
1. (10 %) Find the area of the region that 1 ≤ r ≤ 3 + 3 cos θ.

Sol.


3 + 3 cos θ ≥ 1

3 cos θ ≥ −2

cos θ ≥ −2
3

∴ θ range from − cos−1(−2
3

) to cos−1(−2
3

), Let θ1 = cos−1(
−2

3
)

∴ area =

∫ θ1

−θ1

(3 + 3 cos θ)2 − 1

2
dθ

=

∫ θ1

0

(3 + 3 cos θ)2 − 1dθ

=
25

2
θ + 18 sin θ +

9

4
sin 2θ

∣∣∣∣θ1

0

=
25

2
θ1 + 18 sin θ1 +

9

4
sin(2θ1)

= 5
√

5 +
25

2
cos−1(

−2

3
)

here we need to use

sin θ1 =

√
5

3

sin(2θ1) = 2 sin θ1 cos θ1 = −4

9

√
5

2. (10 %) Assume x > 0. Solve the initial value problem x2y′ + 3y = ln x with y(1) = 0.

Sol.

y′ + 3
x
y = lnx

x2

then v(x) = e
R

3
x = e3 ln x = x3

so

x3ẏ′ + x3 3̇
x
y = x ln x

we have (yẋ3)′ = x ln xdx

(yẋ3) =
∫

x ln xdx

using integration by parts, so x3y = 1
2
x2 ln x− 1

2

∫
xdx = 1

2
x2 ln x− x2

4
+ C

and then, y = 1
x3 (

1
2
x2 ln x− x2

4
+ C) = ln x

2x
− 1

4x
+ C

x3

1



with initial value y(1) = 0

so C = 1
4

hence y = 1
x3 (

1
2
x2 ln x− x2

4
+ C) = ln x

2x
− 1

4x
+ 1

4x3

3. (20 %) Given the ordinary differential equation y′ = y2(y2 − 1).

(a) Identify the equilibrium values and state those which are stable and which are unstable.

(b) Make a phase line of the differential equation and identify the signs of y′ and y′′ on it.

(c) Sketch several solution curves.

(d) Solve the equation by separation of variables. An equality in y and t is enough.

Sol.

(a) y2(y2 − 1) = 0 ⇔ y = −1, 0, 1

y′ < 0 on (−1, 1) and y′ > 0 on (−∞,−1) and (1,∞)

Hence -1 is stable, and 0,1 are unstable.

(b)

y′′ = −2yy′ + 4y3y′ = (4y3 − 2y)y′ = (4y3 − 2y)y2(y2 − 1) = 2y3(2y2 − 1)(y2 − 1)

= 4y3(y − 1√
2
)(y +

1√
2
)(y − 1)(y + 1)

Thus, on (−∞,−1): y′ > 0, y′′ < 0

on (−1,− 1√
2
): y′ < 0, y′′ > 0

on (− 1√
2
, 0): y′ < 0, y′′ < 0

on (0, 1√
2
): y′ < 0, y′′ > 0

on ( 1√
2
, 1): y′ < 0, y′′ < 0

on (1,∞): y′ > 0, y′′ > 0

(d) y′ = y2(y2 − 1)

⇒ 1

y2(y2 − 1)
dy = dt

2



⇒ (
−1

y2
+

1

2(y − 1)
+

−1

2(y + 1)
)dy = dt

⇒
∫
−1

y2
dy +

1

2

∫
1

y − 1
dy − 1

2

∫
1

y + 1
dy =

∫
dt

⇒ 1

y
+

1

2
ln |y − 1| − 1

2
ln |y + 1| = t + C

4. (15 %) At the point P0(1, 3), a function f(x, y) has a derivative of −
√

5 in the direction from

P0(1, 3) toward P (2, 1) and a derivative of
√

5 in the direction from P0(1, 3) toward P (3, 2).

(a) Find the directions in which the function f increases and decreases most rapidly at P0(1, 3).

Then find the rates of change in these directions. (12%)

(b) Estimate how much the value of f(x, y) will change if the point P (x, y) moves from P0(1, 3)

straightly toward P (0, 0) with 0.05 unit. (3%)

Sol.

(a) Let (∇f(x, y))P0 = ∇f(1, 3) = fx(1, 3)i + fy(1, 3)j. By the theorem of the directional

derivative, we have the formula:(
df

ds

)
u,P0

= (∇f)P0 · u

Since the unit vector from P0(1, 3) toward P (2, 1) is 1√
5
i− 2√

5
j and the unit vector from

P0(1, 3) toward P (3, 2) is 2√
5
i− 1√

5
j, we get 1√

5
fx(1, 3)− 2√

5
fy(1, 3) = −

√
5

2√
5
fx(1, 3)− 1√

5
fy(1, 3) =

√
5

⇒

 fx(1, 3) = 5

fy(1, 3) = 5

Thus, the direction in which the function f increases most rapidly at P0(1, 3) is

∇f(1, 3)

|∇f(1, 3)|
=

1√
2
i +

1√
2
j,

and the rate of change in this direction is |∇f |P0 =
√

52 + 52 = 5
√

2.

The direction in which the function f decreases most rapidly at P0(1, 3) is

− ∇f(1, 3)

|∇f(1, 3)|
= − 1√

2
i− 1√

2
j,

and the rate of change in this direction is −|∇f |P0 = −
√

52 + 52 = −5
√

2.
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(b) Since the unit vector from P0(1, 3) straightly toward P (0, 0) is u = − 1√
10

i− 3√
10

j,

we get

df = (∇f |P0 · u)(ds) = (5i + 5j) ·
(
− 1√

10
i− 3√

10
j

)
(0.05) = − 1√

10
.

5. (15 %) Let w = f(x, y), x = r cos θ, and y = r sin θ. Express
∂w

∂r
and

∂2w

∂r2
in terms of r, θ, and

partial derivatives of f(x, y) with respect to x and y.

Sol.

∂w

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
= fx cos θ + fy sin θ

∂2w

∂2r
=

∂

∂r
(fx cos θ + fy sin θ) = (

∂

∂r
(fx) cos θ +

∂

∂r
(fy) sin θ)

= (fxx sin θ + fxy cos θ) sin θ + (fyx cos θ + fyy sin θ) sin θ

= fxx cos2 θ + (fxy + fyx) sin θ cos θ + fyy cos2 θ

(or = fxx cos2 θ + 2fxy sin θ cos θ + fyy cos2 θ)

6. (10 %) Assume f(x, y) = 3xy2 − x3 − 6

5
y5. Find all the local maximum, local minimum and saddle

points of f . Please still determine the types of critical points even if the second derivative test

is inconclusive.

Sol.

 fx = 3y2 − 3x2 = 0

fy = 6xy − 6y4 = 0

⇒

 x = ±y

x = y3 or y = 0
⇒ (x, y) = (0, 0), (−1,−1), (1, 1)

Second derivative test:

fxx = −6x, fyy = 6x− 24y3, fxy = 6y = fyx
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Hf =

∣∣∣∣∣∣ fxx fxy

fyx fyy

∣∣∣∣∣∣ = fxxfyy − f 2
xy = −36(x2 − 4xy3 + y2)

(0, 0) : Hf (0, 0) = 0 ⇒ inconclusive,

consider f(x, 0) = −x3 ⇒ f(x, 0) > 0 when x < 0, f(x, 0) < 0 when x > 0

⇒ (0, 0) is a saddle point.

(−1,−1) : Hf (−1,−1) = 72 > 0 and fxx(−1,−1) = 6 > 0

⇒ (−1,−1) is a local minimum point.

(1, 1) : Hf (1, 1) = 72 > 0 and fxx(1, 1) = −6 < 0

⇒ (1, 1) is a local maximum point.

7. (20 %) Suppose Γ is the intersection curve of x + y + 2z = 2 and z2 = 2x2 + 2y2.

(a) Find the tangent line of Γ at (
1

2
,
−1

2
, 1).

(b) Find all the points on Γ that lie closest and farthest from the origin.

Sol.

(a) Let f(x, y, z) = x + y + 2z − 2, g(x, y, z) = 2x2 + 2y2 − z2, P = (1
2
,−1

2
, 1)

∇f = (1, 1, 2),∇f |P = (1, 1, 2)

∇g = (4x, 4y,−2z),∇g|P = (2,−2,−2)

The direction of tangent vector of Γ is

∇f |P ×∇g|P = (1, 1, 2)× (2,−2,−2) = (2, 6,−4)

The tangent line of Γ at (1
2
, −1

2
, 1) is


x = 1

2
+ 2t

y = −1
2

+ 6t

z = 1− 4t

t ∈ R
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(b)

d(x, y, z) = x2 + y2 + z2,∇d = λ∇f + s∇g and f = 0, g = 0 ⇒



2x = λ + 4sx

2y = λ + 4sy

2z = 2λ− 2sz

f = 0

g = 0

⇒



(2− 4s)x = λ

(2− 4s)y = λ

(2 + 2s)z = λ

2x2 + 2y2 − z2 = 0

x + y + 2z − 2 = 0

Case1. (2− 4s) = 0 ⇒ λ = 0 ⇒ z = 0 ⇒

 2x2 + 2y2 = 0

x + y = 2
⇒ x = y = 0 and x + y = 2, no solution

Case2. (2− 4s) 6= 0 ⇒ x = y ⇒

 4x2 = z2

2x + 2z = 2
⇒ z = ±2x and 2x + 2z = 2

If z = 2x ⇒ (x, y, z) = (1
3
, 1

3
, 2

3
)

If z = −2x ⇒ (x, y, z) = (−1,−1, 2)

At (x, y, z) = (1
3
, 1

3
, 2

3
) ⇒ d = 2

3

At (x, y, z) = (−1,−1, 2) ⇒ d = 6

So (1
3
, 1

3
, 2

3
) is the closest point from (0, 0, 0)

So (−1,−1, 2) is the farthest point from (0, 0, 0)
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