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Abstract

In this paper, we introduce the concept of k-power domination which is a
common generalization of domination and power domination. We extend
several known results for power domination to k-power domination. Con-
cerning the complexity of the k-power domination problem, we first show
that deciding whether a graph admits a k-power dominating set of size at
most t is NP-complete for chordal graphs and for bipartite graphs. We then
give a linear algorithm for the problem on trees. Finally, we propose sharp
upper bounds for the power domination number of connected graphs and of
connected claw-free (k + 2)-regular graphs.
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1. Introduction

In this paper we only consider simple graphs, that are graphs without
multiple edges or loops. Let G be a graph with vertex set V (G) and edge set
E(G). We use the following definitions.
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The open neighbourhood of a vertex v, denoted NG(v), is the set of vertices
adjacent to v, namely NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The closed neigh-
bourhood of v is NG[v] = NG(v)∪{v}. The open (resp. closed) neighbourhood
of a set S ⊆ V is the union of the open (resp. closed) neighbourhoods of
its elements: NG(S) =

∪
v∈S NG(v) and NG[S] =

∪
v∈S NG[v] = NG(S) ∪ S.

When G is clear from context, we use N instead of NG. The degree of a
vertex v, denoted d(v), is the size of its open neighbourhood |N(v)|. The
maximum degree of the graph G is denoted by ∆(G).

A dominating set of a graph G is a set of vertices S such that N [S] =
V (G). The domination number of a graph G, denoted γ(G), is the minimum
cardinality of a dominating set of G. The dominating set problem, that is
deciding whether a graph admits a dominating set of size at most t, is NP-
complete [4, 7] (even restricted to bipartite or chordal graphs).

Power domination was introduced in [3, 13] to model a problem of moni-
toring electrical networks. It was then described as a graph theoretical prob-
lem in [10]. The problem is similar to a problem of domination, in which,
additionally, the possibility of some propagation according to Kirschoff laws is
considered. The definition of power domination, originally asking to monitor
both edges and vertices, was simplified to the following, introduced indepen-
dently in [5, 6].

Let G be a graph and S a subset of its vertices. The set monitored by S,
denoted by M(S), is defined algorithmically as follows:

• (domination) M(S)← S ∪N(S),

• (propagation) as long as there exists v ∈M(S) such thatN(v)∩(V (G)−
M(S)) = {w}, set M(S)←M(S) ∪ {w}.

In other words, the set M(S) is obtained from S as follows. First put into
M(S) the vertices from the closed neighbourhood of S. Then repeatedly add
to M(S) vertices w that have a neighbour v in M(S) such that all the other
neighbours of v are already in M(S). After no such vertex w exists, the set
monitored by S has been constructed. The set S is called a power dominating
set of G if M(S) = V (G) and the power domination number γP(G) is the
minimum cardinality of a power dominating set.

This definition implies some propagating behaviour of the set of moni-
tored vertices, a phenomenon very different from the standard domination
parameter. Different works were started on the topic. From the algorithmic
point of view, the power domination problem was known to be NP-complete
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[1, 2, 8, 9, 10] and approximation algorithms were given in [2]. On the other
hand, linear-time algorithms for the power domination problem were given
for trees [10], for interval graphs [12] and for block graphs [15]. Parameter-
ized results were given in [11]. The exact values for the power domination
numbers are determined for various products of graphs [5, 6]. Bounds for
the power domination numbers of connected graphs and of claw-free cubic
graphs are given in [17] and for planar or outerplanar graphs with bounded
diameter in [16].

Let k be a nonnegative integer. Let us introduce k-power domination,
using a definition of monitored set close to what Aazami proposed in [1].

Definition 1 (Monitored set). Let G be a graph and S ⊆ V (G). We
define the sets

(
P i

G(S)
)
i≥0

of vertices monitored by S at step i by the following
rules.

• P0
G(S) = N [S].

• P i+1
G (S) = ∪{N [v] : v ∈ P i

G(S) such that
∣∣N [v] \ P i

G(S)
∣∣ ≤ k}.

Remark that P i
G(S) ⊆ P i+1

G (S) ⊆ V (G) for any i. Moreover, every time
a vertex of the set P i

G(S) has at most k neighbours outside the set, we add
its neighbours to the next generation P i+1

G (S).
If P i0

G (S) = P i0+1
G (S) for some i0, then Pj

G(S) = P
i0
G (S) for any j ≥ i0.

We thus define P∞
G (S) = P i0

G (S).

Definition 2 (k-power dominating set). A set S such that P∞
G (S) =

V (G) is a k-power dominating set of G. The least cardinality of such a set is
called the k-power domination number of G, written γP,k(G). A γP,k(G)-set
is a minimum k-power dominating set of G.

When G is clear from context, we will use P i(S) to denote P i
G(S). From

this definition, the following observation clearly holds.

Observation 3. Let G be a graph and S, S ′ ⊆ V (G). If P i(S) ⊆ Pj(S ′) for
some integers i and j, then P i+1(S) ⊆ Pj+1(S ′) and so P∞(S) ⊆ P∞(S ′) by
extension. In particular, if S is a k-power dominating set of G, then so is
S ′.
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We introduce k-power domination as a natural generalization of power
domination, with correspondence when k = 1. It also generalizes usual dom-
ination, for k = 0. Whereas power domination seemed a problem of very
different type than domination, it is remarkable how this generalization uni-
fies the two problems. First, the algorithm we propose here for computing a
k-power dominating set of a tree is closely related to the algorithm proposed
for domination in [14], whereas the algorithm proposed for power domina-
tion in [10] was identifying spiders in the tree, a very different technique.
Moreover, the bound in Theorem 11 is a very natural generalization of the
original classical bound for domination in graphs with no isolated vertices,
and the examples of graphs reaching the bound are similar to the coronas,
which are graph reaching the bound for domination. Similarly, Lemma 10 is
a non trivial generalization of the fact that a dominating set in a graph is
minimal only if each of its vertices has a private neighour.

These similarities make generalized power domination shed a new light
on power domination. It seems that one might use this new approach to
extend some of the numerous results known for domination to the applied
problem of power domination.

The paper is organized as follows. Section 2 is dedicated to complexity
results; we show that the k-power domination number is an NP-complete
problem even in the case of chordals graphs or bipartite graphs and we give
a linear time algorithm computing γP,k(G) when G is a tree.

In Section 3, we prove that, for any connected graph G of order n,
γP,k(G) ≤ n

k+2
, and we show the sharpness of the bound. Also we show

that, for any claw-free (k + 2)-regular graph of order n, γP,k(G) ≤ n
k+3

, and
we characterize the graphs achieving this last bound.

2. Complexity results

For any graph G and any nonnegative integer k, let Gk be the graph
obtained from G by adding k new neighbours to each vertex of G. By the
construction of Gk, we get γP,k(Gk) = γ(G). Notice that if G is chordal (or
bipartite), then so is Gk. The NP-completeness of the domination problem
[7] gives the following result.

Theorem 4. The k-power domination problem, that is deciding whether a
graph admits a k-power dominating set of size at most t, is NP-complete for
chordal graphs and for bipartite graphs.
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A linear algorithm for trees

We now give a linear-time algorithm for the k-power domination problem
on trees. We in fact solve a slightly more general problem.

The algorithm we propose is largely inspired by the algorithm proposed
in [14] for domination. The main idea is to put labels on the vertices, then it-
eratively deleting the leafs, recording all useful information about the deleted
subtree within the labels on the parent vertex.

We use two labels for each vertex v, denoted av and bv. The first label
av conveys the same partition idea as in [14]. The vertex set of the graph is
partitioned into three sets R,B and F corresponding to labels R, B and F.
We assign a vertex the label R (for required) when the optimal choice is to
put the corresponding vertex in the k-power dominating set, B (for bound)
when the vertex is not yet monitored in any way, and F (for free) when the
vertex is already monitored.

The second label bv is an integer, useful only for states F and B. When
a vertex gets monitored, it may be used for propagation, but to at most k
neighbours. This second label bv denotes how many neighbours the corre-
sponding vertex may still propagate to. This label may only decrease one by
one when we require a propagation from the corresponding vertex.

Formally, to each vertex v of G we associate a label L(v) = (av, bv)
where av ∈ {B,F,R} and bv ∈ {0, 1, . . . , k}. An L-power dominating set of
G = (V,E) is a subset S of V such that v ∈ S for all vertices v with av = R,
where the sets

(
P i

G,L(S)
)
i≥0

of vertices monitored by S at step i are defined
by the following rules.

• P0
G,L(S) = N [S] ∪ {v : av = F}.

• P i+1
G,L(S) = P i

G,L(S) ∪ {N [v] : v ∈ P i
G,L(S) such that |N [v] \ P i

G,L(S)| ≤
bv}.

When v ∈ P i
G,L(S) satisfies |N [v] \ P i

G,L(S)| ≤ bv, we say that v satis-
fies the L-propagating condition (for short L-PC). The L-power domination
number of G, denoted γP,L(G), is defined as the least cardinality of a L-power
dominating set of G. A γP,L(G)-set denotes a minimum L-power dominating
set of G.

Remark that when all L(v) = (B, k), L-power domination is the same as
the k-power domination. Having this general setting in mind, we now have
the following theorem from which one can infer a linear-time algorithm for
computing a minimum L-power dominating set of a tree.
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Theorem 5. Consider a graph G = (V,E) and a vertex labeling L. Suppose
x is a vertex adjacent to only one other vertex y. If G′ = G − x and L′ is
the restriction of L on V ′ = V \ {x} with modification on L′(y) as indicated
below, then the following statements hold.

(1) If ax = R, then γP,L(G) = γP,L′(G′) + 1, where a′y is redefined to be F
when ay = B.

Otherwise, we assume ax ̸= R for (2) to (5).

(2) If (ay = R) or (ax = F and bx = 0), then γP,L(G) = γP,L′(G′).

(3) If ax = B and by > 0, then γP,L(G) = γP,L′(G′), where b′y is redefined
to be by − 1.

(4) If ax = B and by = 0, then γP,L(G) = γP,L′(G′), where a′y is redefined
to be R.

(5) Otherwise, if ax = F, bx > 0 and ay ̸= R, then γP,L(G) = γP,L′(G′),
where a′y is redefined to be F.

An example of application of these rules for 2-power domination is de-
picted in Figure 1: the labels obtained from deleting the leaves bottom-up,
from left to right are given.

(B,2) (B,2) (B,2)(B,2)(B,2)(B,2)

(B,2) (B,2) (B,2)

(B,2)

(B,0)

(R,0)

(F,1)

(F,1)

(R,0)

Figure 1: Example of labels after application of the algorithm.

Proof: (1) Suppose S is a γP,L(G)-set. Since the label ax is R, x is necessarily
in S. Let S ′ = S \ {x}. We prove by induction on i that for any step i,
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P i
G′,L′(S ′) = P i

G,L(S) \ {x}. Clearly, since a′y was redefined not to be B,
this is true initially, for i = 0. Suppose the property is true until some step
i ≥ 0. Let v ∈ P i

G,L(S) \ {x}. By induction hypothesis, v ∈ P i
G′,L′(S ′) and

NG[v] \ P i
G,L(S) = NG′ [v] \ P i

G′,L′(S ′). Added to the fact that the bv are
unchanged, we obtain that if v satisfies the L-PC in G, it also satisfies the
L′-PC in G′, and vice versa. Thus, P i

G′,L′(S ′) = P i
G,L(S)\{x} for all i and so

S ′ is an L′-power dominating set of G′. This gives γP,L(G) ≥ γP,L′(G′) + 1.
On the other hand, suppose S ′ is a γP,L′(G′)-set. Let S = S ′∪{x}. Simi-

larly, P i
G,L(S) = P i

G′,L′(S ′)∪{x} for all i and so S is an L-power dominating
set of G. This gives γP,L(G) ≤ γP,L′(G′) + 1.

In the following, ax ̸= R. Suppose S is a γP,L(G)-set. We may assume that
x /∈ S, for otherwise the set S† = S \ {x} ∪ {y} satisfies that P0

G,L(S) ⊆
P0

G,L(S
†) and so S† is a γP,L(G)-set which can be used to replace S.

(2) First remark that if ay = R, then the property clearly holds. Suppose
now that ax = F and bx = 0.

Consider a subset of vertices S not containing x. We claim that P i
G′,L′(S)∪

{x} = P i
G,L(S) for all i. Clearly, this is true for i = 0. Suppose it is true

until some step i ≥ 0. We check that any vertex satisfying the L′-PC in G′

at step i also satisfies the L-PC in G, and vice versa. The only vertex that
may satisfy the L′-PC in G′ but not the L-PC in G is y. But since ax = F ,
x ∈ P0

G,L(S) ⊆ P i
G,L(S), and therefore NG[y] \ P i

G,L(S) ⊆ NG′ [y] \ P i
G′,L′(S).

By induction hypothesis, any vertex (different from x) satisfying the L-PC
in G satisfies the L′-PC in G′. In the case of x, since bx = 0, the satisfaction
of the L-PC is not relevant for the computation of the monitored set at the
next step.

(3) Consider a γP,L(G)-set S not containing x. We claim that S is a
L′-power dominating set of G′. To prove it, we show that for any i ≥ 0,
P i

G,L(S) \ {x} ⊆ P i
G′,L′(S). Clearly, this is true when i = 0. Suppose it is

true until step i. Let v ̸= x satisfy the L-PC condition in G. If v ̸= y, then
bv = b′v and v satisfies the L′-PC in G′ by induction hypothesis. Suppose
now that y satisfies the L-PC.

First assume that x ∈ P i
G,L(S). Then, either x ∈ P0

G,L(S), which implies
that y ∈ S andN [y] ⊆ P0

G,L(S), or x was added later, meaning that y satisfied
the L-PC in G at some earlier step i∗ < i. In both cases, NG[y] ⊆ P i

G,L(S)
and by induction hypothesis, NG′ [y] ⊆ P i

G′,L′(S ′), thus y also satisfies the
L′-PC condition in G′ (b′y ≥ 0).
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Suppose now that x /∈ P i
G,L(S). Then NG[y] \ P i

G,L(S) = NG′ [y] \
P i

G′,L′(S)∪̇{x}. Therefore, the hypothesis that
∣∣NG[y]\P i

G,L(S)
∣∣ ≤ by implies

that
∣∣NG′ [y] \ P i

G′,L′(S)
∣∣ ≤ by − 1 = b′y, and y satisfies the L′-PC in G′.

Finally, remark that if x satisfies the L-PC in G, then x ∈ P i
G,L(S) and

as remarked above, y is also in P i
G,L(S). Therefore, this is not relevant for

the computation of the monitored set at the next step. This concludes the
proof of our claim.

Now, consider a γP,L′(G′)-set S ′. First remark that for any step i ≥ 0,
P i

G′,L′(S ′) ⊆ P i
G,L(S

′). Indeed, the only reason for this assertion not to be
true would be that at some step i, y satisfies the L′-PC in G′ but not the
L-PC in G. However, since NG[y] \ NG′ [y] = {x} and by = b′y + 1, this may
not happen. Moreover, since S ′ is a L′-power dominating set of G′, y has
to satisfy the L′-PC in G′ at some step, thus the L-PC in G, and x gets
monitored at the next step.

(4) Any L′-power dominating set S ′ of G′ contains y since a′y = R, so S ′

is also an L-power dominating set of G.
From our earlier remark, we may consider a γP,L(G)-set S that does not

contain x. Since by = 0, y may not satisfy the L-PC unless x is in P0
G,L(S).

Yet, ax = B, so for x to be in P0
G,L(S), it need to be in N [S]. Therefore, y is

in S, and S is a L′-power dominating set of G′.

(5) Suppose now that ax = F, bx > 0 and by ̸= R. For any set S not
containing x and for any step i ≥ 0, we claim that P i

G,L(S) ⊆ P i
G′,L′(S) ∪

{x} ⊆ P i+1
G,L(S), thus implying that S is a L-power dominating set of G if

and only if S is a L′-power dominating set of G′.
Since a′y = F, the only neighbour of x (namely y) is in P0

G,L(S) and the
first inclusion is easy to check.

For the second inclusion, first remark that P0
G′,L′(S) \ {y} ⊆ P0

G,L(S).
Moreover, x is in P0

G,L(S) and satisfies the L-PC in G, so y ∈ P1
G′,L′(S).

Thus, the inclusion is true for i = 0. Now, one can check that every vertex
satisfying the L′-PC in G′ at step i also satisfies the L-PC in G at step i+1.
This concludes the proof. 2

3. Bounds for k-power domination

Let G be a connected graph. We first establish that the natural relation
on the k-power domination numbers of a graph when k varies is best possible.
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We also prove that if n = |V (G)| ≥ k + 2, then γP,k(G) ≤ n
k+2

. A better
bound is also proposed when G is claw-free and (k + 2)-regular.

3.1. Relation between k- and (k + 1)-power domination

Comparing k-power domination for different values of k, we note that if
S is a k-power dominating set, then it is also a k′-power dominating set for
any larger k′. Thus, we clearly get for any graph G the following inequality
chain:

γ(G) = γP,0(G) ≥ γP,1(G) ≥ . . . ≥ γP,k−1(G) ≥ γP,k(G) ≥ γP,k+1(G) ≥ . . . .

Actually, this inequality chain cannot be improved in general, as shows the
following observation:

Observation 6. If (xk)0≤k≤n is a finite non-increasing sequence of positive
integers, then there exists a graph G such that γP,k(G) = xk for 0 ≤ k ≤ n.

Proof: For 0 ≤ k ≤ n, take xk − xk+1 copies of the star K1,k+1, where
xn+1 is set as 0, and form a complete subgraph on the centres of all these
stars. An example of such a graph for the sequence (7, 5, 5, 3, 2) is depicted
by Figure 2. One can check easily that for a given k, a k-power dominating
set must contain one vertex from each of the xk stars K1,j where j ≥ k + 1,
and that the centres of these stars form a γP,k(G)-set. 2

7
K

Figure 2: The graph for the k-power domination number sequence (7, 5, 5, 3, 2).

3.2. General bounds

In this part, we mainly prove Theorem 11, which states that any graph
G of order n satisfies γP,k(G) ≤ n

k+2
. We first need to prove the following few

lemmas.

Lemma 7. If G is connected and ∆(G) ≤ k + 1, then γP,k(G) = 1.

9



Proof: For any vertex v, we claim that S = {v} is a k-power dominating
set of G. Let w ∈ P i(S), i ≥ 0. At least one neighbour of w is in P i(S), so
|N(w) \ P i(S)| ≤ d(w)− 1 ≤ k and then N(w) ⊆ P i+1(S). This being true
for any vertex w and for any i ≥ 0, P i+1(S) = N [P i(S)]. By connectivity of
the graph, P∞(S) = V (G). 2

In the following we consider graphs with maximum degree at least k+2.

Lemma 8. If S is a k-power dominating set of G containing a vertex v of
degree at most k + 1, then (S \ {v}) ∪ {u} is also a k-power dominating set
of G for any u ∈ N(v).

Proof: Let S ′ = (S \ {v}) ∪ {u}. The set P0(S ′) contains both u and
v. Therefore,

∣∣N(v) \ P0(S ′)
∣∣ ≤ d(v) − 1 ≤ k, and N [v] ⊆ P1(S ′). Thus,

P0(S) ⊆ P1(S ′) and by Observation 3, S ′ is a k-power dominating set of G.
2

Lemma 9. If G is a connected graph with maximum degree at least k + 2,
then there exists a γP,k(G)-set containing only vertices of degree at least k+2.

Proof: The proof is based on Lemma 8. Let S be a γP,k(G)-set containing as
many vertices of degree at least k+2 as possible. Suppose S contains a vertex
v of degree at most k + 1. Let w be a vertex of degree at least k + 2 closest
to v, that is such that j = d(v, w) is minimum. Consider a shortest path
µ = (x0, x1, . . . , xj) from x0 = v to xj = w. Iteratively applying Lemma 8,
we obtain that for any 1 ≤ i ≤ j, Si = (S \ {v}) ∪ {xi} is also a k-power
dominating set of G. In particular, this is true for xj = w, thus contradicting
the assumption that S contains the maximum number of degree at least k+2
vertices, or the minimality of S. 2

For any vertex v of a subset S of V (G), the S-private neighbourhood of
v, denoted epn(v, S), is the set of neighbours of v which are not neighbours
of any vertex of S \ {v}.

Lemma 10. If G is a connected graph with ∆(G) ≥ k+ 2, then there exists
a γP,k(G)-set S such that every vertex in S has at least k + 1 S-private
neighbours, i.e., |epn(x, S)| ≥ k + 1 for x ∈ S.

Proof: Let S be a γP,k(G)-set having only vertices of degree at least k + 2
(by Lemma 9) such that G[S] has the minimum number of components. If
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every vertex x of S has |epn(x, S)| ≥ k+1, then we are done. Suppose there
exists v in S such that |epn(v, S)| ≤ k. We consider two cases:

Case 1. There exists w ∈ S adjacent to v. We claim that S ′ = S \ {v}
is a k-power dominating set of G, contradicting the minimality of S. Indeed,
since v ∈ P0(S ′) and |N(v)\P0(S ′)| = |epn(v, S)| ≤ k, N [v] ⊆ P1(S ′). Thus,
P0(S) ⊆ P1(S ′) and S ′ is a k-power dominating set of G, contradicting the
minimality of S.

Case 2. Vertex v is an isolated vertex of G[S]. Since d(v) ≥ k + 2 and
|epn(v, S)| ≤ k, there exist w ∈ N(v) and x ∈ S such that w ∈ N(x) (w is
not a S-private neighbour of x). Set S ′ = (S \ {v}) ∪ {w} if d(w) ≥ k + 2
and S ′ = S \ {v} otherwise. We claim that S ′ is a k-power dominating
set of G. Indeed, since v ∈ P0(S ′) and |N(v) \ P0(S ′)| ⊆ |epn(v, S)| ≤ k,
N [v] ⊆ P1(S ′). Thus, P0(S) ⊆ P1(S ′) and S ′ is a k-power dominating set of
G. Moreover, S ′ has one less component than S, contradicting the choice of
S. 2

As a consequence of Lemmas 7 and 10, we obtain the following theorem.

Theorem 11. If G is a connected graph of order n ≥ k + 2, then

γP,k(G) ≤ n

k + 2

and this bound is best possible.

Proof: That n
k+2

is a upper bound for the k-power domination number of G
is a direct consequence of Lemmas 7 and 10.

Let us describe graphs for which this bound is attained. Let G be any
connected graph on n vertices, denoted v1, v2, . . . , vn and let H1, H2, . . . , Hn

be a family of graphs on k + 1 vertices. We form a new graph G′ by taking
the disjoint union of all these graphs and adding edges linking vi to every
vertices of Hi.

We prove by contradiction that a k-power dominating set of such a graph
G′ must contain at least one vertex in each V (Hi)∪{vi}. Suppose there exists
some k-power dominating set S not containing any vertex in V (H1) ∪ {v1},
without loss of generality. At the beginning, no vertex of H1 is monitored,
P0(S) ∩ V (H1) = ∅. Let i be the smallest integer such that there exists
x ∈ V (H1) ∩ P i(S). It exists since S is a k-power dominating set, and
i ≥ 1. For x to be added into P i(S), it means that some vertex from
N(x) was in P i−1(S) and had at most k neighbours not in P i−1(S). Since
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N(x) ⊆ V (H1) ∪ {v1} and V (H1) ∩ P i−1(S) = ∅, this vertex is necessarily
v1. Yet N [v1] \ P i−1(S) ⊇ V (H1) which contain k + 1 vertices, contradicting
our assumption.

Therefore, a k-power dominating set ofG′ must contain at least one vertex
in each V (Hi)∪{vi}, and this is at least n vertices among the n(k+2) vertices
of G′. Note that V (G) for example is a k-power dominating set of G′. 2

3.3. Regular claw-free graphs

This subsection is dedicated to claw-free graphs. A claw-free graph is a
graph that does not contain a claw, i.e. K1,3, as an induced subgraph.

For positive integers k and r, let Dk,r be the graph obtained from the
disjoint union of r copies of Di

∼= Kk+3 − xiyi, a complete graph on k + 3
vertices minus one edge xiyi, for 1 ≤ i ≤ r by adding r edges yixi+1 (1 ≤ i ≤
r) where xr+1 = x1; see Figure 3 for Dk,6.
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2
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Figure 3: The graph Dk,6.

Theorem 12. For a positive integer k, if G is a connected claw-free (k+2)-
regular graph of n vertices, then γP,k(G) ≤ n/(k+3) with equality if and only
if G is isomorphic to Dk,r for some r ≥ 1.

Proof: Let S be a γP,k(G)-set such that (1) G[S] has as few edges as possible
and under this condition, (2) |N [S]| is as large as possible.

Claim 1. G[S] is an independent set.

12



Proof: Suppose to the contrary that there exist two adjacent vertices in
G[S], say u and v. Observe first that |epn(v, S)| = k + 1; otherwise, we
have |epn(v, S)| ≤ k and S ′ = S \ {v} is a k-power dominating set with
less vertices than S, contradicting the minimality of S. Now let w be any
S-private neighbour of v and consider S ′′ = (S \ {v})∪ {w}. The set S ′′ is a
γP,k(G)-set, but G[S ′′] contains less edges than G[S], contradicting (1). This
completes the proof of Claim 1. 2

Claim 2. If u and v are two distinct vertices of S, then |N(u)∩N(v)| ≤ 1.

Proof: Suppose to the contrary that |N(u) ∩ N(v)| ≥ 2. Let x and y be
two distinct vertices in N(u) ∩ N(v). As the graph is claw-free, G contains
either the edge xy or the edge xz or yz where z is a third neighbour of v. In
the two cases, S ′ = S \ {u} is a k-power dominating set of G with one vertex
less than S, contradicting the minimality of S. This completes the proof of
Claim 2. 2

Claim 3. Let u and v be two distinct vertices of S and x be a vertex in
N(u) ∩ N(v). Moreover assume that u and x are adjacent to a vertex y.
Then, the k+1 other neighbours z1, z2, . . . , zk+1 of v are S-private neighbours
of v, form a clique of size k + 1, and N [zi] ⊆ N [S] for 1 ≤ i ≤ k + 1, see
Figure 4.

clique

u ∈ S v ∈ S

xy z1 zk+1

Figure 4: Claim 3.

Proof: First, observe that there is no edge xzi; otherwise S ′ = S \ {v}
is a k-power dominating set with less vertices than S, contradicting the
minimality of S. Second, since the graph is claw-free, it follows that the
vertices zi’s form a clique of size k+1. If some zi belongs to N [S \{v}], then
as previously, S ′ = S \ {v} is a k-power dominating set with less vertices
than S, contradicting the minimality of S. To complete the proof, assume
that N [zi] ̸⊆ N [S] for some i. Then S ′′ = S \ {v}∪ {zi} is a γP,k(G)-set with
|N [S ′′]| > |N [S]|, contradicting (2). This completes the proof of Claim 3. 2
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Claim 4. Let v be a vertex of S with neighbourhood x, z1, z2, . . . , zk+1 such
that x is adjacent to u ∈ S \ {v} and to y with uy ∈ E(G), and such that
the vertices z1, z2, . . . , zk+1 form a clique of size k+1. Moreover assume that
z1 is linked to a vertex t which is linked to a vertex w ∈ S \ {v}. Then,
t is also linked to the vertices z2, z3, . . . , zk+1. The k + 1 other neighbours
s1, s2, . . . , sk+1 of w are S-private neighbours of w, form a clique of size
k + 1, and N [si] ⊆ N [S] for 1 ≤ i ≤ k + 1, see Figure 5.

t

u ∈ S v ∈ S

xy z1 zk+1

clique

s1 sk+1

w ∈ S

Figure 5: Claim 4.

Proof: First observe that there is no edge tsi; otherwise S
′ = S \ {v} is a k-

power dominating set with less vertices than S, contradicting the minimality
of S. It follows that, since the graph is claw-free, t is linked to all zi (1 ≤ i ≤
k+1), and that the vertices s1, s2, . . . , sk+1 form a clique of size k+1. Now,
every si is a S-private neighbour of w; otherwise, S ′′ = S \ {w} is a k-power
dominating set with less vertices than S, contradicting the minimality of S.
Finally, N [si] ⊆ N [S] for all i; otherwise, S ′′′ = S \ {v, w} ∪ {z1, si} is a
γP,k(G)-set with |N [S ′′′]| > |N [S]|, contradicting (2). This completes the
proof of Claim 4. 2

By using similar arguments, one can extend the previous claim as follows:

Claim 5. Let u, v1, v2, . . . , vi be distinct vertices of S. Every vj with 1 ≤
j ≤ i has neighbourhood ti−1, z

j
1, z

j
2, . . . , z

j
k+1. Assume for all 1 ≤ j ≤ i,

the vertices zj1, z
j
2, . . . , z

j
k+1 form a clique of size k + 1 and are linked to tj.

The vertex u is linked to two vertices y and t0, and yt0 ∈ E(G). Finally
suppose that zi1 is linked to a vertex t which is linked to a vertex vi+1 ∈
S \ {v1, v2, . . . , vi}. Then, t is also linked to the vertices zi2, z

i
3, . . . , z

i
k+1. The

k+1 other neighbours zi+1
1 , zi+1

2 , . . . , zi+1
k+1 of vi+1 are S-private neighbours of

vi+1, form a clique of size k + 1, and N [zi+1
j ] ⊆ N [S] for 1 ≤ j ≤ k + 1, see

Figure 6.
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Figure 6: Claim 5.

Claim 6. If u and v are two distinct vertices of S, then N(u) ∩N(v) = ∅.

Proof: Assume that two vertices u and v of S have a common neighbour
x. Since x must not be in a claw and by symmetry, there exists a vertex y
linked to u and x. We apply now Claims 3, 4 and repetitively Claim 5. Since
S is finite, we obtain with Claim 5 that vi+1 = u and zi+1

j = t0 for some j
which is not a S-private neighbour of vi+1, a contradiction. 2

It follows that |V (G)| ≥ γP,k(G)(k+3) and so γP,k(G) ≤ |V (G)|/(k+3).

Now observe that γP,k(Dk,r) = r = |V (Dk,r)|/(k + 3). Suppose that
γP,k(G) = |V (G)|/(k + 3). By Claim 6, one can choose S such that the
N [v]’s with v ∈ S are a partition of V (G). A vertex z ∈ N(S) is said to be
special if there are two distinct vertices u and v in S such that z is linked to
v and N(z) ⊆ N(u) ∪ {v}.

Claim 7. Let u and v be two distinct vertices of S. Assume that u is adjacent
to two adjacent vertices x and y. Finally, let z be a vertex adjacent to x and
v. Then, z is special. Moreover G[N(v) \ {z}] is a clique of size k + 1 and
so it is for G[N(z) ∩N(u)].

Proof: Suppose that z is not special. Then, N(z) contains at most k vertices
ofN(u). Let r be a vertex inN(z)\(N(u)∪{v}). By the choice of S, r belongs
to N(S) (like every vertex not in S). It follows that S ′ = S \{u} is a k-power
dominating set having less vertices than S, contradicting the minimality of
S. Hence, z is special. Since the graph is claw-free and N(u) ∩ N(v) = ∅,
G[N(z) ∩N(u)] is a clique of size k + 1. Finally, the graph being claw-free,
v, G[N(v) \ {z}] is also a clique of size k + 1. 2

If |S| = 1, then G = Kk+3 = Dk,1. So assume that |S| ≥ 2. Let
A(v) = {x ∈ N(v) : N(x) \ N [v] ̸= ∅}. First observe that for all v ∈ S,
|A(v)| ≥ 2. If every v ∈ S has |A(v)| = 2, then by connectedness, G is Dk,|S|
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as desired. Let v1 be a vertex of S with |A(v1)| ≥ 3. Since the graph is claw-
free v1 is adjacent to two adjacent vertices x1 and y1 with x1, y1 ∈ A(v1).
Moreover we can assume that x1 is linked to a vertex z2, which is linked to a
vertex v2 ∈ S\{v1}. By Claim 7, z2 is special, and both G[N(z2)∩N(v1)] and
G[N(v2)\{z2}] are cliques of size k+1. Now, there exist two adjacent vertices
x2, y2 in N(v2) \ {z2} with x2 ∈ A(v2). By repeating the same argument, we
have S = {v1, v2, . . . , vr}; each N(vi) contains a special vertex zi such that
G[N(vi) \ {zi}] is a clique of size k + 1 and N(zi) = {vi} ∪N(vi−1) \ {zi−1}
for 1 ≤ i ≤ r, where v0 = vr and z0 = zr. This implies that G = Dk,r. This
completes the proof of Theorem 12. 2

3.4. Graphs of diameter two

In [16], the authors propose some bounds on the power domination num-
ber of planar graphs when the diameter is bounded. A natural question is
then whether one can propose a general (constant) bound on the k-power
domination number of graphs with bounded diameter. The answer to this
question is negative, as the following proposition shows.

Proposition 13. For any k, there exist graphs of diameter 2 with arbitrarily
large k-power domination number.

Proof: Suppose (P,L) is a finite projective plane of order n, where the set
P contains exactly n2 + n + 1 points, the set L contains exactly n2 + n + 1
lines, each point is in exactly n+1 lines and each line contains exactly n+1
points. Consider the graph G with vertex set V (G) = P ∪ L and edge set
E(G) = {xℓ : x ∈ P, ℓ ∈ L, x ∈ ℓ} ∪ {ℓℓ′ : ℓ ̸= ℓ′ in L}.

Since every two points are in exactly one line, G is of diameter 2.
If S is a γP,k(G)-set, then without loss of generality we may assume that

S ⊆ L. Since N [S] = L ∪
∪
{x ∈ ℓ : ℓ ∈ S}, any line not in S is adjacent

to n + 1− |S| points which are not in N [S]. In order for S to be a k-power
dominating set of G, it must be the case that n+1− |S| ≤ k or equivalently
|S| ≥ n+ 1− k. This gives that γP,k(G) ≥ n+ 1− k.

On the other hand, consider a point x and a subset S ⊆ L of size n+1−k,
such that any line in S contains x. The set N [S] contains all lines. Moreover,
any line ℓ that do not contain x share a point with every line in S, and these
points are all distinct. Indeed, if two lines in S shared the same point with ℓ,
then they would share both x and that point, but by any two points goes only
one line. Therefore, any line not containing x contain n−k+1 points in N [S].
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Hence, {N [ℓ], x /∈ ℓ} ⊆ P1(S), and S k-power dominates G. Consequently,
γP,k(G) ≤ n+ 1− k and so γP,k(G) = n+ 1− k. 2
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