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Use the Closed Interval Method. Solve f'(x) = 0, where f'(x) = 62% — 6z — 12 =
6(x—2)(x+1). We get 2 roots 2 = 2 and x = —1. Notice that both 2, —1 € [-2, 3].
After some calculation, we have f(2) = —19, f(—1) = 8. Now check boundary
points. f(—2) = —3, f(3) = —8. We conclude that in interval [—2, 3], f(z) attends
its absolute maximum at = —1 and its absolute minimum at x = 2. Its maximum

and minimum values are 8 and —19 respectively.

() = () (2* +1) — z(2* + 1) _ 11— x?

(22 + 1)2 (22 + 1)2
Solving f'(z) = 0 gives z = 1 or z = —1. But —1 ¢ [0, 2], we only consider the
critical point x = 1. Compute f(1) = 1/2. For the boundaries, f(0) = 0 and

f(2) =2/5. So f(x) attends its absolute maximum and absolute minimum at x = 1

and = = 0, respectively. The absolute maximum and absolute minimum are 1/2
and 0.

As before, we compute and solve for f'(t) = 0, where f(t) = V/t(8 —t).
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f(t)_gt 8—=t)+t7°(—1) = 328 = 39

Letting f'(t) = 0 gives ¢t = 2 and f(2) = 64/2. Consider boundaries ¢ = 0 and
t = 8. f(t) has values 0 and any one of both. We conclude that f(¢) has absolute
maximum at ¢t = 2 with value 6¢/2 and has absolute minimum at ¢t = 0, t = 8 with

values 0.

f'(x) =1—1/x. f'(x) only has value zero at x = 1. f(1) = 1. Now check the
boundaries. f(1/2) = 1/2+4+1In2 and f(2) =2 —1In2. In2 ~ 0.6931. After some
simple comparison, we conclude f(1) =1 is the minimum and f(2) = 1.3069 is the

maximuin.

f(x) = —e™® +2e2*. f'(x) = 0 if and only if e=® = 1/2. This equation indeed
has one solution since e™* is one-to-one. Denote this solution by zy. We have
f(xo) = 1/4. Comparing the boundaries, we have f(0) =0 and f(1) = e ! — e %,
Using e ~ 2.71828, we can get f(1) ~ 0.2325. So f(zo) = 1/4 is the maximum and
f(0) = 0 is the minimum.

A simple observation, f(z) > 0 for all z € (0,1), and f(z) = 0 as x = 0 or
r = 1. f(z) is countinuous on [0, 1] since a, b > 0. By FEztreme Value Theorem,
f(z) has a maximum on some ¢ € [0, 1] and we know that c is neither 0 nor 1. Using

Power Rule,
fl(z) =az* ' (1 —2)® —br*(1 — )PP =271 (1 — 2)" (a(1 — 2) — ba)

f'(x) = 0 may have zeros at © =0, x =1, or x = a/(a +b). (We say “may” since
this depends on whether a or b is equal to or smaller than 1.) However we can

exclude the case of z = 1 or = 0 here because even if 0 or 1 is a root of f'(x),
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they are impossible to be maximums. So we know the maximum must occur at

z = a/(a+b) and N
f(aib):(aj—b> (a+b)

67. (a) The graph of f(x) is given below.
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Figure 1: f(x) = 2vx — 22

Notice that f(z) has definition only when the value in the square root is nonnegative,
ie,r—22>0. v —2?>0if and only if 0 < 2 < 1. The maximum and minimum

nearly are 0.32 and 0 by using graph.
(b) Using Calculus.
x(l1—2x) 3z —4a?

fla)=ve—a*+ W1 —12 20/x— a2

f'(x) =0 if and only if x = 3/4 and

()4

Since f(x) has value zero both at + = 1 and z = 0. We know that f(z) has a
maximum value 3v/3/16 at x = 3/4 and minimum 0 at both z = 0 and z = 1.

78. (a) In Calculus class, we only consider real functions. Let f(z) = az®+bx?*+ cx +d,
where a, b, ¢, d € R. f'(x) = 3ax?® + 2bx + ¢. Put D = (2b)®> — 4(3a)(c). f(x) has
2 distinct real roots if D > 0, has a repeated root if D = 0, and has no real roots if
D < 0.

As an example of 2 critical points, let = 1/3, b = =1, ¢ = =8, d = 0. f(x) =
(1/3)x® —2? —8x. Then f'(z) =2*—22—8. D = (—2)>—4(1/3)(—8) > 0, so f'(x)
has 2 distinct roots. We illustrate this by graph below.

As an example for exactly one critical point, let @ = 1, b = 0, ¢ = 0, d = 0.
f(x) =2, and f'(x) = 3x* has only one root at z = 0. We illustrate f(z) below.
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To complete all cases, consider a = 1,0 =0, c=1,d = 0. f(z) = 2° + z and
f'(z) = 3z% + 1 has no real roots. So f(x) has no critical points for all x. We draw

this function below, too.
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Figure 2: f(z) = (1/3)2® — 2* — 8z
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Figure 3: f(z) = 3
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Figure 4: f(z) =2® +x

(b) By (a), a cube function can have 2, 1, or 0 critical points.



