
Solutions of 9.1

2. y′ = cos2 x − sin2 x + sin x. Direct calculation shows that y is a solution of the

initial-value problem.

4. (a) y = cos kt ⇒ y′′ = −k2 cos kt. For y to satisfy the equation y′′ = −25y, we

need k = ±5.

(b) The verification is straightforward.

6. (a) y = Cex2/2 ⇒ y′ = Cex2/2 · x = xy.

(c) Let y be as in (a), then y(0) = C. So the required solution is y = 5ex2/2.

(d) Let y be as in (a), then y(1) = Ce1/2. So y(1) = 2 ⇒ C = 2e−1/2. And so

the solution is y = 2e(x2−1)/2.

8. (a) If x is close to 0, then xy3 is close to 0, and hence y′ is close to 0. If x is

large, then xy3 is large and so y′ is large.

(b) The verification is straightforward.

(d) y = (c − x2)−1/2 ⇒ y(0) = c−1/2. So y(0) = 2 ⇒ c = 1
4
, and so y =

(1
4
− x2)−1/2.

10. (a) If y is a constant function, then dy
dt

= 0, and hence y4 − 6y3 + 5y2 = 0. So

y = 0, 1, or 5.

(b) y increasing ⇔ dy
dt

= y2(y − 1)(y − 5) ≥ 0⇔ y ≥ 5 or y ≤ 1.

(c) y decreasing ⇔ 1 ≤ y ≤ 5.

12. Note that if x = 0, we have y′ > 0; and for positive y, if x is large enough we

should have y′ < 0. The only possibility is C.

14. (a) The coffee cools most quickly as soon as it is removed from the heat source.

The rate of cooling decreases toward 0 since the coffee approaches room

temperature.

(b) dy
dt

= k(y−R), where k is a proportionality constant, y is the temperature of

the coffee, and R is the room temperature. The initial condition is y(0) =

95◦C. The answer in (a) and the model support each other because as y

approaches R, dy
dt

approaches 0, so the model seems appropriate.
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