
Section 6.1
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∫
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(7). The curves intersect when x = x2 ⇔ x = 0 or 1.
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(11). The curves intersect at (0, 0) and (1, 1).
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∫
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(23). The curves intersect at cos x = sin 2x = 2 sin x cos x ⇔ x = π
6

or π
2
.
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(26). For x > 0, curves intersect when x = x2 − 2 ⇒ x = 2, for x < 0, curves intersect
when −x = x2 − 2 ⇒ x = −2.
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(42). ∆x = 2, thus
A ≈ 2 · [0+6.2
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2
] = 80.8(m2).

(45). The area under curve A between t = 0 and t = x is
∫ x

0
vA(t)dt = sA(x), where vA

is the velocity of car A and sA is its displacement. Similarly for car B.

a. After one minute, the area under curve A is greater than the area under curve B, hence
A is ahead.

b. The area of the shaded region is sA(x)− sB(x), which is the distence of two cars after
one minute.

c. Since the area of the orange region is greater than that of the white one, car A is still
ahead.

d. In the first minute, the distance by which car A is ahead, seems to be about 3 squares.
We estimate the time x such that the area between the curves for 1 ≤ t ≤ x is the
same as the area for 0 ≤ t ≤ 1. From the graph, x ≈ 2.2, so the two cars are side by
side at t ≈ 2.2 minutes.


