Solutions of 9.1

2.y = cos’x — sin® x + sinz. Direct calculation shows that y is a solution of the

initial-value problem.

4. (a) y = coskt = y" = —k?coskt. For y to satisfy the equation y” = —25y, we
need k = £5.
(b) The verification is straightforward.
6. (a) y=Ce” /2=y =Ce*/? 0z =uay.
(c) Let y be as in (a), then y(0) = C. So the required solution is y = 5¢**/2.
(d) Let y be as in (a), then y(1) = Ce'/2. So y(1) =2 = C = 2¢"%/2. And so

the solution is y = 2e(**~1/2,

8. (a) If x is close to 0, then zy® is close to 0, and hence ¢/ is close to 0. If z is
large, then zy? is large and so 3/ is large.
(b) The verification is straightforward.
(d) y = (c—aH)2 = y0) =% Soy(0) =2=c=1 andsoy =

(1 o 2)—1/2

i :

10. (a) If y is a constant function, then % = 0, and hence y* — 63® + 59> = 0. So
y=0,1, or 5.

(b) y increasing < % = ¢*(y — 1)(y—5) >0 y>5o0ry < L

(c) y decreasing & 1 <y < 5.

12. Note that if z = 0, we have ¢y > 0; and for positive y, if = is large enough we

should have ¢y’ < 0. The only possibility is C.

14. (a) The coffee cools most quickly as soon as it is removed from the heat source.
The rate of cooling decreases toward 0 since the coffee approaches room

temperature.

(b) Z—?Z = k(y— R), where k is a proportionality constant, y is the temperature of
the coffee, and R is the room temperature. The initial condition is y(0) =

95°C. The answer in (a) and the model support each other because as y

dy

, 5. approaches 0, so the model seems appropriate.

approaches R



