SECTION 8.1

2. Use the arc length formula with y = v/2 — 22,
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The curve is one-eight of the circle with radius v/2, and the length is
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10. Differentiating the equation implicitly with respect to ,
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The length of the curve is iz.
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13. Differentiating the equation implicitly with respect to x,
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1 -U’*) —14+2:723 SoL= [} \/1+ 2223 dr [an improper integral].
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The second integral equals 3 %[(L+ qy)wz] _ 21(%{1__3 B L) _ 13£;:_s_

The first integral can be evaluated as follows:
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() L = length of the arc of this curve from (—1,1) to (8, 4)

=f \,ll+4ydy+f\,il+4ydy 13‘/— : E[(1+%y)w]4 [from part (b)]
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42. By symmetry, the length of the curve in each quadrant 1s the same, 11
so we’ll find the length in the first quadrant and multiply by 4.

2* Py 1 = y*—_1-_2* o y=[l—xz")1"u*)

(in the first quadrant), so we use the arc length formula with

dy _ L(l - xzh]u[:ﬂ—l(_zkxzx—l} _ _ng—i(l _ xik}lf(zk]—‘l
dx
The total length is therefore J
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Now from the graph we see that as k increases, the “comers™ of these fat circles get closer to the points (+1, +1) and
(1, F1), and the “edges” of the fat circles approach the lines jomning these four points. It seems plausible that as & — oo, the
total length of the fat circle with n = 2k will approach the length of the perimeter of the square with sides of length 2. This is
supported by taking the limit as k — oc of the equation of the fat circle in the first quadrant: lim (1 — 2?*)1/(2%) =1
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