972 A4 F 01-05FE 7k F AR A

1. (8%) Determine whether the series converges absolutely, or converges conditionally, or diverges.

) E:(_Un3-5-7~-@n+-n'

|.3n
~ nl-3

b) gln(l + %)

Sol:

(a)

2. (4%) Determine the real values of p for which the series Z

3.5.7--(2n+1)

Let a, = (—1)" 3 , applying Ratio Test,
n-o"
.5.7... . 1.3n
i (B 3:5-7---(2n+1)-(2n+3) n!-3
n—oo | G, n—00 (n+ 1)!- 3n+t 3:5:7---(2n+1)
) 2n+3
= lim |——F—
n—oo |3 (n+1)
2
= <1
3
- L3-5-T---(2n+1)
So, 221(—1) T is absolutely convergent.
1

Let a,, = In(1 + —), b,, =

1+ =),
. an, o In(1+ )

lim — = lim i

o T Vm . o .

Since > b, is a divergent series (p-series with p = %), by Limit Comparison Test, Y a, is

1
v

= 1 (L’Hospital’s rule)

S

also divergent.

Note: The Limit Comparison Test must compare two positive series. We cannot compare
> a, with Zln(\/iﬁ)

1
np Inn(Inlnn)

> is absolutely

convergent, conditionally convergent or divergent, respectlvely

Sol:

Consider the series Z

1
nPInn(lnlnn)?




1 n~?
0: L =lm — 0.
p<7 n? Inn(Inlnn)? e In n(lnlnn)? Bk

So the series is divergent.

p = 1: Using Integral Test,
> 1 u=lnlmz [ 1 I
/ gy / —du= —— < 00
3 xlnz(lnlnz)? Inlng U2 U3
So, the series is absolutely convergent.
p > 1: Using Comparison Test, comparing with p-series (p > 1)
- 1 =1
< — < o0.
nz; n?Inn(lnlnn)? z; np
So the series is absolutely convergent.
1 PP (EYFTL nt=p
0 <p<1: Compare with =, lim /22 — lim ———————— — o0,
L p Z n n—oo % n—oo lIl TL(II] lIl TL)Q

1 1
Since Z - is divergent, Z w7 Tnn(Innn)? is divergent.

However, Z(—l)”

series is conditionally convergent.

?Inn(Inlnn)? is convergent by Alternating Series Test. Hence, the
nPInn(lnlnn

3. (11%)

(a) Write down the Maclaurin series of arctan x.
(b) What is the interval of convergence of the above series?

. N G
(c¢) Find the sum of the series E W
—~ (2n+1)3

Sol:

d 1 o0 2n+1
(a) Since e arctanx = Tyt arctanx = C + 2(—1)";;& 1 Because arctan(0 = 0, we
o0 x2n+1
have C' = 0, therefore arctan z = %(—1)”271 1



x2n+1

b) Since lim {
(b) Since lim {/15 =7

x = %1, this series also converge (conditionally) by Leibniz theorem. Hence the interval

| = 2?, this series converges absolutely when —1 < z < 1. For

of convergence of this seris is [—1, 1].
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4. (11%) Let r(t) be a motion governed by Newton’s Law F = ma and the Gravitational Law

GMm
3

3

F=-— r where r = |r|.

(a) Show that r x v is a constant vector h. Deduce that the orbit of the particle is a plane

curve.

r
(b) Let u = —. Show that a x h = GMu’. Deduce that there is a constant vector ¢ such that
r

v X h = GMu+ c. ( Hint: use the formulaa x (b xc)=(a-c)b—(a-b)c.)

Sol:

GMm

r3

(a) By F=ma=— r, we obthain

So, a is parallel to r. Thus

E(rxv):r’xv—i-rxv’

=vXxv+rxa=0+0=0

Therefore r x v = h is a constant vector.

(We may assume that h # 0; that is, r and v are not parallel.)
This means that the vector r = r(t) is perpendicular to h for all values of ¢, so the planet
always lies in the plane through the origin perpendicular to h. Thus the orbit of the planet

is a plane curve.



h=rxv=rxr =rux(ru)

=rux (ru +7u) =r*u x u' +rr'(u x u)

=rPuxu

Then

GM

2

axh=— ux (rPruxu)=-GMux (uxu)

r

=—GM[(u-u)u— (u-u)u|

But u-u = |[u* = 1, it follows from Example 4 in section 13.2 that u-u’ = 0. Therefore
ax h=GMu
and since h is a constant vector,
(vxh)=v' xh=axh=GMu
Integrating both side of this equation, we get
vxh=GMu+c
[for some constant vector c.
5. (11%) Let r(t) = 2sinti + 5tj 4+ 2 costk, t € R.

(a) Find the unit tangent vector T(¢), unit normal vector IN(¢) and binormal vector B(?).

(b) Find the curvature .

Sol:

(a) Since r'(t) = 2costi+ 5j — 2sintk. |r'(t)| = \/4(c0s t)? 4 4(sint)® + 25 = v/29

We have T(£) = S0 = L (9 costi4 5§ — 25in tk)
€ nave = = — COS 11 — £ S1n .
POl V29 !
T/(t) = —(—2sinti — 2costk). [T'(t)] = \/i((cost)2+(sint)2): 4
20 ' 29 29

4



We have N(t) = )] = —sinti — costk.
ik
B(t)=T(t) x N(f) = | 2em¢ 5. =zt | = \/Lz_g(—5costi 2§+ 5sin tk)
—sint 0 —cost
. dT| |T'(1) %2
(b) By the definition we have k(t) = ‘ﬁ‘ = ) 7(0) ) = % =59

6. (11%) Determine whether the function is continuous at (0, 0).

( x2y

(a) flz,y) =4 T2+ (z,y) # (0,0)
. 0 (z,y) = (0,0).
( xgy
[, — (x,y 7A 0, O)
o) fey =] @ ST
\ O ((,C,y) = (070)
Sol:
2 . )
(@) Sinee % = lim - (sme(;os ) ). let & =rcosf, y =rsind
(z,y)—(0,0) T2 + 1 ey .

= lir%r(sine(cos 0)*) =0 = £(0,0). (. |sinf(cosf)?| is bounded by 1. )
By the definition we know that the function is continuous at (0, 0).
(b) Along the path y = x.
2 3
1
We have lim Lz = lim 1:_4 = lim — #0= £(0,0).
(@y)—=00) (22 +y?)°  (@y)—00 42 (zy)—(00) 4z
The function isn’t continuous at (0, 0).
22tan 1Y y* tan™" l xy #0
7. (11%) Let f(z,y) = z y
0 r=0ory=0.
() Find £,(0,0) and £,(0.y).
0*f
Oyox

(b) Find 0,0).

Sol:



Of i v v F(h,0)=£(0,0) . 0-0 _
For y # 0
of . f(hyy) = f(0,y) . hPtanT' ¥ —yPtan 1h g
2tan~1 L “1h
_ _lg_ytan Uy o tan™" 7 0
= lim (/A tan . - )=~y lim P ;
1
—y* lim (Z)%H = 1 _
(b)
0*f 0 ,0f

8. (11%) Find the parametric equation for the tangent line to the curve of intersection of z = z*+y?
and 42 + y? + 22 = 9 at the point (—1,1,2).
Sol:

Let f(z,y,2) =22+ y* — 2, g(z,y, 2) = 4a* + y* + 2°

This problem is to find the tangent line to the curve of intersection of

f(z,y,z) =0 and g(x,y,2) =9
At (-1,1,2), the normal vectors of the tangent planes to the surface functions are
vf=(2z,2y,—1)=(-2,2,—-1),Vg = (8z,2y,22) = (—8,2,4)
So the direction of the tangent line is

(2,2, —1) x (—8,2,4) = (10,16, 12)
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The parametric equation for the tangent line

r=-—1+10t
y=1+ 16t
2z =24 12t

9. (11%) Let f(z,y) = z* +y* — 4wy + 1.

(a) Find and classify all the critical points of f(z,v).

(b) Find the absolute maximal and minimal values of f(x,y) on the disk 2% + 3* < 1.
Sol:

(a) Tt’s easy to see that V f(z,y) = (423 — 4y, 4y® — 4x). Solve V f(x,y) = 0. We get 2° =y,
and y3> = 2. Thus y° =y, y =1, —1, or 0. Using # = 93, we have z = 1, —1, or 0. So the
critical points are (1,1), (—1,—1), and (0,0). To classify the three points, consider the

Hessian matrix

H(a.b) Jou(a,b)  fuy(a,b) _ 124> —4

foy(a,0)  fyy(a,b) —4 120
Since Hf(1,1) is positive definite, (1,1) is a local minimum. By the symmetric property,

—1,—1) is also a local minimum. Now det H;(0,0) < 0, therefore (0,0) is a saddle point.
( 7

(b) Since there are no maximum and minimum inside D : 22 + y? < 1, it must occur on the
boundary. Let x = cosf, y = sin®, where 6 € [0,27]. f(cos®,sinf)) = cos*d + sin* 0 —

4sinfcosf + 1 =2 — 2sin20 — sin?§/2. By squaring f, we have
i L, . 9
f(cosf,sinf) = —§(s1n20+2) +4

, where 6 € [0,47]. Thus f has maximum 7/2 and minimum —1/2.

2 2

10. (11%) If the ellipse $—2 + :Z—2 =1 (a,b > 0) is to enclose the circle 2 4+ y* = 2y, what values of
a

a and b minimize the area of ellipse?



Sol:
2y — yz y2
a2 b2 1= (a® = 0*)y* + 20%y — a®b* = 0

y has only one solution = 4b* + 4a*(a* — b*) = 0 = a* — a®b* + b* = 0.

=2y -y =

Let f(a,b) = wab and g(a,b) = a* — a®b* + b*> = 0,
then Vf = (7b, ma) and Vg = (4a® — 2ab®, —2ab + 2b).

Use Lagrange multiplier, we have

b = 4\a® — 2 ab?
ma = —2Xa?b + 2\b

at —a?* + > =0

2
Solve this equation, we get a = \/76, b = %, A= —\/Tgﬂ', and the minimum of f is
V6 3v2.  3V3
===



