Solutions of 9.1

- 2. $y' = \cos^2 x \sin^2 x + \sin x$. Direct calculation shows that y is a solution of the initial-value problem.
- 4. (a) $y = \cos kt \Rightarrow y'' = -k^2 \cos kt$. For y to satisfy the equation y'' = -25y, we need $k = \pm 5$.
 - (b) The verification is straightforward.
- 6. (a) $y = Ce^{x^2/2} \Rightarrow y' = Ce^{x^2/2} \cdot x = xy$.
 - (c) Let y be as in (a), then y(0) = C. So the required solution is $y = 5e^{x^2/2}$.
 - (d) Let y be as in (a), then $y(1) = Ce^{1/2}$. So $y(1) = 2 \Rightarrow C = 2e^{-1/2}$. And so the solution is $y = 2e^{(x^2-1)/2}$.
- 8. (a) If x is close to 0, then xy^3 is close to 0, and hence y' is close to 0. If x is large, then xy^3 is large and so y' is large.
 - (b) The verification is straightforward.
 - (d) $y = (c x^2)^{-1/2} \Rightarrow y(0) = c^{-1/2}$. So $y(0) = 2 \Rightarrow c = \frac{1}{4}$, and so $y = (\frac{1}{4} x^2)^{-1/2}$.
- 10. (a) If y is a constant function, then $\frac{dy}{dt} = 0$, and hence $y^4 6y^3 + 5y^2 = 0$. So y = 0, 1, or 5.
 - (b) y increasing $\Leftrightarrow \frac{dy}{dt} = y^2(y-1)(y-5) \ge 0 \Leftrightarrow y \ge 5 \text{ or } y \le 1.$
 - (c) y decreasing $\Leftrightarrow 1 \le y \le 5$.
- 12. Note that if x = 0, we have y' > 0; and for positive y, if x is large enough we should have y' < 0. The only possibility is **C**.
- 14. (a) The coffee cools most quickly as soon as it is removed from the heat source. The rate of cooling decreases toward 0 since the coffee approaches room temperature.
 - (b) $\frac{dy}{dt} = k(y-R)$, where k is a proportionality constant, y is the temperature of the coffee, and R is the room temperature. The initial condition is $y(0) = 95^{\circ}$ C. The answer in (a) and the model support each other because as y approaches R, $\frac{dy}{dt}$ approaches 0, so the model seems appropriate.