Section3.3

Derivatives of trigonometric functions

- 1. $f(x) = 1 3\sin x$ $\Rightarrow f'(x) = (1)' - 3(\sin x)' = -3\cos x$
- 2. $f(x) = x \sin x$ $\Rightarrow f'(x) = (x)' \sin x + x(\sin x)' = \sin x + x \cos x$
- 9. $y = \frac{x}{2-\tan x}$ $\Rightarrow \frac{dy}{dx} = \frac{(2-\tan x)(x)'-x(2-\tan x)'}{(2-\tan x)^2} = \frac{(2-\tan x)(1)-x(-\sec^2 x)}{(2-\tan x)^2} = \frac{2-\tan x+x\sec^2 x}{(2-\tan x)^2}$
- 22. $y = e^x \cos x$, (0, 1) $\frac{dy}{dx} = e^x \cos x + e^x(-\sin x) = e^x \cos x - e^x \sin x$ $\frac{dy}{dx}|_{x=0} = e^0 \cos 0 - e^0 \sin 0 = 1 - 0 = 1$ The slope of the tangent line at (0, 1) is 1. So, the equation of the tangent line at (0, 1) is y - 1 = 1(x - 0) or y = x + 1.
- 35. (a). $x(t) = 8 \sin t$

The equation of velocity $v(t) = x'(t) = 8 \cos t$. The equation of acceleration $a(t) = x''(t) = -8 \sin t$.

- (b). The mass at time $t = \frac{2\pi}{3}$ has position $x(\frac{2\pi}{3}) = 8\sin(\frac{2\pi}{3}) = 8(\frac{\sqrt{3}}{2}) = 4\sqrt{3}$, velocity $v(\frac{2\pi}{3}) = 8\cos(\frac{2\pi}{3}) = 8(\frac{-1}{2}) = -4$, and acceleration $a(\frac{2\pi}{3}) = -8\sin(\frac{2\pi}{3}) = -8(\frac{\sqrt{3}}{2}) = -4\sqrt{3}$. Since $v(\frac{2\pi}{3}) < 0$, the particle is moving to the left.
- 37. From the figure 1: 3-3-12, we can see that $\sin \theta = x/6 \Leftrightarrow x = 6 \sin \theta$. We want to find the rate of change of x with respect to θ , that is $\frac{dx}{d\theta}$. Taking the derivative of $x = 6 \sin \theta$, we get $\frac{dx}{d\theta} = 6 \cos \theta$. So, when $\theta = \frac{\pi}{3}, \frac{dx}{d\theta} = 6 \cos(\frac{\pi}{3}) = 6(\frac{1}{2}) = 3 m/rd$

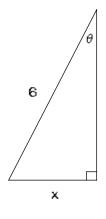


Figure 1: 3-3-12