4	_	3
---	---	---

Interval	x + 1	x	x - 1	f'(x)	f
x < -1	-	-	-	-	decreasing on $(-\infty, -1)$
-1 < x < 0	+	-	_	+	increasing on $(-1, 0)$
0 < x < 1	+	+	-	-	decreasing on $(0, 1)$
x > 1	+	+	+	+	increasing on $(1,\infty)$

(b) f changes from increasing to decreasing at x = 0 and from decreasing to increasing at x = -1 and x = 1. Thus, f(0) = 3 is a local maximum value and $f(\pm 1) = 2$ are local minimum values.

- (c) $f''(x) = 12x^2 4 = 12(x^2 \frac{1}{3}) = 12((x + \frac{1}{\sqrt{3}})(x \frac{1}{\sqrt{3}})).$
- $f''(x) > 0 \Leftrightarrow x < -\frac{1}{\sqrt{3}} \text{ or } x > \frac{1}{\sqrt{3}} \text{ and } f''(x) < 0 \Leftrightarrow -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}.$

Thus, f is concave upward on $(-\infty, -\frac{\sqrt{3}}{3})$ and $(\frac{\sqrt{3}}{3}, \infty)$ and concave downward on $(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$. There are inflection points at $(\pm \frac{\sqrt{3}}{3}, \frac{22}{9})$.

12. (a) $f(x) = \frac{x^2}{x^2+3} \Rightarrow f'(x) = \frac{(x^2+3)(2x)-x^2(2x)}{(x^2+3)^2} = \frac{6x}{(x^2+3)^2}$. The denominator is positive so the sign of f'(x) is determined by the sign of x. Thus, $f'(x) > 0 \Leftrightarrow x > 0$ and $f'(x) < 0 \Leftrightarrow x < 0$. So f is increasing on $(0, \infty)$ and f is decreasing on $(-\infty, 0)$.

(b) f changes from decreasing to increasing at x = 0. Thus, f(0) = 0 is a local minimum value.

- (c) $f''(x) = \frac{(x^2+3)^2(6)-6x\cdot2(x^2+3)(2x)}{[(x^2+3)^2]^2} = \frac{6(x^2+3)[x^2+3-4x^2]}{(x^2+3)^4}$ $= \frac{6(3-3x^2)}{(x^2+3)^3} = \frac{-18(x+1)(x-1)}{(x^2+3)^3}.$ $f''(x) > 0 \Leftrightarrow -1 < x < 1 \text{ and } f''(x) < 0 \Leftrightarrow x < -1 \text{ or } x > 1. \text{ Thus,}$
- f is concave upward on (-1, 1) and concave downward on $(-\infty, -1)$ and $(1, \infty)$. There are inflection points at $(\pm 1, \frac{1}{4})$.
- 16. (a) $f(x) = x^2 \ln x \Rightarrow f'(x) = x^2(1/x) + (\ln x)(2x) = x + 2x \ln x = x(1 + 2\ln x)$. The domain of f is $(0, \infty)$, so the sign of f' is determined solely by the factor $1 + 2\ln x$. $f'(x) > 0 \Leftrightarrow \ln x > -\frac{1}{2} \Leftrightarrow x > e^{\frac{-1}{2}} [\approx 0.61]$ and $f'(x) < 0 \Leftrightarrow 0 < x < e^{\frac{-1}{2}}$. So f is increasing on $(e^{\frac{-1}{2}}, \infty)$ and f is decreasing on $(0, e^{\frac{-1}{2}})$.

(b) f changes from decreasing to increasing at $x = e^{\frac{-1}{2}}$. Thus, $f(e^{\frac{-1}{2}}) = (e^{\frac{-1}{2}})^2 \ln(e^{\frac{-1}{2}}) = e^{-1}(\frac{-1}{2}) = -\frac{1}{2e} [\approx -0.18]$ is a local minimum value. (c) $f'(x) = x(1+2\ln x) \Rightarrow f''(x) = x(2/x) + (1+2\ln x) \cdot 1 = 2+1+2\ln x = 3+2\ln x$. $f''(x) > 0 \Leftrightarrow 3+2\ln x > 0 \Leftrightarrow \ln x > -3/2 \Leftrightarrow x > e^{-3/2} [\approx 0.22]$. Thus, f is concave upward on $(e^{-3/2}, \infty)$ and f is concave downward on $(0, e^{-3/2})$. $f(e^{-3/2}) = (e^{-3/2})^2 \ln e^{-3/2} = e^{-3}(-3/2) = \frac{-3}{2e^3} [\approx -0.07]$. There is a point of inflection at $(e^{-3/2}, f(e^{-3/2})) = (e^{-3/2}, \frac{-3}{2e^3})$.

20. $f(x) = \frac{x}{x^2+4} \Rightarrow f'(x) = \frac{(x^2+4)\cdot 1-x(2x)}{(x^2+4)^2} = \frac{4-x^2}{(x^2+4)^2} = \frac{(2+x)(2-x)}{(x^2+4)^2}.$ First Derivative Test: $f'(x) > 0 \Rightarrow -2 < x < 2$ and $f'(x) < 0 \Rightarrow x > 2$ or

First Derivative Test: $f'(x) > 0 \Rightarrow -2 < x < 2$ and $f'(x) < 0 \Rightarrow x > 2$ or x < -2. Since f' changes from positive to negative at x = 2, $f(2) = \frac{1}{4}$ is a local maximum value; and since f' changes from negative to positive at x = -2, $f(-2) = -\frac{1}{4}$ is a local minimum value.

Second Derivative Test: $f''(x) = \frac{(x^2+4)^2(-2x)-(4-x^2)\cdot 2(x^2+4)(2x)}{[(x^2+4)^2]^2}$ $= \frac{-2x(x^2+4)[(x^2+4)+2(4-x^2)]}{(x^2+4)^4} = \frac{-2x(12-x^2)}{(x^2+4)^3}.$ $f'(x) = 0 \Leftrightarrow x = \pm 2.$ $f''(-2) = \frac{1}{16} > 0 \Rightarrow f(-2) = -\frac{1}{4}$ is a local minimum value. $f''(2) = -\frac{1}{16} < 0 \Rightarrow f(2) = \frac{1}{4}$ is a local maximum value. Proference: Since calculating the second derivative is fairly difference.

Preference: Since calculating the second derivative is fairly difficult, the First Derivative Test is easier to use for this function.

21. $f(x) = x + \sqrt{1-x} \Rightarrow f'(x) = 1 + \frac{1}{2}(1-x)^{-1/2}(-1) = 1 - \frac{1}{2\sqrt{1-x}}$. Note that f is defined for $1-x \ge 0$; that is, for $x \le 1$. $f'(x) = 0 \Rightarrow 2\sqrt{1-x} = 1 \Rightarrow \sqrt{1-x} = \frac{1}{2} \Rightarrow 1-x = \frac{1}{4} \Rightarrow x = \frac{3}{4}$. f' does not exist at x = 1, but we can't have a local maximum of minimum at an endpoint.

First Derivative Test: $f'(x) > 0 \Rightarrow x < \frac{3}{4}$ and $f'(x) < 0 \Rightarrow \frac{3}{4} < x < 1$. Since f' changes from positive to negative at $x = \frac{3}{4}$, $f(\frac{3}{4}) = \frac{5}{4}$ is a local maximum value.

Second Derivative Test: $f''(x) = -\frac{1}{2}(-\frac{1}{2})(1-x)^{-3/2}(-1) = -\frac{1}{4(\sqrt{1-x})^3}$. $f''(\frac{3}{4}) = -2 < 0 \Rightarrow f(\frac{3}{4}) = \frac{5}{4}$ is a local maximum value.

Preference: The First Derivative Test may be slightly easier to apply in this case.

22. (a) $f(x) = x^4(x-1)^3 \Rightarrow f'(x) = x^4 \cdot 3(x-1)^2 + (x-1)^3 \cdot 4x^3$ $= x^3(x-1)^2[3x+4(x-1)] = x^3(x-1)^2(7x-4).$ The critical numbers are 0, 1, and $\frac{4}{7}$. (b) $f''(x) = 3x^2(x-1)^2(7x-4) + x^3 \cdot 2(x-1)(7x-4) + x^3(x-1)^2 \cdot 7$ $= x^2(x-1)[3(x-1)(7x-4) + 2x(7x-4) + 7x(x-1)].$ Now f''(0) = f''(1) = 0, so the Second Derivative Test gives no information for x = 0 or x = 1. $f''(\frac{4}{7}) = (\frac{4}{7})^2(\frac{4}{7}-1)[0+0+7(\frac{4}{7})(\frac{4}{7}-1)] = (\frac{4}{7})^2(-\frac{3}{7})(4)(-\frac{3}{7}) > 0, \text{ so there is a local minimum at } x = \frac{4}{7}.$

(c) f' is positive on $(-\infty, 0)$, negative on $(0, \frac{4}{7})$, positive on $(\frac{4}{7}, 1)$, and positive on $(1, \infty)$. So f has a local maximum at x = 0, a local minimum at $x = \frac{4}{7}$, and no local maximum or minimum at x = 1.

- 41. (a) $C(x) = x^{1/3}(x+4) = x^{4/3} + 4x^{1/3}$ $\Rightarrow C'(x) = \frac{4}{3}x^{1/3} + \frac{4}{3}x^{-2/3} = \frac{4}{3}x^{-2/3}(x+1) = \frac{4(x+1)}{3\sqrt[3]{x^2}}.$
 - C'(x) > 0 if -1 < x < 0 or x > 0 and C'(x) < 0 for x < -1,

so C is increasing on $(-1, \infty)$ and C is decreasing on $(-\infty, -1)$.

- (b) C(-1) = -3 is a local minimum value.
- (c) $C''(x) = \frac{4}{9}x^{-2/3} \frac{8}{9}x^{-5/3} = \frac{4}{9}x^{-5/3}(x-2) = \frac{4(x-2)}{9\sqrt[3]{x^5}}.$

C''(x) < 0 for 0 < x < 2 and C''(x) > 0 for x < 0 and x > 2, so C is concave downward on (0,2) and concave upward on $(-\infty,0)$ and $(2,\infty)$. There are inflection points at (0,0) and $(2,6\sqrt[3]{2}) \approx (2,7.56)$.

(d)

76. (a) Let $f(x) = e^x - 1 - x \Rightarrow f'(x) = e^x - 1$ for $x \ge 0$. Because $f'(x) \ge 0$ for $x \ge 0 \Rightarrow f$ is increasing on $(0, \infty)$ $\Rightarrow f(x) \ge f(0) = 0$ for $x \ge 0$. $\Rightarrow e^x \ge 1 + x$ for $x \ge 0$. (b) Let $g(x) = e^x - 1 - x - \frac{1}{2}x^2 \Rightarrow g'(x) = e^x - 1 - x$ for $x \ge 0$. By (a), $g'(x) \ge 0$ for $x \ge 0 \Rightarrow g$ is increasing on $(0, \infty)$ $\Rightarrow g(x) \ge g(0) = 0$ for $x \ge 0$. $\Rightarrow e^x \ge 1 + x + \frac{1}{2}x^2$ for $x \ge 0$. (c) As n = 1, by (a), we know $e^x \ge 1 + x$ for $x \ge 0$. As n = k, $e^x \ge 1 + x + \frac{1}{2}x^2 + ... + \frac{1}{k!}x^k$ is holded for $x \ge 0$. As n = k + 1, Let $h(x) = e^x - (1 + x + \frac{1}{2}x^2 + ... + \frac{1}{(k+1)!}x^{(k+1)})$ $\begin{aligned} h'(x) &= e^x - (1 + x + \frac{1}{2}x^2 + \ldots + \frac{1}{k!}x^k) \geq 0 \text{ for } x \geq 0. \\ \text{i.e. } h \text{ is increasing for } x \geq 0, \\ \text{then } h(x) \geq h(0) &= 0 \text{ for } x \geq 0 \\ \Rightarrow e^x \geq 1 + x + \frac{1}{2}x^2 + \ldots + \frac{1}{(k+1)!}x^{(k+1)} \text{ for } x \geq 0. \end{aligned}$ By induction, we know $e^x \geq 1 + x + \frac{1}{2}x^2 + \ldots + \frac{1}{n!}x^n$ for $x \geq 0$ any positive integer n.