
Solutions of 4.7

8. We need to maximize P for I ≥ 0. P (I) = 100I
I2+I+4

⇒

P ′(I) =
(I2 + I + 4)(100)− 100I(2I + 1)

(I2 + I + 4)2
=
−100(I2 − 4)

(I2 + I + 4)2
, so

P ′(I) > 0 for 0 < I < 2 and P ′(I) < 0 for I > 2.

Thus, P has an absolute maximum P (2) = 20 at I = 2.

10. Let x denote the length of the side of the square being cut out. Let y denote the

length of the base. Then we have

Volume V = y · y · x = y2x. (1)

The length of the cardboard = 3⇒

x+ y + x = 3⇒ y = 3− 2x. (2)

Combine (1) and (2), we have V = V (x) = x(3− 2x)2. So

V ′(x) = (3− 2x)2 + x · 2(3− 2x)(−2) = (3− 2x)(3− 6x).

So the critical numbers are x = 3
2

and x = 1
2
.

Now 0 ≤ x ≤ 3
2

and V (0) = V (3
2
) = 0, so the maximum is

V (1
2
) = (1

2
)(2)2 = 2 (m3).

18. Given a point (x, y) on the line 6x + y = 9. The distance between (x, y) and

(−3, 1) is

[(x+ 3)2 + (y − 1)2]
1
2 = [(x+ 3)2 + (9− 6x− 1)2]

1
2 = (37x2 − 90x+ 73)

1
2 .

Note that minimizing a positive function is equivalent to minimizing the square

of the function, so we need to minimize

D(x) = (37x2 − 90x+ 73).

Now D′(x) = 74x− 90, so the critical number is x = 45
37

, and y = 9− 6 · 45
37

= 63
37

.

The point on the line that is closest to (−3, 1) is (45
37
, 63

37
).

22. Let (x, y), x, y > 0, be a vertex of a rectangle inscribed in the ellipse, then the

area A of the ellipse is A = 2x · 2y = 4xy. Now since (x, y) is on the ellipse, we

have y = b
a

√
a2 − x2, so we have

A = A(x) =
4b

a
x
√
a2 − x2.
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So

A′(x) =
4b

a

[√
a2 − x2 + x

−2x

2
√
a2 − x2

]
=

a2 − 2x2

√
a2 − x2

.

So the maximum of A(x) is

A(
a√
2

) = 2ab.

28. Let x be the base radius of a right cylinder inscribed in the cone, and y the height

of the cylinder. By similarity of triangles, we see that

y

r − x
=
h

r ,

and so y = h− hx
r

. The volume V of the cylinder is

V = V (x) = (x2π)(h− hx

r
) .

Now

V ′(x) = (2πx)(h− hx

r
) + (πx2)(−h

r
) = hπx(2− 3x

r
) .

So the maximum of V is V (2r
3

) = 4
27
πr2h.

44. Let h be the time (measured in hour) passing from the leave of the boat traveling

south. In this problem we of course consider only those 0 ≤ h ≤ 1. Now by

assumption, the boat traveling south is 20h long from the dock, and the boat

traveling east is 15(1 − h) long from the dock. By Pythagorean theorem, the

distance d between the two boats is

d = d(h) = (20h)2 + (15(1− h))2,

and then we have

d′(h) = 2 · 20h · 20 + 2 · 15(1− h)(−15) = 1250h− 450.

So the maximum occurs at h = 450/1250 = 9/25. Now 9
25

hr. = 21min. 36sec.,

so the boats are closest to each other at 2:21:36 PM.

50. The line with slope m (m < 0) through (3, 5) has equation y − 5 = m(x − 3).

The y-intercept is 5− 3m and the x-intercept is 3− 5
m

. So the triangle has area

A(m) =
1

2
(5− 3m)(3− 5

m
) =

1

2
(30− 25

m
− 9m).

Now

A′(m) =
1

2
(

25

m2
− 9),
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so A(m) has minimum when m = −5
3
. That is, when the equation of the line is

y − 5 = −5

3
(x− 3).

61. By Pythagorean theorem, we have

L = L(x) = x+
√

22 + (5− x)2 +
√

32 + (5− x)2

= x+
√
x2 − 10x+ 29 +

√
x2 − 10x+ 34.

So

L′(x) = 1 +
x− 5√

x2 − 10x+ 29
+

x− 5√
x2 − 10x+ 34

.

Use a computer and apply any method (e.g. Newton’s method) to approximate

the solution of L′(x) = 0. A good estimate is x = 3.59, and the minimum of L(x)

is approximately 9.35(m).

64. Let a = |PQ| and b = |ST |. We minimize f(θ1) = |PR|+|RS| = a csc θ1+b csc θ2.

Differentiating with respect to θ1, and setting df
dθ1

equal to 0, we get

df

dθ1

= 0 = −a csc θ1 cot θ1 − b csc θ2 cot θ2
dθ2

dθ1

.

So we need to find an expression for dθ2
dθ1

. We can do this by observing that |QT | =
constant = a cot θ1 +b cot θ2. Differentiating this equation implicitly with respect

to θ1, we get −a csc2 θ1 − b csc2 θ2
dθ2
dθ1

= 0. That is, dθ2
dθ1

= −a csc2 θ1
b csc2 θ2

. Substitute

this into the expression for df
dθ1

to get cos θ1 = cos θ2. Since θ1 and θ2 are both

acute, we have θ1 = θ2.

66. The length of the pipe cannot exceed 3
sin θ

+ 2
cos θ

for 0 < θ < π
2
. So the longest

length of the pipe is the minimum of the function f(θ) = 3
sin θ

+ 2
cos θ

, 0 < θ < π
2
.

Now

f ′(θ) = 0⇔ tan3 θ =
3

2
. (3)

Direct calculation shows that (1) implies

sec θ = [(
3

2
)

2
3 + 1]

1
2 and csc θ = [(

2

3
)

2
3 + 1]

1
2 .

So the longest length of the pipe is 3[(2
3
)

2
3 + 1]

1
2 + 2[(3

2
)

2
3 + 1]

1
2 (m).

73. (a) Let x = |BC|, then the distance between the island and C is
√
x2 + 25. We

need to minimize the function f(x) = 1.4
√
x2 + 25 + (13− x), 0 ≤ x ≤ 13.

Direct calculation shows that f ′(x) = 0⇔ x = 25
√

6
12

. So the point C between

B and D that minimizes the energy expended in returning to the nest is

x = 25
√

6
12

km long from B.
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(b) It amounts to replace the coefficient 1.4 of the function f in (a) by W
L

. Then

we have

f ′(x) =
W

L

x√
x2 + 25

− 1.

So

f ′(x) = 0⇔ W

L
=

√
25

x2
+ 1⇔ x =

5√
(W
L

)2 − 1
.

Thus W
L

large implies that the distance between B and C is small, and W
L

small implies the distance being large.

(c) It’s easy to see that f ′ ≤ 0 for x ∈ [0, 5/
√

(W
L

)2 − 1]. So f is decreasing

in this interval, with minimum at the critical point x = 5/
√

(W
L

)2 − 1. But

this conclusion is valid only when 5/
√

(W
L

)2 − 1 ≤ 13. In fact, if W
L
≤

√
194
13

,

we have 5/
√

(W
L

)2 − 1 ≥ 13. In this case, f(13) is always the minimum of

f , and hence the bird should fly directly to its nesting area for minimize the

energy expended.

On the other hand, there is no finite value for W
L

corresponding to the choice

of flying first to B and then flying from B to D. All that we can say is that

if W
L

is very large, the point C will be very close to B.

(d) The observation infers that the critical point of f is x = 4. So from (b), we

have
W

L
=

√
25

42
+ 1 =

√
41

4
≈ 1.6.
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