93學年上學期微甲一組期末考 Final Examination of Calculus, Jan. 9, 2004

Each question is 10 points.

1. Evaluate the following limits.

(a)
$$\lim_{x \to 0^+} \left(\frac{1}{x^2} - \frac{1}{x \tan x} \right)$$

(b)
$$\lim_{x \to 0} \left(\frac{\cos x}{\cos 3x} \right)^{1/x^2}.$$

2. Find $\int x \left(\sec^{-1} x \right)^2 dx.$

- 3. Find $\int \frac{dx}{e^{\frac{x}{2}} + e^{\frac{x}{3}} + e^{\frac{x}{6}}}$.
- 4. Find the volume of a solid torus which is obtained by rotating the circle $(x R)^2 + y^2 = r^2$, R > r > 0, about the y-axis.
- 5. If the infinite curve $y = e^{-x}$, $x \ge 0$, is rotated about the x-axis, find the area of the resulting surface.
- 6. Determine whether the series $\sum_{n=1}^{\infty} (-1)^{\left[\sqrt{n}\right]} \frac{(n!)^k}{(kn)!}$ is absolutely convergent, conditionally convergent, or divergent, where $\left[\sqrt{n}\right]$ is the largest integer no greater than \sqrt{n} , and k is a positive integer.
- 7. Determine whether the series $\sum_{n=1}^{\infty} (-1)^{n-1} (\sqrt[n]{n-1})$ is absolutely convergent, conditionally convergent, or divergent.
- 8. Compute $f^{(13)}(0)$ when $f(x) = e^{x^5 e^x}$.
- 9. Find the Taylor series of $\ln (2 + 2x x^2)$ centered at 1, and determine the interval of convergence of this Taylor series.
- 10. Use power series to approximate $\int_{\frac{1}{2}}^{1} \cos x^2 dx$ correct up to three decimal places. Carefully justify that your answer is indeed correct up to three decimal places.(請以小數形式寫下你的近似值與誤差)