12.

(a) Given the rate of decrease of the surface area is $1 cm^2/min$. If we let t be time(in minutes) and S be the surface area(in cm^2), then we are given that $dS/dt = -1 cm^2/min$.

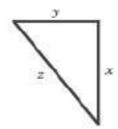
(b) Unknow: the rate of decrease of the diameter when the diameter is 10 cm. If we let x be the diameter, then we want to find dx/dt when x = 10 cm.

(c) If the radius is r and the diameter x=2r, then $r=\frac{1}{2}x$ and

$$S = 4\pi r^2 = 4\pi (\frac{1}{2}x)^2 = \pi x^2 \Rightarrow \frac{dS}{dt} = \frac{dS}{dx}\frac{dx}{dt} = 2\pi x \frac{dx}{dt}.$$

(d)-1 = $\frac{dS}{dt} = 2\pi x \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = -\frac{1}{2\pi x}$. When x = 10, $\frac{dx}{dt} = -\frac{1}{20\pi}$. So the rate of decrease is $\frac{1}{20\pi} \ cm/min$.

15.



We are given that $\frac{dx}{dt} = 60 \ mi/h$ and $\frac{dy}{dt} = 25 \ mi/h$. $z^2 = x^2 + y^2 \Rightarrow 2z\frac{dz}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt} \Rightarrow z\frac{dz}{dt} = x\frac{dx}{dt} + y\frac{dy}{dt} \Rightarrow \frac{dz}{dt} = \frac{1}{z}(2x\frac{dx}{dt} + 2y\frac{dy}{dt})$. After 2 hours, x = 2(60) = 120 and $y = 2(25) = 50 \Rightarrow z = \sqrt{120^2 + 50^2} = 130$, so $\frac{dz}{dt} = \frac{1}{z}(x\frac{dx}{dt} + y\frac{dy}{dt}) = \frac{120(60) + 50(25)}{130} = 65 \ mi/h$.

19

 $A=\frac{1}{2}bh$, where b is the base and h is the altitude. We are given that $\frac{dh}{dt}=1\ cm/min$ and $\frac{dA}{dt}=2\ cm^2/min$. Using the product rule, we have $\frac{dA}{dt}=\frac{1}{2}(b\frac{dh}{dt}+h\frac{db}{dt})$. When h=10 and A=100, we have $100=\frac{1}{2}b(10)\Rightarrow \frac{1}{2}b=10\Rightarrow b=20$, so $2=\frac{1}{2}(20\cdot 1+10\frac{db}{dt})\Rightarrow 4=20+10\frac{db}{dt}\Rightarrow \frac{db}{dt}=\frac{4-20}{10}=-1.6\ cm/min$.

22.

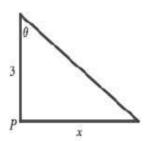
Let D denote the distance from the origin (0,0) to the point on the curve $y = \sqrt{x}$.

$$D = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + (\sqrt{x})^2} = \sqrt{x^2 + x}$$

$$\Rightarrow \frac{dD}{dt} = \frac{1}{2}(x^2 + x)^{\frac{1}{2}}(2x+1)\frac{dx}{dt} = \frac{2x+1}{2\sqrt{x^2 + x}}\frac{dx}{dt}.$$

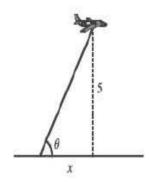
With $\frac{dx}{dt} = 3$ when x = 4, $\frac{dD}{dt} = \frac{9}{2\sqrt{20}}(3) = \frac{27}{4\sqrt{5}} \approx 3.02 \ cm/s$.

38.



We are given that $\frac{d\theta}{dt} = 4(2\pi) = 8\pi \ rad/min.x = 3tan\theta \Rightarrow \frac{dx}{dt} = 3sec^2\theta \frac{d\theta}{dt}$. When x = 1, $tan\theta = \frac{1}{3}$, so $sec^2\theta = 1 + (\frac{1}{3})^2 = \frac{10}{9}$ and $\frac{dx}{dt} = 3(\frac{10}{9})(8\pi) = \frac{80}{3}\pi \approx 83.8 \ km/min$.

39.



 $\cot\theta = \frac{x}{5} \Rightarrow -\csc^2\theta \ \frac{d\theta}{dt} = \frac{1}{5}\frac{dx}{dt} \Rightarrow -(\csc\frac{\pi}{3})^2(-\frac{\pi}{6}) = \frac{1}{5}\frac{dx}{dt} \Rightarrow \frac{dx}{dt} = \frac{5\pi}{6}(\frac{2}{\sqrt{3}})^2 = \frac{10}{9}\pi \ km/min.$