK)> with δ > 0 satisfying cδi/cδj ∈ [`
(j)
i /`

(j)
j , `

(i)
i /`

(i)
j ] for

all i, j, and P (L(Y(K)) ∈ DK(u(cδ))) > P (L(Y(K)) ∈ DK(u(c∗))). This contradicts what we

suppose and, hence, x ∈ H(c)×DK(u(c)). Thus, the proof is completed.

A.3 Proof of Theorem 3.3

By the law of large numbers and the compactness of Θ, it yields that

V̂ (θ) = V̂ ∗(θ)(1 + rn(θ)), (21)

where

V̂ ∗(θ) = (
K∏
k=1

nk)
−1

∑
{i1,...,iK}⊂[n]

hS(Yi1 , . . . ,YiK ;θ)
K∏
k=1

1(Gik = k)

and supθ∈Θ |rn(θ)| = op(1). With the asymptotic equivalence in (21), the remaining work is to

establish the asymptotic normality of n1/2(V̂ ∗(θ̂)− V̂ ∗(θ0)). Define

Q(X,θ,θ′) = |hS(Y(1), . . . ,Y(K);θ)− hS(Y(1), . . . ,Y(K);θ′)|.

By Theorem 2.13 in Randles (1982), it suffices to show that for any ε > 0

E[ sup
‖θ−θ′‖<ε

Q(X,θ,θ′)] ≤ λ0ε (22)

and

lim
ε→0+

E[ sup
‖θ−θ′‖<ε

Q2(X,θ,θ′)2] = 0 (23)

for some constant λ0. Obviously, (23) is a direct result of (22) because Q(X,θ,θ′) is bounded.

Since a sufficient condition for Q(X,θ,θ′) = 0 can be stated as that there exists c′ =

(c′1, . . . , c
′
K−1)

> such that both g(y(k);θ) and g(y(k);θ′) belong to Dσ(k)(u(c)) for some σ and

all c satisfying e−λ1ε < (
∑K−1

k=1 c
2
k/c
′2
k )1/2 < eλ1ε for some λ1 > 0. Similar to (17), such a c′

exists if

gjk(y
(k);θ)e−λ1ε ≤ cj/ck ≤ gjk(y

(j);θ)eλ1ε. (24)

Along the same lines as the proof of Lemma 3.1, the inequality in (24) can be ensured through

the simplified condition
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o(σ)−1∏
k=0

gσk(i)σk+1(i)(y
(σk(i));θ) ≥ e2Kλ1ε (25)

for all non-identity σ’s. Hence, Q(X,θ,θ′) = 1 implies the negation of (25) as

e−2Kλ1ε <
K∏
k=1

gkσ(k)(y
(k);θ) < e2Kλ1ε (26)

for all σ. Let DM = D ∩ BM(0)\B1/M(0) satisfying P (g(Y(k);θ) /∈ DM) < η for given η > 0,

where BM(0) is a ball centered at the origin and with radius M > 1. We can further derive

from (26) that

E[Q(X,θ,θ′)] (27)

≤ E[Q(X,θ,θ′)
K∏
k=1

1(g(Y(k);θ) ∈ DM)] + P (∃ g(Y(k);θ) /∈ DM)

≤ P (g(Y(k);θ) ∈ ∩K−1k=1 Hk,ε(c) ∩ DM) +Kη

< (2M)K−2(K − 1)P (‖ ln
g(Y(k);θ)

g(Y(k);θ′)
‖ < 4Kλ1ε) +Kη,

where Hk,ε(c) = {c′ : |ck/c′k| < e2Kλ1ε} and c can be determined by {y(1), . . . ,y(K−1)}. By

setting λ0 = 2KMK−2K(K − 1)λ1 in (27) and choosing a suitable λ1 for a log-Lipschitz contin-

uoity, the inequality (22) is automatically satisfied. The compactness of Θ and infy g(y;θ) > 0

on DM ensure the log-Lipschitz continuity from the Lipschitz continuity and, hence, one can

conclude that
√
n(V̂ ∗(θ̂)− V ∗(θ0))

d−→ N(0, ξ(θ0)).

Together with (21), the asymptotic normality of V̂ (θ̂) is as claimed.
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Table 1: Estimation for V (θ0) by V̂ (θ0) under multinomial logistic regression

(ρ, V (θ0)) (0.2, 0.672) (0.5, 0.616) (0.8, 0.517)

n mean sd se mean sd se mean sd se

150 0.671 0.0527 0.0512 0.618 0.0517 0.0526 0.516 0.0534 0.0535
300 0.671 0.0359 0.0360 0.615 0.0373 0.0371 0.517 0.0374 0.0377
450 0.672 0.0291 0.0293 0.616 0.0302 0.0302 0.517 0.0315 0.0307
600 0.672 0.0256 0.0253 0.616 0.0259 0.0262 0.517 0.0264 0.0266

Table 2: Estimation and inference procedures for V (θ0) by V̂ (θ̂) under multinomial logistic
regression

ρ n mean sd se QI Lq CIz Lz Ecp

0.2

150 0.684 0.0521 0.0503 (0.5830,0.7839) 0.2009 (0.5820,0.7862) 0.2042 0.924
300 0.678 0.0356 0.0357 (0.6047,0.7472) 0.1426 (0.6084,0.7481) 0.1397 0.940
450 0.676 0.0289 0.0292 (0.6203,0.7318) 0.1115 (0.6198,0.7330) 0.1132 0.944
600 0.676 0.0254 0.0253 (0.6253,0.7252) 0.0999 (0.6259,0.7256) 0.0997 0.939

0.5

150 0.633 0.0514 0.0520 (0.5299,0.7356) 0.2057 (0.5319,0.7334) 0.2014 0.928
300 0.623 0.0370 0.0369 (0.5482,0.6935) 0.1453 (0.5501,0.6953) 0.1452 0.940
450 0.621 0.0302 0.0301 (0.5626,0.6792) 0.1166 (0.5619,0.6802) 0.1183 0.937
600 0.620 0.0258 0.0261 (0.5689,0.6693) 0.1003 (0.5691,0.6704) 0.1013 0.948

0.8

150 0.533 0.0527 0.0533 (0.4311,0.6369) 0.2057 (0.4299,0.6364) 0.2065 0.935
300 0.525 0.0373 0.0376 (0.4516,0.5987) 0.1471 (0.4519,0.5983) 0.1464 0.943
450 0.522 0.0313 0.0307 (0.4638,0.5857) 0.1219 (0.4610,0.5837) 0.1227 0.942
600 0.521 0.0262 0.0266 (0.4701,0.5707) 0.1006 (0.4694,0.5722) 0.1028 0.956
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Table 3: Estimation for V (θ0) by V̂ (θ0) under the multivariate normal markers with the
common covariance matrix

(ρ, V (θ0)) (0.2, 0.614) (0.5, 0.664) (0.8, 0.831)

n mean sd se mean sd se mean sd se

150 0.615 0.0530 0.0523 0.665 0.0507 0.0499 0.833 0.0360 0.0362
300 0.614 0.0365 0.0369 0.665 0.0350 0.0352 0.833 0.0254 0.0255
450 0.614 0.0304 0.0301 0.665 0.0285 0.0287 0.832 0.0208 0.0208
600 0.614 0.0263 0.0260 0.664 0.0245 0.0248 0.830 0.0182 0.0181

Table 4: Estimation and inference procedures for V (θ0) by V̂ (θ̂) with pooled and group-specific
covariance estimates under the multivariate normal markers with the common covariance matrix

Pooled Covariance Matrix Estimate

ρ n mean sd se QI Lq CIz Lz Ecp

0.2

150 0.626 0.0525 0.0517 (0.5237,0.7262) 0.2025 (0.5227,0.7286) 0.2060 0.930
300 0.619 0.0365 0.0367 (0.5486,0.6904) 0.1418 (0.5477,0.6908) 0.1431 0.950
450 0.618 0.0303 0.0300 (0.5586,0.6756) 0.1170 (0.5586,0.6774) 0.1188 0.945
600 0.617 0.0261 0.0260 (0.5652,0.6679) 0.1027 (0.5658,0.6682) 0.1023 0.946

0.5

150 0.674 0.0502 0.0494 (0.5754,0.7659) 0.1906 (0.5758,0.7725) 0.1967 0.936
300 0.670 0.0350 0.0350 (0.6006,0.7368) 0.1362 (0.6015,0.7386) 0.1371 0.946
450 0.668 0.0284 0.0286 (0.6117,0.7235) 0.1117 (0.6127,0.7240) 0.1114 0.944
600 0.667 0.0245 0.0248 (0.6185,0.7137) 0.0952 (0.6187,0.7149) 0.0962 0.952

0.8

150 0.837 0.0357 0.0358 (0.7630,0.9012) 0.1382 (0.7669,0.9068) 0.1399 0.920
300 0.833 0.0254 0.0255 (0.7816,0.8809) 0.0994 (0.7829,0.8826) 0.0998 0.937
450 0.833 0.0207 0.0207 (0.7920,0.8729) 0.0809 (0.7924,0.8735) 0.0811 0.945
600 0.831 0.0181 0.0180 (0.7953,0.8652) 0.0699 (0.7956,0.8664) 0.0709 0.947

Group-Specific Covariance Matrix Estimate

ρ n mean sd se QI Lq CIz Lz Ecp

0.2

150 0.647 0.0512 0.0507 (0.5474,0.7473) 0.1999 (0.5463,0.7468) 0.2005 0.877
300 0.629 0.0360 0.0364 (0.5588,0.6983) 0.1394 (0.5586,0.6999) 0.1413 0.928
450 0.625 0.0300 0.0298 (0.5649,0.6815) 0.1167 (0.5659,0.6835) 0.1175 0.933
600 0.622 0.0260 0.0258 (0.5702,0.6722) 0.1020 (0.5711,0.6729) 0.1017 0.935

0.5

150 0.694 0.0483 0.0481 (0.5988,0.7852) 0.1864 (0.5997,0.7890) 0.1893 0.878
300 0.680 0.0344 0.0346 (0.6125,0.7439) 0.1314 (0.6120,0.7470) 0.1350 0.930
450 0.674 0.0281 0.0284 (0.6196,0.7298) 0.1102 (0.6193,0.7296) 0.1102 0.932
600 0.672 0.0245 0.0246 (0.6237,0.7180) 0.0944 (0.6235,0.7195) 0.0960 0.940

0.8

150 0.849 0.0340 0.0341 (0.7748,0.9108) 0.1360 (0.7824,0.9159) 0.1335 0.880
300 0.839 0.0250 0.0249 (0.7887,0.8852) 0.0965 (0.7899,0.8878) 0.0978 0.914
450 0.837 0.0205 0.0204 (0.7967,0.8761) 0.0794 (0.7968,0.8770) 0.0802 0.918
600 0.834 0.0179 0.0178 (0.7986,0.8678) 0.0692 (0.7989,0.8691) 0.0702 0.937
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Table 5: Estimation for V (θ0) by V̂ (θ0) based on optimal classification procedures under a
MLR model and non-MLR models

MLR True Mild Violation Serious Violation
V (θ0) 0.408 0.387 0.406

n mean sd se mean sd se mean sd se

150 0.410 0.0482 0.0481 0.386 0.0484 0.0482 0.408 0.0502 0.0505
300 0.407 0.0337 0.0337 0.388 0.0340 0.0338 0.406 0.0354 0.0354
450 0.407 0.0270 0.0274 0.388 0.0277 0.0276 0.405 0.0289 0.0289
600 0.407 0.0234 0.0237 0.387 0.0242 0.0238 0.407 0.0254 0.0250

Table 6: Estimation and inference procedures for V (θ0) by V̂ (θ̂) based on optimal and sequen-
tial classification procedures under a MLR model and non-MLR models

Optimal Classification

MLR n mean sd se QI Lq CIz Lz Ecp

True

150 0.414 0.0472 0.0485 (0.3253,0.5111) 0.1858 (0.3210,0.5061) 0.1851 0.955
300 0.408 0.0336 0.0338 (0.3446,0.4758) 0.1312 (0.3422,0.4740) 0.1318 0.950
450 0.408 0.0276 0.0274 (0.3542,0.4615) 0.1073 (0.3542,0.4623) 0.1081 0.950
600 0.407 0.0234 0.0237 (0.3623,0.4528) 0.0905 (0.3614,0.4529) 0.0916 0.954

150 0.392 0.0480 0.0485 (0.3017,0.4877) 0.1859 (0.2976,0.4856) 0.1880 0.950
Mild 300 0.390 0.0342 0.0340 (0.3251,0.4580) 0.1328 (0.3230,0.4570) 0.1340 0.945
Vio. 450 0.389 0.0277 0.0276 (0.3374,0.4450) 0.1076 (0.3347,0.4432) 0.1086 0.950

600 0.388 0.0244 0.0239 (0.3425,0.4379) 0.0954 (0.3400,0.4356) 0.0956 0.948

150 0.417 0.0493 0.0508 (0.3235,0.5129) 0.1893 (0.3200,0.5133) 0.1933 0.956
Serious 300 0.410 0.0349 0.0354 (0.3432,0.4790) 0.1358 (0.3417,0.4787) 0.1369 0.952

Vio. 450 0.408 0.0288 0.0289 (0.3528,0.4654) 0.1125 (0.3514,0.4645) 0.1131 0.949
600 0.409 0.0253 0.0250 (0.3627,0.4587) 0.0960 (0.3590,0.4583) 0.0993 0.950

Sequential Classification

MLR n mean sd se QI Lq CIz Lz Ecp

True

150 0.410 0.0478 0.0481 (0.3206,0.5055) 0.1849 (0.3164,0.5038) 0.1874 0.949
300 0.407 0.0337 0.0337 (0.3446,0.4758) 0.1312 (0.3412,0.4732) 0.1321 0.948
450 0.408 0.0275 0.0274 (0.3546,0.4615) 0.1068 (0.3540,0.4619) 0.1079 0.950
600 0.407 0.0234 0.0237 (0.3628,0.4527) 0.0899 (0.3612,0.4527) 0.0915 0.954

150 0.386 0.0487 0.0476 (0.2903,0.4835) 0.1932 (0.2903,0.4811) 0.1908 0.937
Mild 300 0.387 0.0341 0.0335 (0.3219,0.4569) 0.1350 (0.3201,0.4539) 0.1338 0.940
Vio. 450 0.387 0.0276 0.0273 (0.3355,0.4430) 0.1075 (0.3333,0.4416) 0.1083 0.948

600 0.386 0.0240 0.0236 (0.3419,0.4346) 0.0927 (0.3394,0.4334) 0.0939 0.947

150 0.283 0.0600 0.0438 (0.1580,0.3891) 0.2311 (0.1655,0.4007) 0.2352 0.310
Serious 300 0.284 0.0470 0.0309 (0.1683,0.3565) 0.1882 (0.1919,0.3761) 0.1842 0.068

Vio. 450 0.287 0.0382 0.0255 (0.1812,0.3462) 0.1650 (0.2126,0.3622) 0.1496 0.017
600 0.290 0.0330 0.0221 (0.1863,0.3390) 0.1528 (0.2248,0.3542) 0.1294 0.004
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(a) M̂S\p44
(b) M̂S\p33

(c) M̂S\p22
(d) M̂S\p11

Figure 1: Estimated optimal ROC manifolds based on AST , ALT , and GLDH
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Table 7: Estimates for VS based on optimal transformations of AST , ALT , and GLDH

Classes V̂S se LB UB Classes V̂S se

{1,2,3,4} 0.601 0.0520 0.376 0.785 {1,2} 0.961 0.0217
{1,2,3} 0.942 0.0254 0.457 0.961 {1,3} 0.995 0.0043
{1,2,4} 0.944 0.0264 0.455 0.961 {1,4} 0.987 0.0129
{1,3,4} 0.811 0.0446 0.421 0.814 {2,3} 0.981 0.0103
{2,3,4} 0.785 0.0457 0.418 0.814 {2,4} 0.983 0.0132

{3,4} 0.814 0.0449

(a) Pointwise confidence bands (3) (b) Simultaneous confidence bands (7)

Figure 2: Estimated optimal ROC curves (solid line) for p33 and p44 with p22 = 0.20, 0.50, and

0.98 embedded in M̂S and the 0.95 confidence bands of MS ∩ {pkk ≥ 0.1, k = 2, 3, 4} around
the curves

33


