
Section 10.3
Polar Coordinates

66. r = eθ ⇒ x = r cos θ = eθ cos θ, y = r sin θ = eθ sin θ.

⇒ dy
dθ

= eθ sin θ+eθ cos θ = eθ(sin θ+cos θ), dx
dθ

= eθ cos θ−eθ sin θ = eθ(cos θ−sin θ).

Let dy
dθ

= 0 ⇒ sin θ = − cos θ ⇒ tan θ = −1 ⇒ θ = −1
4

π + nπ (n any integer) ⇒
horizontal tangents at (eπ(n− 1

4
), π(n − 1

4
)).

Let dx
dθ

= 0 ⇒ sin θ = cos θ ⇒ tan θ = 1

⇒ θ = 1
4
π + nπ (n any integer)

⇒ vertical tangents at (eπ(n+ 1
4
), π(n + 1

4
)).

68. By differentiating implicitly, r2 = sin 2θ ⇒ 2r(dr
dθ

) = 2 cos 2θ ⇒ dr
dθ

= 1
r
cos 2θ.

So, dy
dθ

= (dr
dθ

) sin θ + r cos θ = 1
r
cos 2θ sin θ + r cos θ = 1

r
(cos 2θ sin θ + r2 cos θ)

= 1
r
(cos 2θ sin θ + sin 2θ cos θ) = 1

r
sin 3θ.

dy
dθ

= 0 ⇒ sin 3θ = 0 ⇒ θ = 0, π
3

or 4
3
π (restricting θ to the domain of the

lemniscate). So, there are horizontal tangents at ( 4

√
3
4
, π

3
), ( 4

√
3
4
, 4π

3
) and (0, 0).

Similarly, dx
dθ

= 1
r
cos 3θ = 0 when θ = π

6
or 7π

6
, so there are vertical tangents at

( 4

√
3
4
, π

6
), ( 4

√
3
4
, 7π

6
) [and (0, 0)].

70. These curves are circles which intersect at the origin and at ( a√
2
, π

4
). At the

origin, the first circle has a horizontal tangent and the second a vertical one,

so the tangents are perpandicular here. For the first circle [r = a sin θ], dy
dθ

=

a cos θ sin θ + a sin θ cos θ = a sin 2θ = a at θ = π
4

and dx
dθ

= a cos2 θ − a sin2 θ =

a cos 2θ = 0 at θ = π
4
, so the tangent here is vertical. Similarly, for the second circle

[r = a cos θ], dy
dθ

= a cos 2θ = 0 and dx
dθ

= −a sin 2θ = −a at θ = π
4
, so the tangent

is horizontal, and again the tangents are perpendicular.

72. r =
√

1 − 0.8 sin2 θ. The parameter interval is [0, 2π].
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74. r = sin2(4θ) + cos(4θ). The parameter interval is [0, 2π].

76. r = cos( θ
2
) + cos( θ

3
). The parameter interval is [−6π, 6π].

78. From the graph, the highest points seem to have y ≈ 0.77. To find the exact value,

we solve dy
dθ

= 0. y = r sin θ = sin θ sin 2θ ⇒ dy
dθ

= 2 sin θ cos 2θ + cos θ sin 2θ =

2 sin θ(2 cos2 θ − 1) + cos θ(2 sin θ cos θ) = 2 sin θ(3 cos2 θ − 1).

In the first quadrant, this is 0 when cos θ = 1√
3
⇔ sin θ =

√
2
3
⇔ y = 2 sin2 θ cos θ =

2 · 2
3
· 1√

3
= 9

4

√
3 ≈ 0.77.

79. (a) r = sin nθ.

From the graphs, it seems that when n is even, the number of loops in the curve

(called a rose) is 2n, and when n is odd, the number of loops is simply n. This is

because in the case of n odd, every point on the graph is traversed twice, due to

the fact that

r(θ + π) = sin[n(θ + π)] = sin nθ cos nπ + cos nθ sin nπ =

 sin nθ if n is even,

− sin nθ if n is odd,
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80. r = 1+ c sin nθ. We vary n while keeping c constant at 2. As n changes, the curves

change in the same way as those in Exercise 79: the number of loops increases.

Note that if n is even, the smaller loops are outside the larger ones; if n is odd,

there are inside.

Now we vary c while keeping n = 3. As c increases toward 0, the entire graph

gets smaller (the graphs below are not to scale) and the smaller loops shrink in

relation to the large ones. At c = −1, the small loops disappear entirely, and

for −1 < c < 1, the graph is a simple, closed curve (at c = 0 it is a circle).

As c continues to increase, the same changes are seen, but in reverse order, since

1 + (−c) sin nθ = 1 + c sin n(θ + π), so the graph for c = c0 is the same as that for

c = −c0, with a rotation through π. As c → ∞, the smaller loops get relatively

closer in size to the large ones. Note that the distance between the outermost points

of corresponding inner and outer loops is always 2. Maple’s animate command (or

Mathematica’s Animate) is very useful for seeing the changes that occur as c varies.
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82. Most graphing devices cannot plot implicit polar equations, so we must first find

an explicit expression (or expressions) for r in terms of θ, a, and c. We note that

the given equation, r4 − 2c2r2 cos 2θ + c4 − a4 = 0, is a quadratic in r2, so we use

the quadratic formula and find that

r2 =
2c2 cos 2θ ±

√
4c4 cos2 2θ − 4(c4 − a4)

2
= c2 cos 2θ ±

√
a4 − c4 sin2 2θ

so r = ±
√

c2 cos 2θ ±
√

a4 − c4 sin2 2θ. So for each graph, we must plot four curves

to be sure of plotting all the points which satisfy the given equation. Note that all

functions have period π.

We start with the case a = c = 1, and the resulting curve resembles the symbol for

infinity. If we let a decrease, the curve splits into two symmetric parts, and as a

decrease further, the parts become smaller, further apart, and rounder. If instead

we let a increase from 1, the two lobes of the curve join together, and as a increases

further they continue to merge, until at a ≈ 1.4, the graph no longer has dimples,

and has an oval shape. As a → ∞, the oval becomes larger and rounder, since the

c2 and c4 terms lose their significance. Note that the shape of the graph seems to

depend only on the ratio c/a, while the size of the graph varies as c and a jointly

increase.

4



84. (a)r = eθ ⇒ dr
dθ

= eθ, so by Exercise 83, tan ψ = r
eθ = 1 ⇒ ψ = arctan 1 = π

4
.

(b)The Cartesian equation of the tangent line at (1, 0) is y = x − 1, and that of

the tangent line at (0, eπ/2) is y = eπ/2 − x. (c)Let a be the tangent of the angle

between the tangent and radial lines, that is, a = tan ψ. Then, by Exercise 83,

a = r
dr/dθ

⇒ dr
dθ

= 1
a
r ⇒ r = Ceθ/a [by Theorem 9.4.2]
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