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Abstract

Particle swarm optimization (PSO) method is relatively new, simple yet
powerful and widely used in applied fields. However PSO does not seem to have
made an impact in mainstream statistical applications hitherto. We propose
variants of the PSO method to find optimal experimental designs for both
linear and nonlinear models in a novel way. We show that the PSO method can
simply generate many types of optimal designs very quickly, including optimal
designs under a non-differentiable criterion such as minimax optimal designs
where effective algorithms to generate such designs have remained elusive to
date.

Keywords.Continuous optimal design, equivalence theorem, Fisher informa-
tion matrix, minimax optimality criteria, regression model.

1 Introduction

Particle Swarm Optimization (PSO) is a population based stochastic optimization
method inspired by social behavior of bird flocking or fish schooling and proposed
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by Eberhart and Kennedy (1995). Since then the method has generated consider-
able and increasing interest in optimization circles as evident by its numerous ap-
plications to many disciplines. A sampling of the wide applications of PSO can be
gleaned from talk titles at a recent scientific meeting entitled International Confer-
ence on Swarm Intelligence: Theoretical Advances and Real world Applications in
June 2011 at Cergy, France. They included applications to tackle artificial neural
network training, K-means cluster analysis, mathematical finance, social networks,
data mining, foraging techniques, intrusion detection, resources allocation problems,
course+exam scheduling in real time, designing ideotypes for sustainable product
systems in genetics and prediction of stock market indices using hybrid genetic al-
gorithm and PSO with a perturbed term. The importance and popularity of PSO
can also be seen in the existence of many websites that provide PSO tutorials, track-
ing its development and various applications in different fields. Some examples are
http://www.swarmintelligence.org/index.php, http://www.cis.syr.edu/∼mohan/pso/
and http://www.particleswarm.info/. The former website shows there is at least
workshop or symposium on PSO methodology every year since 2001 and many of
these are IEEE sponsored. The speed of development in PSO and more generally in
metaheuristic or natured inspired algorithms can also be seen in an exploding volume
of papers and book chapters in optimization monographs. In 2007, even a journal
called Swarm Intelligence was born and published by Springer to meet the rapid rise
of interest in PSO methods. Of particular note is also Yang (2010), who saw a need
for a second edition to update PSO developments for his book published 2 years ear-
lier. Clerc (2006) is the first book devoted entirely to PSO, others include Lazinica
(2009) and Olsson (2011). There are earlier books that focus on broader theme on
swarm intelligence, for example, Eberhart et al. (2001) before researchers focus on
methods specifically based on PSO.

Our main aim is to show that the PSO method is effective in finding a wide
variety of optimal experimental designs. We focus on the more difficult case where
the optimality criterion is non-differentiable for two reasons: (i) we do not know of
effective algorithms for finding optimal designs under a non-differentiable criterion in
the statistical literature to date and (ii) if the method works for such cases, it should
also work for the easier case when the criterion is differentiable. The latter class
includes the widely used D-, A-, c- and Ds-optimality criteria. To fix ideas, we choose
minimax optimality criteria, each of which is non-differentiable and demonstrate that
the PSO algorithm can readily generate different types of minimax optimal designs
that agree with the few published results in the literature.

PSO is a stochastically iterative procedure to optimize a function. It has already
proven to be a simple and effective way of solving a large class of optimization prob-
lems in many disciplines. It is an amazingly simple and powerful optimization tool,
yet seems hitherto not discussed much at all in the statistical literature. The key ad-
vantages of this approach are that the PSO is fast and flexible, there are few tuning
parameters required of the algorithm and the PSO method can be generically written
down easily and straightforwardly applied to find optimal designs for each regression
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model. For our problems, only the optimality criterion and the information matrix
have to be changed in the exemplary pseudo MATLAB codes that we provide in
Section 4 to generate the optimal designs.

In the next section, we provide the background. In Section 3, we demonstrate
that the PSO method can efficiently generate four types of minimax optimal designs
for linear and nonlinear models. The PSO method usually takes a few seconds to
find the locally optimal designs, and sometimes even so for minimax optimal designs
as well. In Section 4, we provide details and explain how the PSO method works
and in Section 5, we present a case study on the effect of tuning parameters on the
performance of the PSO method. Section 6 closes with a discussion.

2 Background

We focus on continuous designs that treat all designs as probability measures on the
given design space X. This approach was proposed by Kiefer and his collection of
voluminous work in this area is now documented in a single collection (Kiefer et al.,
1985). Initially, his work was controversial but it is now recognized as a standard and
powerful way to find optimal designs for any regression model when we have a large
sample size. The only non-trivial assumption required in Kiefer’s approach is that
the optimality criterion is a convex function of the designs defined on X.

Suppose a continuous design takes pi proportion of the total observations at xi, i =
1, 2, . . . , k and each xi is from X. We denote such a generic design by(

x1 x2 . . . xk
p1 p2 . . . pk

)
,

with p1 + p2 + · · ·+ pk = 1. Given a fixed sample size N , we implement ξ by taking
Npi observations at xi, i = 1, 2, .., k subject to Np1 +Np2 + · · ·+Npk = N . As Kiefer
had shown, one can round each of the Npi’s to the nearest integer so that they sum
to N without losing too much efficiency if the sample size is sufficiently large.

In contrast, exact optimal designs require that each of the Npi’s has to be an
integer and they sum to N . Exact optimal designs are very difficult to determine
and study analytically; in the few cases where closed form descriptions for the exact
optimal designs are available, they require number-theoretical considerations to derive
them. The exact D-optimal design problem for the homoscedastic quadratic model
was only solved in the early eighties (Gaffke and Krafft, 1982).

The main advantages of working with continuous designs are (i) the same method-
ology can be essentially used to find continuous optimal designs for all design criteria
and regression models, whereas exact optimal designs require very specific mathe-
matical technique for each model and design criteria, (ii) unlike continuous designs,
exact optimal designs depend sensitively on the value of N and so requires an endless
list of optimal designs for each value of N that varies for each model and each design
criterion, (iii) there are no known general technique to check whether an exact design
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is optimal, whereas one can resort to an equivalence theorem to verify if a design is
optimal among all continuous designs defined on the given design space X; if the de-
sign is not optimal, lower bound for its efficiency can be calculated without knowing
the optimal design, and (iv) there are no effective algorithms for finding exact opti-
mal designs but there are algorithms for finding several types of continuous optimal
designs when the design criterion is differentiable.

Our setup assumes a regression problem defined on compact design region X, a
univariate response and the mean response is modeled by a known function g(x, θ)
apart from the values of the unknown parameters θ. We assume errors have a known
distribution and observations are independent. The mean function g(x, θ) can be a
linear or nonlinear function of θ and the set of independent variables x. Following
convention, the worth of a (continuous) design ξ is measured by its Fisher information
matrix defined to be the negative of the matrix of second derivatives of the log-
likelihood function. For example, consider the widely used Michaelis-Menten model
in the biological sciences given by

y =
ax

b+ x
+ ε, x > 0

where a > 0 denotes the maximal response possible and b > 0 is the value of x for
which there is a half-maximal response. In practice, the design space is truncated to
X = [0, c] where c is a sufficiently large user-selected constant. If θ> = (a, b) and
the error ε is normally distributed with mean 0 and constant variance, the Fisher
information matrix for a given design ξ is

I(θ, ξ) =

∫
(
ax

b+ x
)2

(
1
a2

− 1
a(b+x)

− 1
a(b+x)

1
(b+x)2

)
dξ(x).

For nonlinear models, such as the Michaelis-Menten model, the information matrix
depends on the model parameters. For linear models, the information matrix does
not depend on the model parameters and we will denote it by I(ξ). The information
may be singular and when we allow such possibility, we use I(ξ)− or I(ξ, θ)− to denote
its generalized inverse.

Following convention, the optimality criterion is formulated as a convex function
of the information matrix and the optimal design is found by minimizing the criterion
over all designs on the design space X. A common criterion is D-optimality where we
want to find a design to minimize log |I(θ, ξ)−1| over all designs ξ on X. Because this
criterion contains θ, a nominal value or best guess is needed for θ before the function
is minimized. The resulting D-optimal design depends on the nominal value and so
it is called locally D-optimal. Further, the criterion is a convex function in ξ and this
means that a standard directional derivative argument can be applied to produce an
equivalence theorem which checks whether any design is D-optimal among all designs
on X. Details are available in design monographs, such as Fedorov (1972) or Silvey
(1980), for example.
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Minimax optimal design arises naturally when we wish to have some protection
against the worst case scenario. For example in the Michaelis-Menten model, suppose
we now have a plausible range of values for b, say b ∈ Θ and Θ is given. If one
assumes the most pessimistic case when the true but unknown value of b is the one
that minimizes |I(θ, ξ)|, one may wish to have a minimax optimal design ξ∗ defined
by

ξ∗ = arg min
ξ

max
b∈Θ

log|I−1(θ, ξ)|.

The optimal design provides some global protection against the worst case scenario
by minimizing the maximal inefficiencies of the parameter estimates. Clearly, when
Θ is a singleton set, the minimax optimal design becomes a locally optimal design.

The minimax optimality criterion also arises naturally when one considers dose
response studies in a heteroscedastic linear model with mean function f(x) and we
want to model responses outside the safety limits of the dose range X. If λ(x) is the
assumed reciprocal variance of the response at dose x and the extrapolated dose of
interest is z, we naturally want a design to minimize

v(z, ξ) = fT (z)I(ξ)−1f(z)

among all designs on X. However if we only know the dose levels of interest for
extrapolation are in the (compact) set Z , one may seek a design to minimize the
maximal variance of the predicted responses on Z. Such a criterion is also convex
and it can be shown that the following is an equivalence theorem to check whether a
design is minimax optimal for extrapolation on Z: ξ∗ is minimax-optimal if and only
if there exists a probability measure µ∗ on A(ξ∗) such that for all x in X,

c(x, µ∗, ξ∗) =

∫
A(ξ

∗)

λ(x)r(x, u, ξ∗)µ∗(du)− v(u, ξ∗) ≤ 0

with equality at the support points of ξ∗. Here, A(ξ) = {u ∈ Z|v(u, ξ) = maxz∈Z v(z, ξ)}
and r(x, u, ξ) = (fT (x)M(ξ)−1f(u))2. If X is one or two-dimensional, one may visu-
ally inspect the plot of c(x, µ∗, ξ∗) versus values of x ∈ X to confirm the optimality of
ξ∗. Following convention, we display the graph of c(x, µ∗, ξ∗) to verify the optimality
of the design ξ∗ without reporting the measure µ∗. A formal proof of this equivalence
theorem can be found in Berger et al. (2000). Further details on minimax optimal de-
signs are available in Wong (1992) and, Wong and Cook (1993) with further examples
in King and Wong (1998, 2000).

Two points are worth noting: (i) when Z is a singleton set that does not belong
to X, we are seeking an optimal design to minimize the variance of the response at an
extrapolated point. In this case, the probability measure µ∗ is necessarily degenerate
at Z and the resulting equivalence theorem reduces to one for checking whether a
design is c-optimal, see Fedorov (1972) or Silvey (1980); (ii) equivalence theorems for
minimax optimality criteria all have a form similar to the one shown above and they
are more complicated because we need to work with the subgradient µ∗. Finding

5



the subgradient requires another set of optimization procedure which usually is more
tricky to handle and this in part explains why minimax optimal designs are much
harder to find than optimal designs under a differentiable criterion.

3 Examples of Optimal Designs found via the PSO

method

We postpone description of the PSO method to Section 4 and present here our exam-
ples using PSO to find different types of continuous minimax optimal designs. These
optimal designs are notoriously difficult to find and we know of no algorithm to date
that is guaranteed to find such optimal designs. We are therefore naturally inter-
ested to test whether PSO provides an effective way of determining minimax optimal
designs. Our examples in this section are confined to the scattered few minimax op-
timal designs reported in the literature, either numerically or analytically. The hope
is that all optimal designs found by the PSO method agree with those published in
the literature and this would then suggest that the algorithm should also work well
for problems whose minimax optimal designs are unknown. Of course, we can also
confirm the optimality of the design found by the PSO method using an equivalence
theorem.

We use four examples to demonstrate that the PSO method is able to find differ-
ent types of minimax optimal designs. Two models have binary responses and two
have continuous responses. The first example seeks to find a design to minimize the
maximum eigenvalue of the inverse of the Fisher information matrix and the second
example finds a design to minimize the maximum variance of the estimated model pa-
rameters. These two examples have closed form solutions that were elegantly derived
and as expected, they are complicated. The optimal designs are called E-optimal in
Example 1 and minimax single parameters in Example 2. Example 3 seeks a best de-
sign for estimating parameters in a two-parameter logistic model when we have apriori
a range of plausible values for each of the two parameters. The desired design sought
is the one that maximizes the smallest determinant of the information matrix over all
possible nominal values of the two parameters in the plausible region. Equivalently,
this is the minimax optimal design that minimizes the maximum determinant of the
inverse of the information matrix where the maximum is over the set of all nominal
values in the plausible region for the pair of parameters. The numerically minimax
optimal design for Example 3 was found in King and Wong (2000) with the aid of
Mathematica and we will compare it with our design found from the PSO method.
The last example concerns a heteroscedastic model with a continuous outcome and a
known efficiency function and we want a design to minimize the maximum predicted
variances across the design space or a given extrapolated region. The minimax opti-
mal designs are unknown for these two cases and we will check the optimality of the
generated design from the PSO method using an equivalence theorem.

The key tuning parameters in the PSO method are (i) flock size, i.e. number of
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particles (designs) to use in the search, (ii) the number of common support points
the particles have, (iii) the number of iterations allowed in the search for the optimal
design ξ∗ and (iv) the number of iterations used to search for the maximal value in
the minimax problem. For brevity, we call the third and fourth parameters the outer
and inner iteration number, respectively. Unless mentioned otherwise, we will use
the same value for both numbers and call them simply the iteration number. We
examine briefly the impact of having different values of these two iteration numbers
in Section 5. Throughout, we programmed using MATLAB version: R2010b 64bit
and all CPU computing time was based on a Intel Core2 6300 computer with 5 GB
RAM and operating system was Ubuntu 64bit Linux with kernel 2.6.35-30.

We now present the four examples with a bit more details for the first example.

3.1 Example 1: E-optimal designs for the Michaelis-Menten
model.

The Michaelis-Menten model is one of the simplest and most widely used model in
the biological sciences. Dette and Wong (1999) used a geometric argument based on
the celebrated Elfving’s theorem and constructed locally E-optimal designs for model
with two parameters θ> = (a, b). Such optimal designs are useful for making inference
on θ by making the area of the confidence ellipsoid small in terms of minimizing the
length of the principal axis. This is achieved by minimizing the larger of the two
eigenvalues of the inverse of the information matrix over all designs on X. For a
given θ, they showed that on a given design space X = [0, x̃], the E-optimal design
is supported on x̃ and {(

√
2 − 1)bx̃}/{2 −

√
2)x̃ + b}, and the weight at the latter

support point is

w =

√
2(a/b)2(1− z̃){

√
2− (4− 2

√
2)z̃}

2 + (a/b)2{
√

2− (4− 2
√

2)z̃}2
,

where z̃ = x̃/(b+ x̃).
We now use the PSO procedure to numerically search for the E-optimal design

with two support points. For this example, we choose 128 particles and iterate 100
times. The minimax optimal designs are shown in Table 1 for various combinations
of the nominal values of θ. All our numerically generated designs are close to the
E-optimal designs reported in Dette and Wong (1999).

It is instructive to demonstrate the search process of the PSO method in a bit more
detail for this example; similar demonstrations can be shown for the other examples
as well. As an illustrative example, consider the case when a = 100 and b = 150
and we decide to use 128 particles and 100 iterations. Figure 1 is the plot of the
“best” maximum eigenvalue of I(ξ, θ) obtained in each of the first 10 iterations of
PSO procedure. Notice how quickly the PSO method finds the smallest of the larger
eigenvalue after just 2 iterations. To show the movements of the particles, we plot
in Figure 2 the support points of the first 128 particle designs and show how they
change after the 1st, 5th and the 10th iterations when they converged.
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Figure 1: Plot of the maximum eigenvalue of I(ξ, θ)−1 versus the number of PSO
iterations in Example 1.
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Figure 2: The movement of particles in the PSO search for the E-optimal design for
the Michaelis-Menten model at various stages. The red star in each of the three plots
indicates the current best design.
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Table 1: Locally E-optimal designs for the Michaelis-Menten model on [0, x̃] = [0, 200]
in Example 1.

a b ξPSO E-optimal designs
100 150 46.5197(0.6925) 200(0.3075) 45.51(0.6927) 200(0.3073)
100 100 38.1523(0.6770) 200(0.3230) 38.15(0.6769) 200(0.3231)
100 50 24.7828(0.6171) 200(0.3829) 24.78(0.6171) 200(0.3829)
100 10 6.5157(0.2600) 200(0.7400) 6.515(0.2600) 200(0.7400)
100 1 0.7009(0.0222) 200(0.9778) 0.701(0.0220) 200(0.9778)
10 150 46.4971(0.7071) 200(0.2929) 46.51(0.7070) 200(0.2931)
10 100 38.1422(0.7068) 200(0.2932) 38.15(0.7068) 200(0.2933)
10 50 24.7783(0.7058) 200(0.2942) 24.78(0.7058) 200(0.2942)
10 10 6.5154(0.6837) 200(0.3163) 6.515(0.6838) 200(0.3162)
10 1 0.7012(0.1882) 200(0.8118) 0.701(0.1881) 200(0.8119)

To get a sense of computing time that PSO required to run through a procedure
for the Michaelis-Menten model using MATLAB, we briefly consider the case when
the model parameters are (a, b)T = (100, 150) using different numbers of particles and
iteration. When the iteration is fixed at 100, and the number of particles is 128, 256,
512, 1024 and 2048, the CPU time required is 0.87, 1.65, 3.16, 6.32, 12.58 respectively.
When the number of particles is fixed at 128, and the iteration number is 200, 500
and 1000, the time required is 1.68, 4.13 and 8.05 respectively of CPU time. In all
cases, the generated designs agree up to 5 decimal places in terms of both weights and
design points. Clearly larger flock size requires more time to partake in the sharing of
information and larger number of iterations requires longer time. Section 5 explores
relationship among the tuning parameters in a bit more detail for a specific case.

3.2 Example 2: Locally minimax single parameters optimal
designs for the Double Exponential model.

Dette and Sahm (1998) found theoretical minimax optimal design for a class of binary
response models. Let y be the binary response with probability of success p(x, θ), and
suppose p(x, θ) = F (β(x− µ)) where x ∈ R, θT = (β, µ) and F is some appropriate
function. We focus on the double exponential model given by

F (x) =
1 + sign(x)

2
− sign(x)

2
exp(−|x|).

Given a design ξ, the Fisher information matrix for θ is

I(θ, ξ) =

∫
h(β(x− µ))

(
β2 −β(x− µ)

−β(x− µ) (x− µ)2

)
dξ(x),

where h(x) = f2(x)
F (x)(1−F (x))

= (2 exp(−|x|) − 1)−1. The locally minimax design sought

for a pre-specified θ is the one that minimizes maxi∈{1,2}e
>
i I
−(θ, ξ)ei. Here ei is the
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Table 2: Minimax single parameter optimal designs for the double exponential model
found from the PSO method and the from the formula.

Cases ξPSO ξ∗ in Dette and Sahm (1998)

(µ, β) = (1, 1)T
(
−0.5856 1.0000 2.5856

0.4263 0.1474 0.4263

) (
−0.5936 1.0000 2.5936

0.4259 0.1482 0.4259

)
(µ, β) = (1, 1.3)T

(
−0.3000 2.3000

0.5000 0.5000

) (
−0.3000 2.3000

0.5000 0.5000

)
(µ, β) = (1, 1.5)T

(
−0.2276 2.2276

0.5000 0.5000

) (
−0.2278 2.228

0.5000 0.5000

)

ith unit vector in R2 and I−(θ, ξ) is a generalized inverse matrix of I(θ, ξ). These op-
timal designs minimize the larger of the two variances from the two estimated model
parameters. Such minimax optimal designs appear to be first proposed by Murty
(1971) when he considered polynomial models and he called them minimax single
parameters optimal designs. Recognizing that the magnitude of the variances of the
estimates can vary from parameter to parameter, extensions to construct standard-
ized minimax single parameters optimal designs have also been proposed, see Dette
et al. (2003) for example. For our purpose here, it suffices to concentrate on the
unstandardized version for simplicity.

Results from Dette and Sahm (1998) showed that there are three important
constants to work with in the construction of the minimax optimal design for the
double exponential model: c = 1.84141, k = 0.5404 and v0 = 1.59362. Letting
w = (v2

0 − β4)h(v0)/{h(v0)(v2
0 − β4) + β4}, the minimax single parameter optimal

design ξ∗ has three forms depending on their nominal values:

Case 1 (β2 < v0): ξ
∗ =

(
µ− v0

β
µ µ+ v0

β
1−w

2
w 1−w

2

)
.

Case 2 (v0 ≤ β2 ≤ c): ξ∗ =

(
µ− β µ+ β

1
2

1
2

)
.

Case 3 (β2 > c): ξ∗ =

(
µ− c

β
µ+ c

β
1
2

1
2

)
.

Following Dette and Sahm (1998), we assume the design points are symmetric
around µ. Table 2 displays a numerical example for each of the three different cases
calculated from the formula, along with those found from the PSO method using 128
particles and 100 iterations. The two sets of results agree except possibly in case(i)
where some disagreement occurs between the theoretical minimax single parameters
design reported in Dette and Sahm (1998) and the one found by the PSO method.
We revisit this issue just before Section 4.
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3.3 Example 3: A minimax D-optimal design for the two-
parameter logistic regression model when we have plau-
sible ranges for the two parameters.

The widely used two-parameter logistic model assumes the probability of response is
p(x, θ) = 1/{1 + exp(−b(x− a))} with θT = (a, b). Assuming nominal values for the
parameters are available, the Fisher information matrix for a given design ξ is

I(ξ, θ) =

∫ (
b2p(x, θ)(1− p(x, θ)) −b(x− a)p(x, θ)(1− p(x, θ))

−b(x− a)p(x, θ)(1− p(x, θ)) (x− a)2p(x, θ)(1− p(x, θ))

)
dξ(x).

Our interest is when we apriori know the possible range of values for a and b, i.e.
θ ∈ Θ and Θ is a known set containing all plausible values of a and b. We wish to
find a minimax D-optimal design ξ∗ such that

ξ∗ = arg min
ξ

max
θ∈Θ

log(|I−1(ξ, θ)|).

Clearly this minimax optimal design becomes a locally D-optimal design when each
of the plausible intervals degenerate to a single point.

We follow King and Wong (2000) and assume that Θ = [aL, aU ]× [bL, bU ], where
aL, aU , bL and bU are the known limits of the lower and upper bounds for a and b. In
King and Wong (2000), the numerically minimax D-optimal designs were found by
first running the Fedorov-Wynn algorithm. In each case, the algorithm took a very
long time to converge and frequently it did not. However, the algorithm gave us an
idea on the form of the optimal design that enabled us to use the equivalence theorem
to help us find the numerically optimal design using Mathematica. A certain amount
of guesswork was still necessary because we did not have a good understanding of the
measure µ∗. In summary, the process was labor intensive and time consuming to find
the minimax optimal design. We now apply PSO to find two exemplary cases from
King and Wong (2000) and ascertain we obtain the same optimal designs. To do this,
we employ the nested PSO and use two sets of PSO parameters to find the optimal
designs for the two cases. For case (a), the number of particles for the inner loop is
64 and the number for the outer loop is 32. The number of outer iterations is 100 and
the number of inner iterations is 50. In case (2), the number of inner particles is 256
and the number for the outer particles is 512. The outer iteration number is 200 and
the inner iteration is 100. In both cases, the time it took the PSO to find the optimal
designs was a mere fraction of time it took Mathematica to find the optimal design
numerically. We work with different design intervals, symmetric and non-symmetric
that contain both positive and negative values.

Case 1: Our first application of the PSO method uses Θ = [0, 2.5]× [1, 3]. Here we
choose design space as [−1, 4]. The generated 4-point design ξ from the PSO
procedure is (

−0.4230 0.6164 1.8836 2.9230
0.2481 0.2519 0.2519 0.2481

)
.
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Figure 3: Plot of c(x, ξ, µ∗) versus x for Example 3 for case (1): with Θ = [0, 2.5]×[1, 3]
and case (2): with Θ = [0, 3.5]× [1, 3.5].

This design is close to the one reported in King and Wong (2000). Figure 3(a)
is the plot of c(x, ξ, µ∗) versus x ∈ X and shows the design ξ found by the PSO
method is nearly optimal or optimal.

Case 2: Following Example 3.2 in King and Wong (2000), we set Θ = [0, 3.5]×[1, 3.5]
and X = [−5, 5]. The generated 6-point design ξ from the PSO procedure is(

−0.3504 0.6075 1.4146 2.0854 2.8925 3.8504
0.1799 0.2151 0.1050 0.1050 0.2151 0.1799

)
.

This design is close to the one reported in King and Wong (2000). Figure 3(b)
is the plot of c(x, ξ, µ∗) versus x ∈ X and shows the design found by the PSO
method is nearly optimal or optimal.

3.4 Example 4: A heteroscedastic minimax design for a poly-
nomial model on the prototype design interval X = [−1, 1]
with various efficiency functions.

Consider heteroscedastic polynomial models on a given compact design space X and
have the form

y(x) = h>(x)β + e(x)/
√
λ(x),

where h>(x) = (1, x, . . . , xd) is a vector of linearly independent continuous functions,
β> = (β0, β1, . . . , βd) is the vector of unknown parameters and e(x) is a random error
having mean 0 and constant variance σ2. The efficiency function λ(x) is a known,
bounded, positive real-valued continuous function on X and is inversely proportional
to the variance of the response at x.
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Figure 4: Plot of c(x, ξ, µ∗) versus x over the design interval X = [−1, 1] for the cubic
regression model in Example 4 for case (1): λ(x) = 0.5x2 + 1 with Z = [−1, 1] and
case (2): λ(x) = x4 + 1 + sin2(4x) with Z = [1, 1.5].

Given a design ξ and we have uncorrelated observations, the (d + 1) × (d + 1)
information matrix is proportional to

I(ξ) =

∫
X

λ(x)h(x)h>(x)ξ(dx),

and the variance function of ξ at the point x is proportional to

d(x, ξ) = h>(x)I−1(ξ)h(x).

For this purpose, a design, ξ∗, is called minimax optimal design if

ξ∗ = arg min
ξ

max
x∈Z

d(x, ξ),

where Z is a compact set and pre-selected for prediction purposes. When Z = X, this
minimax design is also called the G-optimal design (Wong and Cook, 1993). King and
Wong (1998), Brown and Wong (2000) and Chen et al. (2008) proposed algorithms
and discussed computational issues for finding such designs in simple and quadratic
models. Our experience with the proposed algorithm is that it may not work well
with a more complex model and a more complicated efficiency function. Accordingly,
we use the PSO method and tackle the more challenging problems when we have a
cubic model for two situations; one concerns G-optimality when X = Z and the other
concerns an optimal extrapolation problem when X 6= Z. We choose two contrived
and different efficiency functions since our purpose is just to ascertain whether the
PSO method can find the numerically minimax optimal designs as judged by the
equivalence theorem. In both cases, we use 128 particles and 100 iterations to find
the minimax optimal designs.
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Case 1: X = Z = [−1, 1] and λ(x) = 0.5x2 + 1. The generated design ξ found by
PSO method is (

−1.0000 −0.4659 0.4659 1.0000
0.2113 0.2885 0.2883 0.2119

)
.

Figure 4(a) is the graph of c(x, ξ, µ∗) and visually one may confirm the opti-
mality of the generated design ξ from the PSO algorithm. A direct calculation
shows the efficiency of the above design is 0.9996.

Case 2: X = [−1, 1], Z = [1, 1.5] and λ(x) = x4 +1+sin2(4x). The generated design
ξ found by our PSO procedure is(

−1.0000 −0.4666 0.4666 1.0000
0.0665 0.2071 0.3942 0.3322

)
.

The checking conditions of the equivalence theorem can be similarly seen to
be satisfied in Figure 4(b). One can show that the efficiency of the generated
design ξ is 0.9998.

We note that earlier work on optimal extrapolation designs for polynomial models
were carried out in a series of papers by Kiefer and Wolfowitz (1964a,b, 1965); Levine
(1966) assuming the efficiency function λ(x) was a constant. Under the homoscedastic
model, they were able to obtain analytic results when X = [−1, 1] and Z = [a, b] for
selected values of a and b, including results for non-polynomial regression problems
involving Chebyshev systems. Spruill (1984, 1990) worked on similar problems where
bias was factored into the criterion as well. Interest in such design problems continues
to date, see Broniatowski and Celant (2007) For example.

In the next section, we provide computational details and explain how the PSO
method works, along with the choice of the tuning parameters for the flock size and
number of iterations. As may have been already been noticed in the above examples,
a couple of the designs found by the PSO method appeared to be slightly numerically
different from the theoretical optimal designs. Our experience is that the discrepancy
can be entirely attributed to the choices for these tuning parameters. We used the
same PSO settings for all cases in the same example but this may not be adequate
for all the cases in the sample example. When more particles and more iterations are
added, the discrepancy usually disappears. For instance,when we used 128 particles
and 200 iterations in Example 2, the results in the first row agreed up to 5 decimal
places. Interestingly, when we used 256 particles and 500 iterations in Example 1,
the discrepancy persisted and continued to do so when we increased the iteration and
particle numbers to the thousands. Further investigation revealed that the smaller
optimal design reported in the first row of Table 1 calculated from the formula was
wrong. A direct calculation revealed the correct value was the one found by the PSO
method.
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4 PSO Method Explained

Computer algorithms have played and will continue to play an important role in our
search of optimal designs. They are usually sequential in nature and typically involve
the addition of a carefully selected new design point to the current design by mixing
them appropriately to form a new design. The generated design accumulates many
points or clusters of points as the algorithm proceeds and judicious rules for collapsing
points into distinct points is required. The sequence of weights used to form a new
design at each iteration is chosen so that they are all between 0 and 1, have a finite
sum but does not converge too quickly or prematurely. Stopping rules are employed
to decide when to terminate the search; they typically require either a maximum
number of iterations allowed or when the change in the value of the optimality cri-
terion in successive searches is negligible according to a user-selected tolerance level.
An example of such an algorithm is the noted Fedorov-Wynn algorithm which is still
popular after more than 3 decades of use. Details and exemplary codes for generating
D- and c-optimal designs can be found in design monographs like Silvey (1980) and
Pázman (1986). Research in this area remains active with new applications to tackle
more challenging problems, such as finding optimal designs for pharmacokinetic mod-
els with subject random effects using a modified Fedorov’s algorithm (Ogungbenro
et al., 2005).

PSO is an iterative method that can be generically and readily coded as in Al-
gorithm 1 to simulate the behaviors of bird flocking in search for food. One may
consider a scenario where there is only one piece of food in the area being searched
and all the birds do not know exactly where the food is. However, they increasingly
know how far the food is with each iteration. The effective strategy is to share infor-
mation constantly among the flock and follow the bird which is nearest to the food.
In our PSO setup, each single solution is a “bird” or a “particle” in the search space.
All of the particles have fitness values which are evaluated by the fitness function to
be optimized, and have velocities which direct particles where to fly. The particles
fly through the problem space by following the current optimum particles.
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Algorithm 1 PSO for the minimization problem (1)

(1) Initialize particles

(1.1) Choose initial positions xi and velocities vi, for i = 1, . . . , n.

(1.2) Calculate fitness values f(xi).

(1.3) Determine local and global best positions pi = xi and pg.

(2) Repeat until stopping criteria are satisfied.

(2.1) Calculate particle velocity according Eq.(2a).

(2.2) Update particle position according Eq. (2b).

(2.3) Calculate fitness values f(xi).

(2.4) Update best positions pi and pg and best values lbesti and gbest.

(3) Output pg = arg min f(x) with gbest = f(pg).

Let X be a given domain and let f(x) represent the function to be minimized. In
design language, X is the design space and f(x) is the objective function or design
criterion. We want to find points x in X to minimize f(x). To solve the minimization
problem,

min
x∈X

f(x), (1)

PSO is first initialized with a group of random particles (solutions). At every iteration,
it searches for the optima by updating each particle its two “best” values. The first
one is the best solution (fitness) it has achieved so far. This local best value is
called lbest and is stored. Another “best” value that is tracked by the particle swarm
optimizer is the best value, obtained so far by any particle in the population. This
best value is a global best and called gbest. After finding the two best values, the
particle updates its velocity and positions using the equations.

vi+1 = ωivi + c1β1(pi − xi) + c2β2(pg − xi), (2a)

xi+1 = xi + vi. (2b)

Here, vi is the particle velocity, ωi is the inertia weight that modulates the influence of
the former velocity and can be a constant or a decreasing function (Shi and Eberhart,
1998a,b; Chatterjee and Siarry, 2006; Fan and Chang, 2007), xi is the current particle
(solution). The vectors pi and pg denote the local best position for the ith particle
and the global best position for all particles, respectively. Furthermore, lbesti = f(pi)
and gbest = f(pg) for any objective function f . The constant c1 is the cognitive
learning factor, c2 is the social learning factor. The variables β1 and β2 are random
vectors with the same dimension as xi and in the first equation, multiplication of
two random vectors are taken to be componentwise. The two constants c1 and c2

control how each particle moves toward its own local best position and overall global
best position, respectively. For many applications, c1 = c2 = 2 seems to work well
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(Kennedy, 1997) and so we also use these two values in our pseudo code in our PSO
procedure below.

Note that the particles’ velocities on each dimension are clamped to a user-
specified maximum velocity Vmax. If the sum of the accelerations cause the velocity
on that dimension to exceed Vmax, the velocity on that dimension will be limited to
Vmax.

4.1 Proposed PSO for the minimax problems

The problems in Section 3 can be formulated as a minimax problem

min
u∈U

max
v∈V

g(u,v), (3)

where U and V are the corresponding design domains. References that use PSO to
solve the minimax type problems in literature are sparse. One example is Laskari
et al. (2002). However, they consider the problems that there are only finite elements
in V . Thus their algorithm is not suitable for our problems. Here, we propose two
PSO-based algorithms to solve such minimax problems (3).

The first algorithm is an Alternate-Conditional PSO. The main idea is to solve the
minimization and the maximization problem alternately by using PSO (Algorithm 1)
until the fixed-point is reached. In other words, we solve for u (or v) conditionally
by fixing the previous v (or u), so that we can find the intermediate solutions of u
and v sequentially and alternately one after another. The key idea is presented in
Algorithm 2.

Algorithm 2 Alternate-Conditional PSO for the minimax problem (3)

(1) Choose an initial guess u0 and Set j = 0.

(2) Repeat until converge to a fixed-point (u∗,v∗).

(2.1) Find vj+1 = arg maxv∈V g(uj,v) by Algorithm 1.

(2.2) Find uj+1 = arg minu∈U g(u,vj+1) by Algorithm 1.

(2.3) Set j = j + 1.

(3) Output u∗ and v∗ as the solution with best value g(u∗,v∗).

Although the the standard PSO (i.e. Algorithm 1) is intended to solve an mini-
mization problem, to solve the maximization problem in Step (2.1) of Algorithm 2 by
PSO, we simply define f(x) = −g(uj,x). In Step (2.2), we define f(x) = g(x,vj+1)
and then apply PSO. One practical stopping criterion in Step (2) is to stop the Repeat-
loop after a pre-defined computational budget (e.g. iteration number) is reached. An-
other practical stopping criterion is to stop the loop for small changes of the successive
intermediate uj+1 and vj+1.
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The second algorithm is a Nested PSO that involves solving an outer and an inner
minimization problems by PSO. To explain the idea, we first define an outer objective
function

fouter(x) = max
v∈V

g(x,v). (4)

and rewrite the minimax problem (3) as

min
x∈X=U

fouter(x). (5)

It is clear that to calculate the fitness value fouter(x) is equivalent to solve the maxi-
mization problem defined in (4). By defining

finner(y) = −g(x,y), (6)

the maximization problem can be rewritten as

min
y∈Y=V

finner(y). (7)

Therefore, we have the following equivalent optimization problems:

min
u∈U

max
v∈V

g(u,v) ≡ min
x∈X=U

fouter(x) ≡ min
x∈X=U

(
min

y∈Y=V
finner(y)

)
. (8)

Consequently we can solve the nested minimization problem defined in (8) by the
standard PSO as described in Algorithm 3. Note that Algorithm 3 is identical to
Algorithm 1 in terms of solving the minimization problem minx∈X=U fouter(x), except
the calculations of fitness values in Steps (1.2) and (2.3) that involves solving another
minimization problem miny∈Y=V finner(y).

Algorithm 3 Nested PSO for the minimax problem (3).

(1) Initialize particles

(1.1) Choose initial positions xi and velocities vi, for i = 1, . . . , n.

(1.2) Calculate fitness values fouter(xi) by solving (7) by Algorithm 1.

(1.3) Determine local and global best positions pi = xi and pg.

(2) Repeat until stopping criteria are satisfied.

(2.1) Calculate particle velocity according Eq.(2a).

(2.2) Update particle position according Eq. (2b).

(2.3) Calculate fitness values fouter(xi) by solving (7) by Algorithm 1.

(2.4) Update best positions pi and pg and best values lbesti and gbest.

(3) Output pg = arg min fouter(x) with gbest = fouter(pg).

While Algorithms 2 and 3 can be used to solve the minimax problem (3), we
recommend using the latter. This suggestion is not only supported by our numerical
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Figure 5: (a) Plot of a conceptual surface and the corresponding contours that contain
two saddles with different heights. (b) Starting with the initial guess u0, Algorithm 2
goes from P1 to P3 and stops at P ∗. (c) The first iteration is performed by Algorithm 3.
The fitness values (also the lbesti in the first iteration) are indicated by the squares.
The current gbest is indicated by × and labeled by “g”. Note that in (b) and (c), the
two saddle points are indicated by P ∗ and P ∗∗.

experience that Algorithm 3 is more robust and efficient numerically, but there is
also some rationale in itself. Algorithm 2 finds the solution point-by-point, in the
sequence of (uj,vj−1), (uj,vj), (uj+1,vj),..., etc but it does not take advantage of
the simultaneous searches done by all the particles. PSO is simply used to solve
the minimization and maximization problems to move u and v, respectively. In
contrast, Algorithm 3 lets multiple particles calculate the fitness values fouter(xi)
simultaneously. Each of the particle then solves one inner minimization problem by
PSO so that the outer particles have better chance to explore the whole domain.

Figure 5 conceptually illustrates how Algorithms 2 and 3 search for the optimal
points. The figure shows why Algorithm 3 has a better chance to find the global
optimal solution. Part (a) of the figure defines a surface containing two saddles.
The left-top saddle has a larger function value at the saddle point P ∗ = (u∗,v∗).

19



The right-bottom saddle has a smaller function value at the the saddle point P ∗∗ =
(u∗∗,v∗∗). Figure 5(b) shows how Algorithms 2 works. Starting from the initial
guess u0, Algorithms 2 solves for v1 = arg maxv∈V g(u0,v) (i.e. with conditional on
the vertical line passing u0) and u1 = arg maxu∈U g(u,v1) (with conditional on the
horizontal line passing v1) to reach P1 = (u1,v1). In the next iteration, the algorithm
finds P2. Such process is continued to reach the fixed-point P ∗. Figure 5(c) shows how
Algorithm 3 works. Starting from eight initial guesses on the u-axis, eight particles
move around the u-axis to find the solution of minx∈X=U fouter(x) simultaneously.
Each particle solves miny∈Y=V finner(y) in the corresponding domain (identified by the
vertical lines in the figure) to calculate the fitness function values. It is very possible
that some particles are close to the global optimal point P ∗∗ (e.g. the gbest point “g”
in the first iteration) with smaller fouter value. Algorithm 3 thus can gradually move
toward P ∗∗. The figure also suggests that the final result of Algorithm 2 depends on
the initial choice and thus can be considered as a local method. Algorithm 3, however,
uses multiple particles to search the whole U domain and thus can be considered as
a global method.

In summary, we made two amendments of the PSO method to find the minimax
optimal design and we have better experience and success with the Nested PSO
method. We therefore recommend Algorithm 3 to find minimax optimal designs for
regression problems. All our minimax optimal designs in this paper are obtained
using Algorithm 3.

To apply the Nested PSO method to the minimax design problems, suppose
Φ(ξ) is the maximum value for the inner optimization problem. To fix ideas, con-
sider the minimax design problem for the heteroscedastic regression model. We
set Φ(ξ) = maxz∈Z d(z, ξ) and solve the outer optimization problem, minξ Φ(ξ) in
PSO method by treating each particle x as a design ξ. So x can be represented
as x = (x1, . . . , xk, p1, . . . , pk)

>, where xi, i = 1, . . . , k are the support points in a
pre-specified design space and pi, i = 1, . . . , k are the corresponding weights with
1 > pi ≥ 0 and

∑k
i=1 pi = 1.

5 Tuning Parameters in the PSO Method for a

Specific Example

There are two non-random numbers c1 and c2 in the velocity equations and they have
default values set equal to 2. This choice seems to work well generally in the literature
and it is the case for our work here as well. If necessary, other values may be tried
out to improve the speed. Acceleration of the performance of the PSO method can
also be achieved by using parallel computers. For example, Hung and Wang (ress)
suggested a Graphics Processing Unit (GPU) based PSO and reported up to 280X
accelerations with respect to Central Processing Unit (CPU) based PSO while solving
high-dimension complicated minimization problems.

The PSO method also requires that we specify upfront the number of support
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points required in the optimal minimax design. Because we prefer non-singular op-
timal designs, our initial choice for the number of support points for each particle
in the flock is the number of the unknown parameters in the model. After the op-
timal design is found, one may use the equivalence theorem to verify its optimality;
otherwise, we increase the number of support points by a unit each time until the
generated design found by the PSO method is confirmed to be optimal.

We now briefly investigate the effect of other tuning parameters in the PSO
method for finding a heteroscedastic G-optimal design for a specific case study. As
a start, we considered the simple linear model on the interval X = [−1, 1] with dif-
ferent types of efficiency functions: (i) λ(x) = x + 5, (ii) λ(x) = exp(−5x2), (iii)
λ(x) = 0.5x2 + 1, (iv) λ(x) = 4 + x − x2, (v) λ(x) = x4 + 1 + sin2(4x) and (vi)
λ(x) = exp(−1−x)/(1+exp(−1−x))2. We varied the flock size using 32, 64 and 128
and 50 or 100 number of iterations for the outer problem to search for the optimal
design. For the inner optimization problem, we used 32, 64 and 128 for the flock size
and 50 or 100 inner iterations for the inner problem to search for µ∗. For each of these
3 × 3 × 2 × 2 configurations, we applied the PSO method 3 times and evaluate the
proximity of the generated design to the optimum. We do this by reporting the lower
bound of the G-efficiency of the generated optimal design. This is possible because
the function is convex; see Pázman (1986), Wong and Cook (1993) for example. This
simple set up proved not useful for our purpose here because the PSO method was
very efficient and in all cases, generated a design with at least 99% efficiency.

We next proceeded to look for a situation where varying tuning parameters in
the PSO procedure has appreciable effect on the quality of the generated design.
After a relatively extensive search, we present here a case study of the impact of
tuning parameters in the PSO method for finding the minimax optimal design using
a cubic polynomial model with efficiency function (v) on the interval X = [−1, 1].
The efficiency function (v) is contrived and just complicated enough with global peaks
at ±1 and two local peaks near ±0.4 to slow down the PSO procedure and provide
us with some insight on how choice of the numbers of inner and outer iterations
and the numbers of inner and outer particles impact the search. Table 3 displays the
frequency distribution on the lower efficiency bounds from running the PSO 100 times
for each of the configuration shown in the table. In addition, we repeat this process
two more times to ascertain the stability of the method. Generally the numerical
results suggest the following observations.

1. When the numbers of inner particles and outer particles are fixed, designs of
higher efficiencies are obtained with more inner and outer iterations.

2. When the inner and outer iterations are fixed, we have higher chance of finding
more efficient designs by increasing the numbers of inner and outer particles.

3. Our numerical results generally suggest that designs we obtain more efficient
designs when we use more inner particles than outer particles, others things
being equal.
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4. The numbers of inner and outer particles are a bit more important than the
numbers of inner and outer iterations. For example, consider the two cases
when we have (inner particles, outer particles, inner iterations, outer iterations)
= (128, 64, 50, 50) and (64, 32, 100, 100). The number of inner iterations
required for the nested PSO are the same for the two cases, i.e. 128*50*(64*50)
= 64*32*100* 100 but we have higher frequency of obtaining a design with at
least 90% efficiency for the case of (128, 64, 50, 50) compared with the case
when we have (64, 32, 100, 100).

The above conclusions are drawn from a specific case study and may not apply to
other design problems. We expect however they are likely reasonable guidelines. The
upshot is that all numerical examples that we have worked with showed PSO worked
remarkably well for generating minimax optimal designs, and by implication, other
optimal designs that are easier to determine such as when the criterion function is
differentiable. Indeed a direct application of the PSO method to find a locally D-
optimal design for the 2-parameter logistic model with X = [−1, 1] showed results
reported on page 72 of the book by Silvey (1980) from Ford’s doctorate thesis in
(1976) were incorrect. To correct the results, the locally D-optimal designs for case
(ii) and case (iii) have to be reversed and we have confirmed our findings using the
equivalence theorem. In many of the cases we tried out with different nominal values
for the model, the PSO always found the locally D-optimal designs in 1 or 2 seconds
of CPU time.
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Table 3: Performance of the PSO method for finding heteroscedastic G-optimal de-
signs for a cubic polynomial model on X = [−1, 1] when the efficiency function is
λ(x) = x4 + 1 + sin2(4x) and the tuning parameters are changed. The numbers in
each cell reports the frequency distribution of the efficiency lower bounds for each
configuration after running PSO 100 times. A total of three replicates were used to
ascertain stability of the PSO method.

Part I. Number of inner particles is 32.

(outer particles, Repl- lower bound (outer iterations, inner iterations)
inner particles) icate efficiency (50, 50) (100, 50) (50, 100) (100, 100)

(32, 32) 1st < 0.90 52 32 38 13
0.90− 0.95 17 15 12 17
0.95− 1.00 31 53 50 70

2nd < 0.90 52 35 38 19
0.90− 0.95 18 10 21 23
0.95− 1.00 30 55 41 58

3rd < 0.80 48 28 38 21
0.90− 0.95 19 21 18 13
0.95− 1.00 33 51 44 64

(64, 32) 1st < 0.90 28 19 11 5
0.90− 0.95 13 11 17 6
0.95− 1.00 59 70 72 89

2nd < 0.90 24 20 15 14
0.90− 0.95 18 9 10 11
0.95− 1.00 58 71 75 75

3rd < 0.90 21 19 14 10
0.90− 0.95 18 8 15 6
0.95− 1.00 61 73 71 84

(128, 32) 1st < 0.90 24 17 9 5
0.90− 0.95 6 5 10 4
0.95− 1.00 70 78 81 91

2nd < 0.90 21 18 3 5
0.90− 0.95 8 4 6 8
0.95− 1.00 71 78 91 87

3rd < 0.90 14 18 4 2
0.90− 0.95 7 11 6 8
0.95− 1.00 79 71 90 90
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Part II. Number of inner particles is 64.

(outer particles, Repl- lower bound (outer iterations, inner iterations)
inner particles) icate efficiency (50, 50) (100, 50) (50, 100) (100, 100)

(32, 64) 1st < 0.90 50 21 26 10
0.90− 0.95 17 18 17 8
0.95− 1.00 33 61 57 82

2nd < 0.90 39 19 30 6
0.90− 0.95 19 14 15 15
0.95− 1.00 42 67 55 79

3rd < 0.90 37 19 18 3
0.90− 0.95 19 14 24 10
0.95− 1.00 44 67 58 87

(64, 64) 1st < 0.90 9 5 7 1
0.90− 0.95 19 8 7 4
0.95− 1.00 72 93 86 95

2nd < 0.90 18 5 5 0
0.90− 0.95 16 8 15 7
0.95− 1.00 66 87 80 93

3rd < 0.9 12 11 10 2
0.90− 0.95 12 7 8 1
0.95− 1.0 76 82 82 97

(128, 64) 1st < 0.90 5 7 0 2
0.90− 0.95 3 3 4 4
0.95− 1.0 92 90 96 94

2nd < 0.90 8 10 3 0
0.90− 0.95 6 8 6 3
0.95− 1.00 86 82 91 97

3rd < 0.90 6 5 3 0
0.90− 0.95 10 7 6 0
0.95− 1.00 84 88 91 100
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Part III. Number of inner particles is 128.

(outer particles, Repl- lower bound (outer iterations, inner iterations)
inner particles) icate efficiency (50, 50) (100, 50) (50, 100) (100, 100)

(32, 128) 1st < 0.90 17 13 5 3
0.90− 0.95 26 13 20 9
0.95− 1.00 53 74 75 88

2nd < 0.90 21 6 18 2
0.90− 0.95 25 12 17 9
0.95− 1.00 54 82 65 89

3rd < 0.90 29 5 8 5
0.90− 0.95 16 12 18 10
0.95− 1.00 55 83 74 85

(64, 128) 1st < 0.90 2 2 2 0
0.90− 0.95 15 3 8 0
0.95− 1.00 83 95 90 100

2nd < 0.90 6 1 4 0
0.90− 0.95 10 7 8 2
0.95− 1.00 84 92 89 98

3rd < 0.90 2 1 2 0
0.90− 0.95 11 3 9 0
0.95− 1.00 87 96 89 100

(128, 128) 1st < 0.90 1 0 0 0
0.90− 0.95 1 1 4 0
0.95− 1.00 98 99 96 100

2nd < 0.90 0 0 0 0
0.90− 0.95 1 1 2 1
0.95− 1.00 99 99 98 99

3rd < 0.90 1 0 0 0
0.90− 0.95 3 0 2 0
0.95− 1.00 96 100 98 100

6 Discussion

In today rapidly rising cost of experimentation, optimal design ideas take on an in-
creasingly important role. A well designed study is able to answer the scientific
questions accurately and with minimum cost. It is therefore not surprising that opti-
mal experimental designs continue to find increasingly more applications in different
fields and novel applications are continually seen in traditional areas, see Berger et al.
(2005), for example.

Recent development in the field includes incorporating multiple objectives in the
design criteria as opposed to the traditional way of designing under one criterion and
hope that the optimal design is also adequate under the other criteria. To promote
use of optimal design ideas in practice, it is helpful to facilitate practitioners have easy
access to optimal designs. One way to promote optimal design ideas is to provide
a website that readily generates different types of optimal designs for a variety of
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models. One such site is at http://www.biostat.ucla.edu/optimal-design housed in
the Department of Biostatistics at UCLA. The site has a list of frequently used
biological regression models and optimality criteria that the visitor can select from to
generate his or her tailor-made optimal design after inputting design parameters for
the problem. We have now MATLAB codes based on PSO methodology for finding
minimax optimal designs and also codes for visual appreciation of the dynamic search
of the optimum by the flock as the iterations proceed. We plan to upload the codes
for some minimax design problems. Our long term goal is to allow user change the
design criterion and input the information matrix themselves and let PSO does the
rest of the work. This way we will not have to supply an endless list of program codes
for different models and design criteria for the practitioners.

In summary, we have demonstrated that the PSO method is an effective and
powerful tool for generating different types of optimal experimental designs. PSO
offers both many exciting and immediate opportunities and applications. One of our
next goals is to use the PSO method to find continuous optimal designs for two or more
objective simultaneously and explore its applicability to find exact optimal designs.
We believe we have only just explored PSO versatility and its ability to generate
quickly a variety of optimal experimental designs. We are impressed with the PSO
capabilities and believe the introduction of PSO to find optimal designs represents
an advance in the field. Clearly, PSO does not require the objective function to
be differentiable as shown in all our examples. As may have been suggested in the
applications noted in the opening paragraph, one very important property of PSO is
that it also does not even require the objective function to be convex! The added
bonus of working with convex objective functions is that an equivalence theorem
becomes possible.

It is worth repeating that formulae for optimal designs rarely exist and when they
do, they are invariably complex enough not to be useful to the practitioners. The
practical implication of our work here is that practitioners can now simply write a few
lines of codes for the PSO method and generate tailor made optimal designs for their
problems quickly and study them before implementation. Our experience based on
examples shown here and elsewhere is that the designs generated by the PSO method
all attain high efficiencies very quickly. If necessary, the skeptical researcher can still
verify the optimality of the generated design using an equivalence theorem when the
objective criterion is convex.
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