

 γ shifting figure.3 downward 3 unit we have $y = 4^x - 3$.

• 8.Start with $y = 4^x$ (figure 3) by shifting this one 3 unit to the right we have $y = 4^x - 3$.

- 9.Start with $y = 2^x$ (figure 2) reflect it about x-axis then about the y-axis to obtain the graph $y = -2^{-x}$. • 9.Start with $y = 2^x$ (figure 2) reflect it about x-axis then about the y-axis to obtain the graph $y = -2^{-x}$. • 10.Start with $y = e^{-x}$ (figure 13), stretch this vertically by a factor of 2 and shift 1 unit upward. = $2e^x$ $y = 1 + 2e^x$
- set the graph of $y = e^{-x}$. Then we compress the
- lect about the x-axis to get the graph of
- graph of $y = e^{-x}$. Then we compress the
- out the x-axis to get the graph of

1

- asymptote. $v = 2^x$
 - ⁷1/
- We start with the graph of y = e^x (Figure 13), vertically stretch by a factor of 2, and then shift 1 unit upward. There is a horizontal asymptote of y = 1.

• 11.Start with $y = e^x$ and reflect this about y-axis. Then compress the graph vertically by a factor of 2 then reflect it about x-axis, finally shift upward one unit to have $y = 1 - \frac{1}{2}e^{-x}$.

 e^x 2 units to the right, we replace x with x - 2

he graph with expansions with yand then and reflect this about x-axis. Then shift upward one unit. Finally stretch vertically

by a factor of 2. he graph with equation $y = e^{-x}$) and then ⁴⁾.

 $= \{t \mid t \le 0\}$

3.

ives

- (a) To find the equation of the graph that results from shifting the graph of $y = e^x 2$ units downward, we subtract 2 from the original (fingtion to get $y = 2e^{x-2}$ (c) $y = -e^x$ (d) $y = e^{-x}$ (e) $y = -e^{-x}$
 - (b) To find the equation of the graph that results from shifting the graph of $y = e^x 2$ units to the right, we replace x with x 2 in the original function to get $y = e^{(x-2)}$.
 - (c) To find the equation of the graph that results from reflecting the graph of $\underline{x} = \overline{4}$, e_{w}^{x} about the \underline{x} axis, we multiply the original $-e^{x} + 8$. function by -1 to get $y = -e^{x}$.
 - (d) To find the equation of the graph that results from reflecting the graph of $y = e^x$ about the *y*-axis, we replace *x* with -x in the original function to get $y = e^{-x}$.
 - (e) To find the equation of the graph that results from reflecting the graph of $y = e^x$ about the x-axis and then about the y-dx5s(a)Since cull tiple the of final diluction Bythen (where y here do in a different time x with -x in this equation to get $y = -e^{-x}$.
 - 14. (a) This reflection consists of first reflecting the graph about the x-axi2 (giving the graph with equation $y = -e^x$) and then shifting this graph $2 \cdot 4 = 8$ units upward. So the equation is $y = -e^x + 8$.
 - (b) This reflection consists of first reflecting the graph about the *y*-axis (giving the graph with equation $y = e^{-x}$) and then shifting this graph $2 \cdot 2 = 4$ units to the right. So the equation is $y = e^{-(x-4)}$.
 - 45 (a) The denominator $1 + e^{\pi}$ is never equal to zero because $e^{\pi} > 0$ so the domain of $f(x) = 1/(1 + e^{\pi})$ is \mathbb{D}

(b)Since $1 - e^x = 0$ only if x = 0 therefore the domain is $(-\infty, 0) \bigcup (0, \infty)$.

- 16.(a)Since the domain of sine and exponential function have domain R therefore the domain of g is R.
 (b)1 2^t ≥ 0 ⇒ t ≤ 0 therefore the domain is (-∞, 0].
- $19.\frac{5^{x+h}-5^x}{h} = 5^x(\frac{5^h-1}{h}).$
- 20.For suppose the month is February therefore by method.2 you should pay $(1 + 2 + 2^2 + ... + 2^{27}) = 2^{28} 1 = 268435455$ cent equal to 2684354.55 dollars which is larger than method one.