5.

Sol:

$$f(x) = 1 - x^{2/3}$$

$$= 1 - \sqrt[3]{x^2}$$

$$\Rightarrow f(-1) = 1 - \sqrt[3]{(-1)^2}$$

$$= 0$$

And

$$f(1) = 1 - \sqrt[3]{1^2}$$
$$= 0$$
$$= f(-1)$$

Consider

$$f'(x) = \frac{-2}{3}x^{\frac{-1}{3}} = \frac{-2}{3\sqrt[3]{x}}$$

We know that there is no such $c \in \mathcal{R}$ satisfying $f'(c) = \frac{-2}{3\sqrt[3]{c}} = 0$. Q.E.D.

11.

Sol: f(x) is a polynomail

 $\Rightarrow f(x)$ is continuous on [-1,1] and differentiable on (-1,1).

 $\Rightarrow f(x)$ satisfies the hypotheses of the Mean Value Theorem.

 $\Rightarrow \exists c \in (-1,1) \text{ such that}$

$$f'(c) = \frac{f(1) - f(-1)}{1 - (-1)}$$
$$= \frac{10 - 6}{2}$$
$$= 2$$

i.e. f'(c) = 6c + 2 = 2

c=0 is one (and the only one) choice satisfying the Mean Value Theorem. Q.E.D.

18.

Sol: Let $f(x) = 2x - 1 - \sin x$

 $\Rightarrow f(x)$ is a continuous and differentiable function on \mathcal{R} .

$$f(0) = -1 < 0$$

$$f(\pi) = 2\pi - 1 > 0$$

 \Rightarrow There exists at least one $a \in (0, \pi)$ satisfying f(a) = 0.

Suppose that there exists another root $b \in \mathcal{R}$ of f(x).

i.e. f(b) = 0.

Because $f(x) = 2x - 1 - \sin x$ is differentiable on \mathcal{R} , by the mean value theorem, assume that a < b

 $\Rightarrow \exists c \in (a,b) \text{ such that } f'(c) = \frac{f(b) - f(a)}{b - a} = 0$.

But $f'(x) = 2 - \cos x \ge 1, \forall x \in \mathcal{R}$.

 $\Rightarrow f'(x) \neq 0, \forall x \in (a, b)$, contradiction.

so $f(x) = 2x - 1 - \sin x$ has exactly one real root. Q.E.D.

26.

Sol: Let h(x) = f(x) - g(x) , h(x) is continuous on [a,b] and differentiable on (a,b) .

$$\Rightarrow h(a) = f(a) - g(a) = 0 \text{ and } h'(x) = f'(x) - g'(x) < 0, \forall x \in (a, b).$$

Now, applying the mean value theorem,

$$\Rightarrow \exists c \in (a,b) \text{ such that } f'(c) = \frac{h(b) - h(a)}{b - a}$$
 .

Because $f'(x) < 0, \forall c \in (a, b)$ and (b - a) > 0,

$$\Rightarrow h(b) - h(a) < 0 ,$$

i.e.
$$h(b) = f(b) - g(b) < h(a) = 0$$

$$\Rightarrow f(b) < g(b)$$
. Q.E.D.

27.

Sol: Let $f(t) = \sqrt{1+t} - (1+\frac{1}{2}t)$, f(x) is continuous on $[0,\infty)$, differentiable on $(0, \infty)$, and f(0) = 0.

Consider f'(t),

$$f'(t) = \frac{1}{2\sqrt{1+t}} - \frac{1}{2} = \frac{1}{2}(\frac{1}{\sqrt{1+t}} - 1)$$

$$\begin{split} \forall t > 0, \sqrt{1+t} > 1 \\ \Rightarrow \frac{1}{\sqrt{1+t}} < \frac{1}{1} = 1 \\ \Rightarrow \frac{1}{\sqrt{1+t}} - 1 < 0 \\ \Rightarrow f'(t) = \frac{1}{2} \left(\frac{1}{\sqrt{1+t}} - 1 \right) < 0, \forall t > 0. \end{split}$$

Now, $\forall x > 0$, we can treat it as a fixed number and applying the mean value theorem,

$$\Rightarrow \exists c \in (0, x) \text{ satisfies } f'(c) = \frac{f(x) - f(0)}{x - 0}$$

Because $f'(t) < 0, \forall t > 0$

$$\Rightarrow f'(c) = \frac{f(x) - f(0)}{x - 0} < 0$$

$$\Rightarrow f'(c) = \frac{f(x) - f(0)}{x - 0} < 0$$

\Rightarrow f(x) = $\sqrt{1 + x} - (1 + \frac{1}{2}x) < 0, \forall x > 0$

i.e.
$$\sqrt{1+x} < (1+\frac{1}{2}x), \forall x > 0$$
. Q.E.D.

29.

Sol:

(1) If
$$a = b$$
,

$$\Rightarrow |\sin a - \sin b| = 0$$
, $|a - b| = 0$

$$\Rightarrow |\sin a - \sin b| \le |a - b|$$
, the inequality holds.

(2) If $a \neq b$, assume that b < a.

Let $f(x) = \sin x$, f(x) is continuous on \mathcal{R} and differentiable on \mathcal{R} .

Apply the mean value theorem on f(x),

$$\Rightarrow \exists c \in (b, a) \text{ satisfies } f'(c) = \frac{f(a) - f(b)}{a - b}$$

Because $f'(x) = \cos x$, $|f'(x)| = |\cos x| \le 1, \forall x \in \mathcal{R}$

$$\Rightarrow \left| \frac{f(a) - f(b)}{a - b} \right| = \left| f'(c) \right| \le 1$$
$$\Rightarrow \left| f(a) - f(b) \right| \le \left| a - b \right|$$

i.e. $|\sin a - \sin b| \leq |a-b|$, the inequality holds.

(3) If a < b, similarly, we can prove that $|\sin b - \sin a| \le |b - a|$ i.e. $|\sin a - \sin b| \le |a - b|$, the inequality also holds. Q.E.D.